Unit 2: Sections 3.4 - 4.4 Skill Set

Section 3.4: Derivatives of Trigonometric Functions

Assessment Item	Correlated MML	Textbook
	Problems	
Evaluate a limit involving $(\sin x)/x$ or $(\cos x - 1)/x$.	7, 10, 11,	9
	13, 39	
Differentiate a function involving trigonometric functions.	15, 19, 22,	17, 24, 28,
	27, 45	34, 48
Evaluate a limit involving a trigonometric function.	43	41, 42
Find the tangents to a curve at a given point. Then, graph the	50	51
curve and the tangent line on the same set of axes.		
Determine if and where a graph has a tangent line of given		54, 55
slope.		
Determine the value of a constant for which a function is	65	64
continuous at a given input.		

Additional Suggested Problems: 1, 3, 6, 37, 56, 58, 61, 67, 68

Section 3.5: Derivatives as Rates of Change

Assessment Item	Correlated	Textbook
	MML	
	Problems	
Solve and interpret a rate of change application.	9, 17, 28, 29	27, 30
Graph a position function. Find and graph the associated	11, 15	13
velocity function and interpret positive and negative movement.		
Evaluate the associated velocity and acceleration functions at a		
given time value.		

Additional Suggested Problems: 1, 4, 5, 25, 37, 47, 49

Section 3.6: The Chain Rule

Assessment Item	Correlated	Textbook
	MML	
	Problems	
Use the Chain Rule to differentiate a composite function.	9, 16, 17,	7, 10, 13,
	20, 25, 37,	15, 18, 27,
	39	(29, 30), 51
Write a composite function in the form of its two (composing)		29, 30
functions.		
Given values for functions and their derivatives at a point, find	31, 61	
the value of a derivative at that given point.		
Find the tangents to a curve at a given point.	57, 59	

Additional Suggested Problems: 2, 4, 5, 6, 45, 47, 53, 54, 65, 69, 71

Section 3.7: Implicit Differentiation

Assessment Item	Correlated	Textbook
	MML	
	Problems	
Use implicit differentiation to find dy/dx.	5a, 9a, 11,	7a, 19, 37
(first derivative = rate of change)	15	
Use implicit differentiation to find the slope of the tangent line	5b, 9b	7b, 41, 44
to a curve at a point.		
Verify that the given point lies on the curve. Then, determine	21, 23	26
the equation of the line tangent to the curve at the given point.		
Use implicit differentiation to find the second derivative.	28	31
Find the lines that are tangent and/or normal to a curve at a	49, 61	59, 64, 65
given point.		

Additional Suggested Problems: 1, 2, 47, 51, 52, 67

Section 3.8: Related Rates

Assessment Item	Correlated MML Problems	Textbook
Solve applications involving related rates using the problem strategy on p. 167.	5, 7, 17, 21, 31	9, 19, 22, 23, 26, 27, 29

Additional Suggested Problems: 11, 20, 33, 37, 38

Section 4.1: Maxima and Minima

Assessment Item	Correlated MML Problems	Textbook
Find extreme values and where they occur given a graph.	11, 13, 17	15
Sketch a graph with the given properties.	19	21
Find the critical points of a function and determine the local	25	23, 27, 29
extreme values.		
Find the absolute extrema of a function on a given interval and	33, 36	31, 37, 39
where they occur.		
Solve applications by finding extreme values.	41	44, 64

Additional Suggested Problems: 1, 2, 3, 4, 5, 6, 7, 8, 45, 46, 47, 51, 52, 65, 68

Section 4.2:	What	Derivatives	Tell	Us
--------------	------	-------------	------	----

Assessment Item	Correlated	Textbook
	MML	
	Problems	
Given the graphs or conditions of the first and/or second	11, 13, 39,	14, 15, 59
derivative, sketch a graph of the function.	41, 65	
Find the intervals on which a function is increasing or	17, 20, 25	23, 27
decreasing.		
Find the critical points of a function and determine any local	31	29, 51, 55
extreme values and where they occur.		
Locate and identify the absolute extreme values of a function.		35
Find the intervals on which a function is concave up or concave	43, 45, 48	46
down and identify and inflection points.		
Match graphs with a function, its derivative, and its second	61	62
derivative. Explain reasoning.		
Given the graph of the first derivative of a function, find	67	
intervals of increase/decrease, intervals of concave up/concave		
down, critical points, local extrema, and inflection points.		
Sketch the corresponding graph of the second derivative and a		
possible graph of the original function.		

Additional Suggested Problems: 3, 5, 6, 8, 9, 57, 68

Section 4.3: Graphing Functions

Assessment Item	Correlated	Textbook
	MML	
	Problems	
Given the graphs or conditions of the first and/or second	8	7
derivative, sketch a graph of the function.		
Use the steps of the graphing procedure on p. $200 - 201$ to graph	9, 11, 17,	15, 18, 41
an equation including coordinates of local extrema, inflection	23, 24	
points, and x- and y-intercepts.		
Given the first derivative of a continuous function, sketch the	34, 35	36
general shape of the function.		
Given the graph of the first and second derivatives of a function,	39	38
find intervals of increase/decrease, intervals of concave		
up/concave down, critical points, local extrema, and inflection		
points. Sketch the corresponding graph of the original function.		

Additional Suggested Problems: 3, 4, 33, 43, 44, 45, 46

Section 4.4: Optimization Problems

Assessment Item	Correlated MML Problems	Textbook
Solve applied optimization problems. (Model a situation with an	7, 9, 11, 12,	5, 9, 10ab,
equation, find the appropriate absolute extreme providing work	15, 23	13, 19,
necessary to support the result, and interpret in the context of the		26ab, 28, 46
problem.)		

Additional Suggested Problems: 3, 4, 6, 8, 24, 25, 26c, 51, 54a