Exercise H7.2 Let X_1, \ldots, X_{n_1} , be independent $N(\mu_1, \sigma^2)$ and Y_1, \ldots, Y_{n_2} be independent $N(\mu_2, \sigma^2)$, also independent of X_1, \ldots, X_{n_1} $(n_1, n_2 > 1)$. In a model where these r.v.'s are observed, and μ_1, μ_2 and σ^2 are all unknown, find an α -test for the hypothesis

$$H: \mu_1 = \mu_{2.}$$

Hint: compare exercise H6.1, previous homework.

Sollution: in the exercise H6.1, we know

$$\mathcal{L}(T(X,Y)) = t\left(n_1 + n_2 - 2\right),$$

where

$$T(X,Y) = \frac{(\overline{X} - \overline{Y})(n_1 + n_2 - 2)^{\frac{1}{2}}}{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)^{\frac{1}{2}} \left((n_1 - 1)\widehat{S}_{(1)}^2 + (n_2 - 1)\widehat{S}_{(2)}^2\right)^{\frac{1}{2}}}.$$

Let $z_{\alpha/2,n_1+n_2-2}$ be the upper $\alpha/2$ -quantile of the *t*-distribution for $n_1 + n_2 - 2$ degrees of freedom, and

$$\phi(X,Y) = 1_A \left(T(X,Y) \right),$$

where $A = \{ x \in R : |x| \ge z_{\alpha/2, n_1+n_2-2} \},\$

then $\phi(X, Y)$ is the α -test for the hypothesis $H : \mu_1 = \mu_2$.

Exercise H7.3 Let $z_{\alpha/2,n}$ be the upper $\alpha/2$ -quantile of the *t*-distribution with *n* degrees of freedom and $z_{\alpha/2}^*$ the respective quantile for the standard normal distribution. Use the tables at the end of the textbook or a computer program to find a) $z_{\alpha/2,n}$ for n = 5, n = 20 and $z_{\alpha/2}^*$ for a value $\alpha = 0.05$ b) the same for $\alpha = 0.01$.

Solution: we have the following values:

α	$z_{\alpha/2,5}$	$z_{lpha/2,20}$	$z^*_{lpha/2}$
0.01	4.032142984	2.845339710	2.575829304 .
0.05	2.570581836	2.085963447	1.959963985

Let $n \to \infty$, what conclusion you can get? Try to prove it.