Section 1.1 Review of Functions	
Domain and Range	
A <u>function f</u> assigns a unique output $f(x)$ for each input x.	
The set of all possible input values is called the <u>domain</u> and the set of all possible output values (given the domain) is called the <u>range</u> .	
The <u>independent variable</u> is the variable associated with the domain.	
The <u>dependent variable</u> belongs to the range.	
EX: In the function $y = f(x)$,	
x is the	variable and
y is the	variable.

EX: p. 8, #16 State the domain and range of the function. $f(w) = \sqrt[4]{2-w}$

Domain and Range in Context

If the domain is not specified, we take it to be the set of all input values for which the function is defined.

NOTE: The domain and range of a function may be restricted by the context of the problem. See Example 3, p. 3.

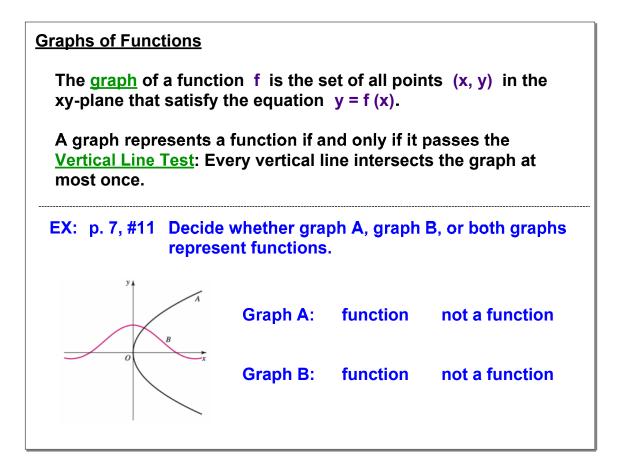
EX: p. 8, #20 Determine an appropriate domain of each function. Identify the independent and dependent variables.

The average production cost for a company to make n bicycles is given by the function c(n) = 120 - 0.25n.

Domain (in context):

Independent variable:

Dependent variable:



Composite Functions

Given two functions f and g, the <u>composite function</u> $f \circ g$ is defined by $(f \circ g)(x) = f(g(x))$. Domain: Domain of g for which g(x) is in the domain of f. The function y = f(g(x)) should be evaluated in two steps. 1st: Evaluate u = g(x). 2nd: Evaluate y = f(u). EX: p. 8, #25 Simplify or evaluate the following expressions. $f(x) = x^2 - 4$, $g(x) = x^3$, F(x) = 1/(x - 3)25. F(g(y))Extra. F(f(g(2)))

EX: p. 8, #32 Find possible choices for outer and inner functions f and g such that the given function h equals f \circ g. Give the domain of h.

$$h(x) = \frac{2}{\left(x^6 + x^2 + 1\right)^2}$$

1.1 and 1.2

Symmetry in Graphs

A graph is <u>symmetric about the y-axis</u> if whenever the point (x, y) is on the graph, the point (-x, y) is also on the graph.

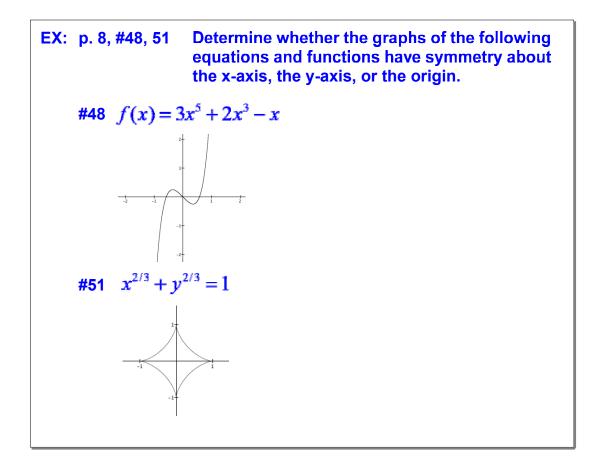
An <u>even function</u> f has the property that f(-x) = f(x) for all x in the domain. The graph of an even function is symmetric about the y-axis.

A graph is <u>symmetric about the origin</u> if whenever the point (x, y) is on the graph, the point (-x, -y) is also on the graph.

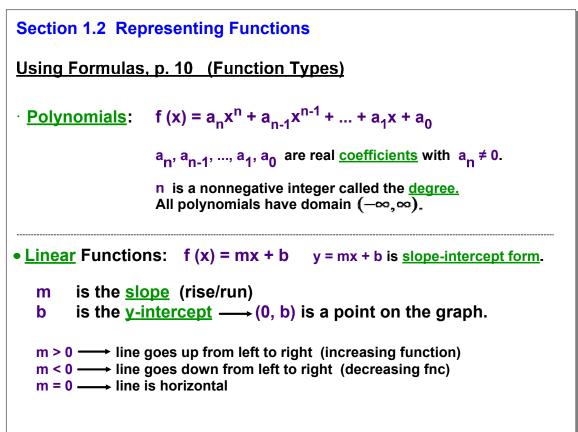
An <u>odd function</u> f has the property that f(-x) = -f(x) for all x in the domain. The graph of an odd function is symmetric about the origin.

