Exercise H8.1. Let X_{1}, \ldots, X_{n} be independent identically distributed with unknown distribution Q, where it is known only that

$$
\operatorname{Var}\left(X_{1}\right) \leq K
$$

for some known positive K. Then also $\mu=E X_{1}$ exists. Consider hypotheses
$H: \mu=\mu_{0}$
$K: \mu \neq \mu_{0}$.
Find an α-test (exact level, not just asymptotic). (Hint: Chebyshev).

Solution: from Chebyshev inequality, we have

$$
\begin{aligned}
\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu_{0}\right| \geq c\right) & \leq \frac{\operatorname{Var}\left(\bar{X}_{n}\right)}{c^{2}} \\
& =\frac{K}{n c^{2}} .
\end{aligned}
$$

Let $\alpha=\frac{K}{n c^{2}}$, i.e., $c=\left(\frac{K}{n \alpha}\right)^{1 / 2}$, and define

$$
\Phi(X)=1_{A}\left(\left|\bar{X}_{n}-\mu_{0}\right|\right), A=\left\{t: t \geq\left(\frac{K}{n \alpha}\right)^{1 / 2}\right\}
$$

then $\Phi(X)$ is an α-test.
Exercise H8.2. Let X_{1}, \ldots, X_{n}, be independent $\operatorname{Poisson} \operatorname{Po}(\lambda)$. Consider some λ_{0}, λ_{1} such that $0<\lambda_{0}<\lambda_{1}$.
(i) Consider simple hypotheses
$H: \lambda=\lambda_{0}$
$K: \lambda=\lambda_{1}$.
Find a most powerful α-test.
Note: the distribution of any proposed test statistic can be expected to be discrete, so that a randomized test might be most powerful. For the solution, this aspect can be ignored; just indicate the statistic, its distribution under H and the type of rejection region (such as "reject when T is too large").
(ii) Consider composite hypotheses
$H: \lambda=\lambda_{0}$
$K: \lambda>\lambda_{0}$.
Find a uniformly most powerful (UMP) α-test.
Hint: take a solution of (i) which does not depend on λ_{1}.
(iii) Consider composite hypotheses
$H: \lambda \leq \lambda_{0}$
$K: \lambda>\lambda_{1}$.
Find a uniformly most powerful (UMP) α-test.
Hint: take a solution of (ii) and show that it preserves level α on $H: \lambda \leq \lambda_{0}$. Properties of the Poisson distribution are useful.

Solution: (i) (ii) we have

$$
\begin{aligned}
L(x) & =\frac{\prod_{i=1}^{n}\left(e^{-\lambda_{1}} \lambda_{1}^{x_{i}} / x_{i}!\right)}{\prod_{i=1}^{n}\left(e^{-\lambda_{0}} \lambda_{0}^{x_{i}} / x_{i}!\right)} \\
& =e^{-n\left(\lambda_{1}-\lambda_{0}\right)}\left(\lambda_{1} / \lambda_{0}\right)^{\sum_{i=1}^{n} x_{i}}
\end{aligned}
$$

which is an strictly increasing function of $\sum_{i=1}^{n} x_{i}$, for $\lambda_{1}>\lambda_{0}$.
This implies $L(x)>t_{L}$, for some constant t_{L}, is equivalent to $\sum_{i=1}^{n} x_{i}>t_{M}$, for some corresponding constant t_{M}.

Thus to find an UMP randomized Neyman-Pearson test of level α is equivalent to find a test

$$
\Phi(X)=\left\{\begin{array}{l}
1 \text { if } \sum_{i=1}^{n} x_{i}>c \\
\gamma \text { if } \sum_{i=1}^{n} x_{i}=c \\
0 \text { if } \sum_{i=1}^{n} x_{i}<c
\end{array}\right.
$$

such that $E_{\lambda_{0}}(\Phi(X))=\alpha$, for some constant c.
Obviously, c is the interger M which satisfies

$$
\operatorname{Pr}\left\{\sum_{i=1}^{n} x_{i} \geq M+1\right\} \leq \alpha<\operatorname{Pr}\left\{\sum_{i=1}^{n} x_{i} \geq M\right\}
$$

