Exercise H7.2 Let $X_{1}, \ldots, X_{n_{1}}$, be independent $N\left(\mu_{1}, \sigma^{2}\right)$ and $Y_{1}, \ldots, Y_{n_{2}}$ be independent $N\left(\mu_{2}, \sigma^{2}\right)$, also independent of $X_{1}, \ldots, X_{n_{1}}\left(n_{1}, n_{2}>1\right)$. In a model where these r.v.'s are observed, and μ_{1}, μ_{2} and σ^{2} are all unknown, find an α-test for the hypothesis

$$
H: \mu_{1}=\mu_{2} .
$$

Hint: compare exercise H6.1, previous homework.

Sollution: in the exercise H6.1, we know

$$
\mathcal{L}(T(X, Y))=t\left(n_{1}+n_{2}-2\right),
$$

where

$$
T(X, Y)=\frac{(\bar{X}-\bar{Y})\left(n_{1}+n_{2}-2\right)^{\frac{1}{2}}}{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{\frac{1}{2}}\left(\left(n_{1}-1\right) \widehat{S}_{(1)}^{2}+\left(n_{2}-1\right) \widehat{S}_{(2)}^{2}\right)^{\frac{1}{2}}} .
$$

Let $z_{\alpha / 2, n_{1}+n_{2}-2}$ be the upper $\alpha / 2$-quantile of the t-distribution for $n_{1}+n_{2}-2$ degrees of freedom, and

$$
\phi(X, Y)=1_{A}(T(X, Y)),
$$

where $A=\left\{x \in R:|x| \geqslant z_{\alpha / 2, n_{1}+n_{2}-2}\right\}$,
then $\phi(X, Y)$ is the α-test for the hypothesis $H: \mu_{1}=\mu_{2}$.
Exercise H7.3 Let $z_{\alpha / 2, n}$ be the upper $\alpha / 2$-quantile of the t-distribution with n degrees of freedom and $z_{\alpha / 2}^{*}$ the respective quantile for the standard normal distribution. Use the tables at the end of the textbook or a computer program to find
a) $z_{\alpha / 2, n}$ for $n=5, n=20$ and $z_{\alpha / 2}^{*}$ for a value $\alpha=0.05$
b) the same for $\alpha=0.01$.

Solution: we have the following values:

α	$z_{\alpha / 2,5}$	$z_{\alpha / 2,20}$	$z_{\alpha / 2}^{*}$
0.01	4.032142984	2.845339710	2.575829304
0.05	2.570581836	2.085963447	1.959963985

Let $n \rightarrow \infty$, what conclusion you can get? Try to prove it.

