Multivariate Statistical Analysis

 Fall 2011C. L. Williams, Ph.D.

Lecture 9 for Applied Multivariate Analysis

Outline

(1) Two sample T^{2} test

- T^{2} distribution in the two sample case
- Wilk's Lambda
(2) Confidence ellipses

Analogous to the univariate context, we wish to determine whether the mean vectors are comparable, more formally:

$$
\begin{equation*}
H_{0}: \mu_{1}=\mu_{2} \tag{1}
\end{equation*}
$$

Suppose we let $\mathbf{y}_{1 i}, i=1, \ldots n_{1}$ and $\mathbf{y}_{2 i}, i=1, \ldots n_{2}$ represent independent samples from two p-variate normal distribution with mean vectors $\boldsymbol{\mu}_{1}$ and $\boldsymbol{\mu}_{2}$ but with common covariance matrix $\boldsymbol{\Sigma}$ unknown, provided $\boldsymbol{\Sigma}$ is positive definite and $n>p$, given sample estimators for mean and covariance $\overline{\mathbf{y}}$ and \mathbf{S} respectively.

We can then define

$$
\begin{aligned}
& \mathbf{W}_{1}=\left(n_{1}-1\right) \mathbf{S}_{1}=\sum_{i=1}^{n_{1}}\left(\mathbf{y}_{1 i}-\overline{\mathbf{y}_{1}}\right)\left(\mathbf{y}_{1 i}-\overline{\mathbf{y}_{1}}\right)^{\prime} \\
& \mathbf{W}_{2}=\left(n_{2}-1\right) \mathbf{S}_{2}=\sum_{i=1}^{n_{2}}\left(\mathbf{y}_{2 i}-\overline{\mathbf{y}_{2}}\right)\left(\mathbf{y}_{2 i}-\overline{\mathbf{y}_{2}}\right)^{\prime}
\end{aligned}
$$

since each are unbiased estimators of the common covariance matrix, ie. $\mathrm{E}\left[\left(n_{1}-1\right) \mathbf{S}_{1}\right]=\left(n_{1}-1\right) \boldsymbol{\Sigma}$ and $\mathrm{E}\left[\left(n_{2}-1\right) \mathbf{S}_{2}\right]=\left(n_{2}-1\right) \boldsymbol{\Sigma}$

The T^{2} statistic can be calculated as:

$$
\begin{equation*}
T^{2}=\left(\frac{n_{1} n_{2}}{n_{1}+n_{2}}\right)\left(\frac{n_{1} n_{2}}{n_{1}+n_{2}}\right)\left(\overline{\mathbf{y}}_{1}-\overline{\mathbf{y}}_{2}\right)^{\prime} \mathbf{S}^{-1}\left(\overline{\mathbf{y}}_{\mathbf{1}}-\overline{\mathbf{y}}_{2}\right) \tag{2}
\end{equation*}
$$

where \mathbf{S}^{-1} is the inverse of the pooled correlation matrix given by:

$$
\begin{aligned}
\mathbf{S} & =\frac{\left(n_{1}-1\right) \mathbf{S}_{\mathbf{1}}+\left(n_{2}-1\right) \mathbf{S}_{\mathbf{2}}}{n_{1}+n_{2}-2} \\
& =\frac{1}{n_{1}+n_{2}-2}\left(\mathbf{W}_{1}+\mathbf{W}_{2}\right)
\end{aligned}
$$

given the sample estimates for covariance, $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ in the two samples.

Outline

(1) Two sample T^{2} test

- T^{2} distribution in the two sample case - Wilk's Lambda
(2) Confidence ellipses

Again, there is a simple relationship between the test statistic, T^{2}, and the F distribution:

Theorem

If $\mathbf{y}_{1 i}, i=1, \ldots n_{1}$ and $\mathbf{y}_{2 i}, i=1, \ldots n_{2}$ represent independent samples from two p variate normal distribution with mean vectors $\boldsymbol{\mu}_{1}$ and $\boldsymbol{\mu}_{2}$ but with common covariance matrix $\boldsymbol{\Sigma}$, provided $\boldsymbol{\Sigma}$ is positive definite and $n>p$, given sample estimators for mean and covariance $\overline{\mathbf{y}}$ and \mathbf{S} respectively, then:

$$
F=\frac{\left(n_{1}+n_{2}-p-1\right) T^{2}}{\left(n_{1}+n_{2}-2\right) p}
$$

has an F distribution on p and $\left(n_{1}+n_{2}-p-1\right)$ degrees of freedom.

