Exercise H6.1 Let $X_{1}, \ldots, X_{n_{1}}$, be independent $N\left(\mu_{1}, \sigma^{2}\right)$ and $Y_{1}, \ldots, Y_{n_{2}}$ be independent $N\left(\mu_{2}, \sigma^{2}\right)$, also independent of $X_{1}, \ldots, X_{n_{1}}\left(n_{1}, n_{2}>1\right)$ For each of the two samples, form the sample means \bar{X}, \bar{Y} and the bias corrected sample variances

$$
S_{(1)}^{2}=\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}}\left(X_{i}-\bar{X}\right)^{2}, S_{(2)}^{2}=\frac{1}{n_{2}-1} \sum_{i=1}^{n_{2}}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Consider the statistic

$$
Z=\frac{\bar{X}-\bar{Y}}{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}
$$

which is standard normal if $\mu_{1}=\mu_{2}$. In a model where μ_{1}, μ_{2} are unknown but σ^{2} is known, it obviously can be used to build a confidence interval for the difference $\mu_{1}-\mu_{2}$.

For the case that in addition σ^{2} is unknown, find a statistic which has a t-distribution if $\mu_{1}=\mu_{2}$ (this would then be called a "studentized" statistic), and find the degrees of freedom.

Solution: since $\bar{X}-\bar{Y}$ is a random variable according to a normal distribution with $E(\bar{X}-\bar{Y})=\mu_{1}-\mu_{2} \quad$ and $\operatorname{Var}(\bar{X}-\bar{Y})=\operatorname{Var}(\bar{X}-\bar{Y})+\operatorname{Var}(\bar{X}-\bar{Y})=\sigma^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)$, then

$$
\mathcal{L}\left(\frac{\bar{X}-\bar{Y}}{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{\frac{1}{2}}}\right)=N\left(\mu_{1}-\mu_{2}, 1\right)
$$

And from Theorem 6.2, we know

$$
\mathcal{L}\left(\frac{n_{1}-1}{\sigma^{2}} \widehat{S}_{(1)}^{2}\right)=\chi^{2}\left(n_{1}-1\right)
$$

and

$$
\mathcal{L}\left(\frac{n_{2}-1}{\sigma^{2}} \widehat{S}_{(2)}^{2}\right)=\chi^{2}\left(n_{2}-1\right),
$$

then

$$
\mathcal{L}\left(\frac{n_{1}-1}{\sigma^{2}} \widehat{S}_{(1)}^{2}+\frac{n_{2}-1}{\sigma^{2}} \widehat{S}_{(2)}^{2}\right)=\chi^{2}\left(n_{1}+n_{2}-2\right) .
$$

This implies

$$
\mathcal{L}\left(\frac{\frac{\bar{X}-\bar{Y}}{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{\frac{1}{2}}}\left(n_{1}+n_{2}-2\right)^{\frac{1}{2}}}{\left(\frac{n_{1}-1}{\sigma^{2}} \widehat{S}_{(1)}^{2}+\frac{n_{2}-1}{\sigma^{2}} \widehat{S}_{(2)}^{2}\right)^{\frac{1}{2}}}\right)=t\left(n_{1}+n_{2}-2\right)
$$

i.e.,

$$
\mathcal{L}\left(\frac{(\bar{X}-\bar{Y})\left(n_{1}+n_{2}-2\right)^{\frac{1}{2}}}{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{\frac{1}{2}}\left(\left(n_{1}-1\right) \widehat{S}_{(1)}^{2}+\left(n_{2}-1\right) \widehat{S}_{(2)}^{2}\right)^{\frac{1}{2}}}\right)=t\left(n_{1}+n_{2}-2\right) .
$$

Exercise H6.2 Show that the t-distribution with n degrees of freedom has
a) finite moments of up to order $n-1$
b) no moments of order n and higher.

