Unit 1: Sections 1.1-3.3 Skill Set

Section 1.1: Review of Functions

Assessment Item	Correlated MML Problems	Textbook
Find the domain and range of a function.	14,17	$13,15,19$
Find a formula for and/or evaluate a composite function.	26,39	$23,27,29$, 35
Express a function as a composite of one or more given functions.	31	$34,41,43$
Given a graph or table, determine the composite function values.	45	
Determine if an equation or function has symmetry about the x- axis, the y-axis, or the origin.	49	47
Given a graph, state whether the functions represented are even, odd, or neither.	53	
Simplify expressions given a function. Expressions represent average rate of change.		72,75

Additional Suggested Problems: 3, 4, 5, 6, 11, 12, 30, 46, 54, 55

Section 1.2: Representing Functions

Assessment Item	Correlated MML Problems	Textbook
Find a formula for a function from its graph.	11	16
Graph a piecewise linear function.	18	19
Evaluate and find a formula for a slope function.		26
Given a graph, find an equation for a function by recognizing vertical and horizontal shifts.	29	
Graph a function by recognizing vertical and horizontal shifts.	$30,31,35$	$33,34,37$

Additional Suggested Problems: 2, 3, 7, 8, 9, 10, 41, 56, 60, 61

Section 1.3: Trigonometric Functions

For additional review, see Just-In-Time Algebra and Trigonometry, Chapters 7 and 11.

Assessment Item	Correlated MML Problems	Textbook
Evaluate trigonometric functions for basic angles without the use of a calculator.	$9,11,13,14$	10,12
Solve trigonometric equations.	$23,25,28$	24,27
Given one trigonometric function value and an interval, evaluate the other five functions.	30,32	

Additional Suggested Problems: 7, 17, 29, 46, 47

Section 2.1: The Idea of Limits

Assessment Item	Correlated MML Problems	Textbook
Find the average rate of change of a function over a given interval. (That is, find the slope of the secant line between two points on a curve.)	7	
Using technology, calculate the average velocity of shorter and shorter time intervals in order to estimate the instantaneous velocity at a given value of t.	9	12
Estimate solutions to applications using average velocities to approximate instantaneous velocity.	24	21,23

Additional Suggested Problems: 1, 3

Section 2.2: Definitions of Limits

Assessment Item	Correlated MML Problems	Textbook
Given a graph, find the one-sided or two-sided limit of a function or explain why a limit does not exist.	$7,17,19$	10,20
Using technology, calculate the value of a function closer and closer to a given input value in order to estimate the limit.	11,13	26,29
Given select function values and limit statements about a function, sketch a graph with the given properties.		24,25

Additional Suggested Problems: 2, 5, 14, 21, 23, 30, 31, 36

Section 2.3: Techniques for Computing Limits

Assessment Item	Correlated MML Problems	Textbook
Find the limit of a function using the Limit Laws.	$17,23,31$, $39,41,44$, $45,47,55$, 57	$16,18,25$, $27,43,58$, 60
Find the limit of a function using the Squeeze Theorem.	51	8,50
Determine the value of an unknown constant for which the two- sided limit of a function will exist at a given input.	63	62
Use the factorization formula for $\mathrm{x}^{\mathrm{n}}-\mathrm{a}^{\mathrm{n}}$ to evaluate limits.	67	64,66

Additional Suggested Problems: 7, 21, 33, 53, 69, 72, 74, 75, 77, 78

Section 2.4: Infinite Limits

Assessment Item	Correlated MML Problems	Textbook
Recognize and evaluate an infinite limit.	$5,17,21,27$	19,28
Given a graph, find the one-sided or two-sided limit of a function or explain why a limit does not exist.	11	9
Given select function values and limit statements about a function, sketch a graph with the given properties.	15	16
Find all vertical asymptotes of a rational function.	23	24

