Exercise H6.1 Let X_1, \ldots, X_{n_1} , be independent $N(\mu_1, \sigma^2)$ and Y_1, \ldots, Y_{n_2} be independent $N(\mu_2, \sigma^2)$, also independent of X_1, \ldots, X_{n_1} $(n_1, n_2 > 1)$ For each of the two samples, form the sample means \bar{X}, \bar{Y} and the bias corrected sample variances

$$S_{(1)}^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2, \ S_{(2)}^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2$$

Consider the statistic

$$Z = \frac{\bar{X} - \bar{Y}}{\sigma \left(\frac{1}{n_1} + \frac{1}{n_2}\right)^{1/2}}$$

which is standard normal if $\mu_1 = \mu_2$. In a model where μ_1, μ_2 are unknown but σ^2 is known, it obviously can be used to build a confidence interval for the difference $\mu_1 - \mu_2$.

For the case that in addition σ^2 is unknown, find a statistic which has a *t*-distribution if $\mu_1 = \mu_2$ (this would then be called a "studentized" statistic), and find the degrees of freedom.

Solution: since $\overline{X} - \overline{Y}$ is a random variable according to a normal distribution with $E(\overline{X} - \overline{Y}) = \mu_1 - \mu_2$ and $Var(\overline{X} - \overline{Y}) = Var(\overline{X} - \overline{Y}) + Var(\overline{X} - \overline{Y}) = \sigma^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)$, then

$$\mathcal{L}\left(\frac{\overline{X} - \overline{Y}}{\sigma\left(\frac{1}{n_1} + \frac{1}{n_2}\right)^{\frac{1}{2}}}\right) = N\left(\mu_1 - \mu_2, 1\right).$$

And from Theorem 6.2, we know

$$\mathcal{L}\left(\frac{n_1-1}{\sigma^2}\widehat{S}^2_{(1)}\right) = \chi^2\left(n_1-1\right),\,$$

and

$$\mathcal{L}\left(\frac{n_2-1}{\sigma^2}\widehat{S}^2_{(2)}\right) = \chi^2\left(n_2-1\right),\,$$

then

$$\mathcal{L}\left(\frac{n_1-1}{\sigma^2}\widehat{S}^2_{(1)} + \frac{n_2-1}{\sigma^2}\widehat{S}^2_{(2)}\right) = \chi^2(n_1+n_2-2).$$

This implies

$$\mathcal{L}\left(\frac{\frac{\overline{X} - \overline{Y}}{1} (n_1 + n_2 - 2)^{\frac{1}{2}}}{\sigma \left(\frac{1}{n_1} + \frac{1}{n_2}\right)^{\frac{1}{2}}} (n_1 + n_2 - 2)^{\frac{1}{2}}}{(\frac{n_1 - 1}{\sigma^2} \widehat{S}_{(1)}^2 + \frac{n_2 - 1}{\sigma^2} \widehat{S}_{(2)}^2)^{\frac{1}{2}}}\right) = t (n_1 + n_2 - 2)$$

 ${\rm i.e.},$

$$\mathcal{L}\left(\frac{(\overline{X}-\overline{Y})(n_1+n_2-2)\overline{2}}{\left(\frac{1}{n_1}+\frac{1}{n_2}\right)^{\frac{1}{2}}\left((n_1-1)\widehat{S}^2_{(1)}+(n_2-1)\widehat{S}^2_{(2)}\right)^{\frac{1}{2}}}\right) = t(n_1+n_2-2).$$

Exercise H6.2 Show that the *t*-distribution with n degrees of freedom has

- **a)** finite moments of up to order n-1
- **b)** no moments of order n and higher.

Solution: in page 58 of our notes, we know the density of the law t_n is

$$f_n(x) = c\left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}$$

where c is a positve constant.

We need to prove

$$\int_{-\infty}^{+\infty} f_n(x) x^k dx = c \int_{-\infty}^{+\infty} \left(1 + \frac{x^2}{n} \right)^{-(n+1)/2} x^k dx$$

,

exists for $k \leq n-1$, and doesn't exist for $k \geq n$.