- Essentially, we compute the test statistic, and see whether it falls within the $(1-\alpha)$ quantile of the F distribution on those degrees of freedom.
- Note again that to ensure non-singularity of \mathbf{S}, we require that $n_{1}+n_{2}>p$.

Characteristic form

$$
\begin{equation*}
T^{2}=\left(\overline{\mathbf{y}}_{1}-\overline{\mathbf{y}}_{2}\right)^{\prime}\left[\left(\frac{1}{n_{1}} \frac{1}{n_{2}}\right) \mathbf{S}_{p l}\right]^{-1}\left(\overline{\mathbf{y}}_{1}-\overline{\mathbf{y}}_{2}\right) \tag{3}
\end{equation*}
$$

Outline

(1) Two sample T^{2} test

- T^{2} distribution in the two sample case
- Wilk's Lambda
(2) Confidence ellipses

Wilk's Lambda

What was all that stuff about likelihood ratio's about? It turns out that it is possible to show that:

$$
\begin{equation*}
\Lambda^{2 / n}=\left(\frac{|\hat{\boldsymbol{\Sigma}}|}{\left|\hat{\boldsymbol{\Sigma}}_{0}\right|}\right)=\left(1+\frac{T^{2}}{n-1}\right)^{-1} \tag{4}
\end{equation*}
$$

It is also possible to obtain the T^{2} via union intersection methods. This is nice because it tells us a lot about the properties of the test!

Confidence ellipses

Essentially, we wish to find a region of squared Mahalanobis distance such that:

$$
\operatorname{Pr}\left((\overline{\mathbf{y}}-\boldsymbol{\mu})^{\prime} \mathbf{S}^{-1}(\overline{\mathbf{y}}-\boldsymbol{\mu})\right) \leq c^{2}
$$

and we can find c^{2} as follows:

$$
c^{2}=\left(\frac{n-1}{n}\right)\left(\frac{p}{n-p}\right) F_{(1-\alpha), p,(n-p)}
$$

where $F_{(1-\alpha), p,(n-p)}$ is the $(1-\alpha)$ quantile of the F distribution with p and $n-p$ degrees of freedom, p represents the number of variables and n the sample size.

- The centroid of the ellipse is at $\overline{\mathbf{y}}$
- The half length of the semi-major axis is given by:

$$
\sqrt{\lambda_{1}} \sqrt{\frac{p(n-1)}{n(n-p)} F_{p, n-p}(\alpha)}
$$

where λ_{1} is the first eigenvalue of \mathbf{S}

- The half length of the semi-minor axis is given by:

$$
\sqrt{\lambda_{2}} \sqrt{\frac{p(n-1)}{n(n-p)} F_{p, n-p}(\alpha)}
$$

where λ_{2} is the second eigenvalue of \mathbf{S}

- The ratio of these two eigenvalues gives you some idea of the elongation of the ellipse
y_{2}

y_{1}
- In addition to the (joint) confidence ellipse, it is possible to consider simultaneous confidence intervals - univariate confidence intervals based on a linear combination which could be considered as shadows of the confidence ellipse
- It is also possible to carry out Bonferroni adjustments of these simultaneous intervals
- T^{2} test is based upon Mahalanobis distance and can be used for inference on mean vectors - this test can be derived via a variety of routes
- Difference between univariate and multivariate inference, especially when considering confidence ellipses
- Having determined that there is a significant difference between mean vectors, you may wish to conduct a number of follow up investigations and even carry out discriminant analysis