Additional Suggested Problems: 1, 2, 4, 33, 34, 36, 46

Section 2.5: Limits at Infinity

Assessment Item	Correlated MML Problems	Textbook
Find a limit at infinity of a function.	$3,9,11,21$, 23,27	$12,20,26$, 28
Determine if a limit statement implies the existence of a horizontal asymptote for a function. Give the horizontal asymptote of the function, if any.	$(21,23,27)$	$(26,28)$
Find all vertical and horizontal asymptotes of a function.	$33,54 \mathrm{~b}, 57 \mathrm{~b}$	$32,34,37$
Given select function values and limit statements about a function, sketch a graph with the given properties.	43	42
Find the oblique (or slant) asymptote of a function. Then, sketch a graph of the function including all asymptotes.	$54 \mathrm{ac}, 56 \mathrm{ac}$	

Additional Suggested Problems: 1, 2, 4, 5, 8, 31

Section 2.6: Continuity

Assessment Item	Correlated MML Problems	Textbook
Given a graph, determine the points at which the function has discontinuities.	9,11	
Determine if a function is continuous at a point by definition.	15,17	13,16
Find the points (intervals) at which a function is continuous.	$21,29,31$, 35,45	$19,33,47$
Determine one-sided continuity.	$(31,35)$	$(33,47)$
Use the Intermediate Value Theorem to show that an equation has at least one solution or a given number of solutions.	51	75 a
Evaluate miscellaneous limits involving trigonometric functions.	65	$61,64,66$
Determine the value of a constant for which a function is continuous at a given input.	70	71
Verify or classify the discontinuities.	$79,81,85$	84

Additional Suggested Problems: 1, 2, 3, 7, 8, 55, 56, 59, 69

Section 3.1: Introducing the Derivative

Assessment Item	Correlated MML Problems	Textbook
Differentiate a function using one of the limit definitions at a specific x-value, i.e. find the slope of the tangent.	$15 \mathrm{a}, 17 \mathrm{a}$, $22 \mathrm{a}, 26 \mathrm{a}$	$12 \mathrm{a}, 27 \mathrm{a}$
Differentiate a function using the limit definition.	$29 \mathrm{a}, 50 \mathrm{a}$	33
Find the equation for a tangent line to a curve at a given point.	$15 \mathrm{~b}, 17 \mathrm{~b}$, $22 \mathrm{~b}, 26 \mathrm{~b}$, $29 \mathrm{~b}, 50 \mathrm{~b}$	$12 \mathrm{~b}, 27 \mathrm{~b}$
Plot the graph of a function and the tangent line to the function at a given point.	$15 \mathrm{c}, 29 \mathrm{c}$	12 c
Given a graph of a function, sketch a graph of its derivative.	$39,46 \mathrm{c}$	$42,45 \mathrm{c}$
Match the graph of a function with the graph of its derivative.	41	
Given a graph, find the values where a function is not continuous and find the values where it is not differentiable.	46 ab	45 ab
Given a graph, analyze the slope of the curve at given points.	53	54
Determine the location of vertical tangents for a function.	61,63	

Additional Suggested Problems: 8, 9, 14, 32, 38, 55, 56, 58, 65, 69, 71, 72

Section 3.2: Rules of Differentiation

Assessment Item	Correlated MML Problems	Textbook
Find the derivative of a function using the differentiation rules.	$7,9,19,26$, 29,31	$10,16,28$, 34
Find the tangents to a curve at a given point. Then, graph the curve and the tangent line on the same set of axes.	37	35
Find all points where a function has tangent lines of a given slope.	39,41	
Find higher-order derivatives of a function.	42	45
Given values for functions and their derivatives at a point, find the value of a derivative at that given point.	56	54

Additional Suggested Problems: 3, 4, 6, 47, 48, 49, 64

Section 3.3: The Product and Quotient Rules

Assessment Item	Correlated MML Problems	Textbook
Find the derivative of a function using the differentiation rules.	$9,18,19$, $23,32,35$, 51	$8,10,14$, 26,31
Find the tangents to a curve at a given point. Then, graph the curve and the tangent line on the same set of axes.	27	
Find all points where a function has tangent lines of a given slope.		39
Find higher-order derivatives of a function.	46	56,57
Given values for functions and their derivatives at a point, find the value of a derivative at that given point.	58,59	

Additional Suggested Problems: 4, 5, 45, 54, 55, 62, 65, 67