Note that this function is continous on R, so it enough to show

$$\int_{1}^{+\infty} \left(1 + \frac{x^2}{n} \right)^{-(n+1)/2} x^k dx$$

exists for $k \leq n - 1$, and doesn't exist for $k \geq n$. Since

$$\lim_{x \to +\infty} \frac{\left(1 + \frac{x^2}{n}\right)^{-(n+1)/2} x^k}{x^{k-(n+1)}} = n^{(n+1)/2},$$

then it is enough to see

$$\int_{1}^{+\infty} x^{k-(n+1)} dx$$

exists or not.

Obviously, $\int_1^{+\infty} x^{k-(n+1)} dx$ exists for $k \leq n-1$, and doesn't exist for $k \geq n$. This implies

$$\int_{1}^{+\infty} \left(1 + \frac{x^2}{n} \right)^{-(n+1)/2} x^k dx$$

exists for $k \leq n-1$, and doesn't exist for $k \geq n$.

Exercise H6.3 For the following problem, assume that $n \ge 2$ and consider the unit sphere in \mathbb{R}^n

$$K_n = \{x \in \mathbb{R}^n : ||x|| = 1\}.$$

Assume that there is a one-to-one-mapping h from a set $B \subset \mathbb{R}^{n-1}$ onto K_n such that every vector x in \mathbb{R}^n with ||x|| > 0 can be written

$$x = \|x\| \cdot h(u_x)$$

where $u_x \in B$. Assume also that the mapping $(r, u) \mapsto r \cdot h(u), r > 0, u \in B$ allows a change of variables with Jacobian $C_n r^{n-1}$: if f(x) is any density in $x = (x_1, \ldots, x_n)$ then the density in new variables $(r, u) = (||x||, u_x)$ is

$$C_n \cdot f(r \cdot h(u)) \cdot r^{n-1}$$

where C_n is a constant depending only on n.

Consider now a Gaussian scale model: X_1, \ldots, X_n are independent and identically distributed random variables each having law $N(0, \sigma^2)$, where $\sigma^2 > 0$ is unknown. Set $X = (X_1, \ldots, X_n)^{\top}$.

(i) Note that the uniform law Q on the sphere K_n is the unique probability measure on K_n which is invariant under orthogonal transformations M of \mathbb{R}^n :

Q(A) = Q(MA) for every measurable set $A \subset K_n$.

Show that the random vector X/||X|| has the distribution Q.

(ii) Show that the random variables $||X||^2$ and $U = u_X = h^{-1}(X/||X||)$ are independent.

(iii) Show that $||X||^2$ is a sufficient statistic for σ^2 .

Remark: (iii) is a generalization of Exercise H5.1 to $n \ge 2$; there also sufficient statistics for continuous models were defined. This previous definition should be completed by the assumption that the random vector (T, Y_2, \ldots, Y_k) introduced there is a one-to-one function of the random vector X.

Solution: (i) Since

$$P(X/||X|| \in A) = P(MX/||X|| \in MA)$$

= $P(MX/||MX|| \in MA)$ (because M is orthogonal)
= $P(X/||X|| \in MA)$ (because $\mathcal{L}(X) = \mathcal{L}(MX)$ from Lemma 5.8),

then X/||X|| has the distribution Q.

(ii) since the point density of X is

$$f(x_1, ..., x_n) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2\right),\,$$

then the density in the new variable (r, u) is

$$g(r,u) = C_n \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2}r^2\right) r^{n-1},$$

which is independent of u.

Thus the marginal density of u is a constant. Thus g(r, u) is a product of the marginal densities of r and u.

This implies $||X||^2 = r^2$ and u are independent.

(iii) note that the polar coordinates gives the mapping $(r, u) \mapsto r \cdot h(u), r > 0$ which allows a change of variables with Jacobian $C_n r^{n-1}$. And from (i) and (ii), we know p(u|r) is independent of σ^2 . This implies $||X||^2$ is a sufficient statistics for σ^2 .