Solution: in page 58 of our notes, we know the density of the law t_{n} is

$$
f_{n}(x)=c\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2}
$$

where c is a positve constant.
We need to prove

$$
\int_{-\infty}^{+\infty} f_{n}(x) x^{k} d x=c \int_{-\infty}^{+\infty}\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2} x^{k} d x
$$

exists for $k \leqslant n-1$, and doesn't exist for $k \geqslant n$.
Note that this function is continous on R, so it enough to show

$$
\int_{1}^{+\infty}\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2} x^{k} d x
$$

exists for $k \leqslant n-1$, and doesn't exist for $k \geqslant n$.
Since

$$
\lim _{x \rightarrow+\infty} \frac{\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2} x^{k}}{x^{k-(n+1)}}=n^{(n+1) / 2},
$$

then it is enough to see

$$
\int_{1}^{+\infty} x^{k-(n+1)} d x
$$

exists or not.
Obviously, $\int_{1}^{+\infty} x^{k-(n+1)} d x$ exists for $k \leqslant n-1$, and doesn't exist for $k \geqslant n$.
This implies

$$
\int_{1}^{+\infty}\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2} x^{k} d x
$$

exists for $k \leqslant n-1$, and doesn't exist for $k \geqslant n$.

Exercise H6.3 For the following problem, assume that $n \geq 2$ and consider the unit sphere in \mathbb{R}^{n}

$$
K_{n}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\} .
$$

Assume that there is a one-to-one-mapping h from a set $B \subset \mathbb{R}^{n-1}$.onto K_{n} such that every vector x in \mathbb{R}^{n} with $\|x\|>0$ can be written

$$
x=\|x\| \cdot h\left(u_{x}\right)
$$

where $u_{x} \in B$. Assume also that the mapping $(r, u) \mapsto r \cdot h(u), r>0, u \in B$ allows a change of variables with Jacobian $C_{n} r^{n-1}$: if $f(x)$ is any density in $x=\left(x_{1}, \ldots, x_{n}\right)$ then the density in new variables $(r, u)=\left(\|x\|, u_{x}\right)$ is

$$
C_{n} \cdot f(r \cdot h(u)) \cdot r^{n-1}
$$

where C_{n} is a constant depending only on n.
Consider now a Gaussian scale model: X_{1}, \ldots, X_{n} are independent and identically distributed random variables each having law $N\left(0, \sigma^{2}\right)$, where $\sigma^{2}>0$ is unknown. Set $X=$ $\left(X_{1}, \ldots, X_{n}\right)^{\top}$.
(i) Note that the uniform law Q on the sphere K_{n} is the unique probability measure on K_{n} which is invariant under orthogonal transformations M of \mathbb{R}^{n} :

$$
Q(A)=Q(M A) \text { for every measurable set } A \subset K_{n} .
$$

Show that the random vector $X /\|X\|$ has the distribution Q.
(ii) Show that the random variables $\|X\|^{2}$ and $U=u_{X}=h^{-1}(X /\|X\|)$ are independent.
(iii) Show that $\|X\|^{2}$ is a sufficient statistic for σ^{2}.

Remark: (iii) is a generalization of Exercise H5.1 to $n \geq 2$; there also sufficient statistics for continuous models were defined. This previous definition should be completed by the assumption that the random vector $\left(T, Y_{2}, \ldots, Y_{k}\right)$ introduced there is a one-to-one function of the random vector X.

Solution: (i) Since

4

$$
\begin{aligned}
P(X /\|X\| \in A)= & P(M X /\|X\| \in M A) \\
& =P(M X /\|M X\| \in M A) \text { (because } M \text { is orthogonal) } \\
= & P(X /\|X\| \in M A) \text { (because } \mathcal{L}(X)=\mathcal{L}(M X) \text { from Lemma 5.8) }
\end{aligned}
$$

then $X /\|X\|$ has the distribution Q.
(ii) since the the joint density of X is

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}\right),
$$

then the density in the new variable (r, u) is

$$
g(r, u)=C_{n} \frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} r^{2}\right) r^{n-1},
$$

which is independent of u.
Thus the marginal density of u is a constant. Thus $g(r, u)$ is a product of the marginal densities of r and u.

This implies $\|X\|^{2}=r^{2}$ and u are independent.
(iii) note that the polar coordinates gives the mapping $(r, u) \mapsto r \cdot h(u), r>0$ which allows a change of variables with Jacobian $C_{n} r^{n-1}$. And from (i) and (ii), we know $p(u \mid r)$ is independent of σ^{2}. This implies $\|X\|^{2}$ is a sufficient statistics for σ^{2}.