Note that this test doesn't depend on λ_{1}.
(iii) we have

$$
E_{\lambda}(\Phi(X))=\sum_{i=M+1} e^{-n \lambda}(n \lambda)^{i} / i!+\gamma e^{-n \lambda}(n \lambda)^{M} / M!
$$

where $\lambda \leq \lambda_{0}$, and

$$
\begin{aligned}
\frac{d}{d \lambda} E_{\lambda}(\Phi(X))= & -n \sum_{i=M+1} e^{-n \lambda}(n \lambda)^{i} / i!+n \sum_{i=M} e^{-n \lambda}(n \lambda)^{i} / i! \\
& -n \gamma e^{-n \lambda}(n \lambda)^{M} / M!+n \gamma e^{-n \lambda}(n \lambda)^{M-1} /(M-1)! \\
= & n e^{-n \lambda}(n \lambda)^{M} / M!-n \gamma e^{-n \lambda}(n \lambda)^{M} / M!+n \gamma e^{-n \lambda}(n \lambda)^{M-1} /(M-1) \\
> & 0 .
\end{aligned}
$$

This implies $E_{\lambda}(\Phi(X)) \leq \alpha$ for $\lambda \leq \lambda_{0}$.
Thus the test given above is still a UMP α-test for the hypotheses $H: \lambda \leq \lambda_{0}$ v.s. K : $\lambda>\lambda_{0}$.

Exercise H8.3. Let X_{1}, \ldots, X_{n} be independent $\operatorname{Poisson} \operatorname{Po}\left(\lambda_{1}\right)$ and Y_{1}, \ldots, Y_{n} be independent $\operatorname{Po}\left(\lambda_{2}\right)$, also independent of X_{1}, \ldots, X_{n}. Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}\right)$ be the parameter vector, $\boldsymbol{\lambda}_{0}$ a particular value for this vector (with positive components) and consider hypotheses $H: \boldsymbol{\lambda}=\boldsymbol{\lambda}_{0}$
$K: . \boldsymbol{\lambda} \neq \boldsymbol{\lambda}_{0}$.
Find an asymptotic α-test. Hint: find a statistic similar to the χ^{2}-statistic in the multinomial case (Definition 8.1, p. 86 handout) and its asymptotic distribution under H.

Solution: we have

$$
n^{1 / 2}\left(\bar{X}_{n}-\lambda_{01}\right) \stackrel{\mathcal{L}}{\Longrightarrow} N\left(0, \lambda_{01}\right),
$$

by the CLT under H, where $\boldsymbol{\lambda}_{0}=\left(\lambda_{01}, \lambda_{02}\right)$.
This implies

$$
n\left(\bar{X}_{n}-\lambda_{01}\right)^{2} / \lambda_{01} \stackrel{\mathcal{L}}{\Longrightarrow} \chi_{1}^{2}
$$

similarly,

$$
n\left(\bar{Y}_{n}-\lambda_{02}\right)^{2} / \lambda_{02} \stackrel{\mathcal{L}}{\Longrightarrow} \chi_{1}^{2},
$$

under H, then

$$
n\left(\bar{X}_{n}-\lambda_{01}\right)^{2} / \lambda_{01}+n\left(\bar{Y}_{n}-\lambda_{02}\right)^{2} / \lambda_{02} \stackrel{\mathcal{L}}{\Longrightarrow} \chi_{2}^{2} .
$$

Thus

4

$$
\begin{aligned}
\Phi(X, Y) & =1 \text { if } n\left(\bar{X}_{n}-\lambda_{01}\right)^{2} / \lambda_{01}+n\left(\bar{Y}_{n}-\lambda_{02}\right)^{2} / \lambda_{02}>\chi_{2 ; 1-\alpha}^{2} \\
& =0 \text { o.w. }
\end{aligned}
$$

is an asymptotic α-test.
Remark: I hope you guys can derive the asymptotic χ^{2} above from likelihood ratio. you can benefit a lot from this.