A graph is <u>symmetric about the x-axis</u> if whenever the point (x, y) is on the graph, the point (x, -y) is also on the graph.

NOTE: A graph which is symmetric about the x-axis cannot represent a function.

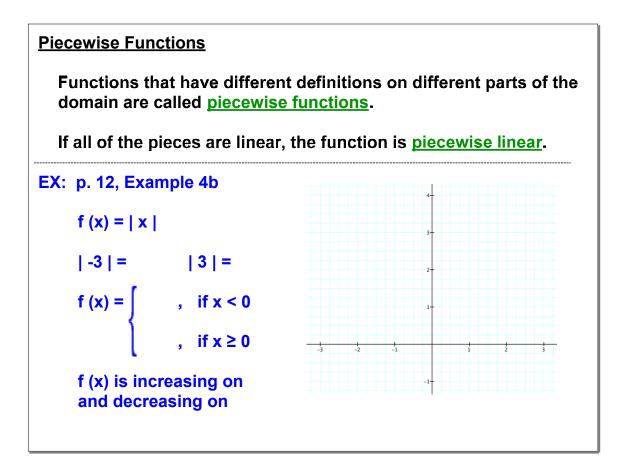


1.1 and 1.2

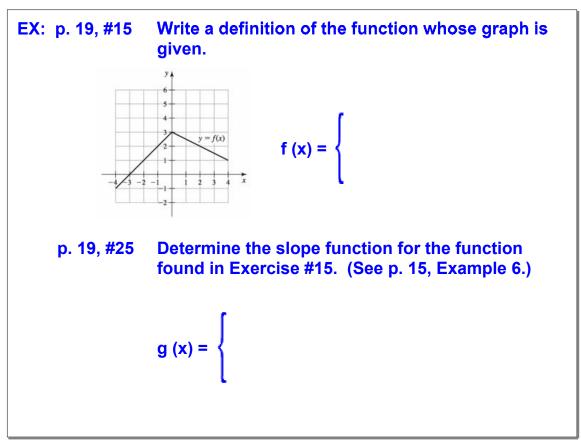


```
Function Types (Continued)
Power Functions: f (x) = x<sup>n</sup> where n is a positive integer.
See p. 13, Figures 1.21 and 1.22.
Root Functions: f (x) = x<sup>1/n</sup> where n > 1 is a positive integer.
See p. 13, Figures 1.23 and 1.24.
Rational Functions: Functions which are a quotient or ratio of polynomials: f (x) = p (x) / q (x), where p and q are polynomials.
Algebraic Functions: Functions constructed from polynomials using algebraic operations.
(addition, subtraction, multiplication, division, taking roots)
```

Function Types (Continued) Exponential Functions: f (x) = b^x where b is a positive constant and b ≠ 1. b is called the base. All exponential functions have domain (-∞,∞) Most important is the natural exponential: f (x) = e^x. Logarithmic Functions: f (x) = log_bx where b > 0 and b ≠ 1. All logarithmic functions have domain (0,∞) Most important is the natural logarithm: f (x) = log_ex = ln x. Trigonometric Functions: For example, f (x) = sin x or f (x) = cos x. These will be reviewed in Section 1.3. Transcendental Functions: Functions that are not algebraic.



1.1 and 1.2



Transformations of Functions and GraphsSUMMARY TransformationsGiven the real numbers a, b, c, and d and the function f, the graph of y = c f(a(x - b)) + d is obtained from the graph of y = f(x) in the following steps.y = f(x)horizontal scaling by a factor of |a|y = f(x)horizontal shift by b unitsy = f(a(x - b))vertical scaling by a factor of |c|y = c f(a(x - b))vertical scaling by a factor of |c|y = c f(a(x - b))vertical scaling by a factor of |c|y = c f(a(x - b))vertical scaling by a factor of |c|y = c f(a(x - b))vertical shift by d unitsy = c f(a(x - b))

NOTE: See p. 17, Figures 1.34 - 1.39. (MyMathLab Interactive eBook)

Horizontal scaling by a factor of |a|: y = f(ax)

 $0 < |a| < 1 \rightarrow f$ is <u>broadened</u> horizontally $|a| > 1 \rightarrow f$ is <u>steepened</u> horizontally

Vertical scaling by a factor of |c|: y = c f(x)

 $0 < |c| < 1 \rightarrow f$ is <u>broadened</u> vertically $|c| > 1 \rightarrow f$ is <u>steepened</u> vertically

