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The hypotheses:

H0: µ1 = µ2 = . . . µk

HA: µi 6= µj {i 6= j} ≤ k
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H-Hypotheses and E- Error Matrices
Sums of Squares and Cross Products Matrices SSCPs
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E =


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SSE11 SPE12 · · · SPE1p
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Wilk’s Lambda

Λ =
|E|

|E + H|

is a test of how significant the error variation E is relative to the
total variation E + H. Wilk’s Lambda considers the ratio of two
determinants.
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One measure of the “size” difference would simply be to compare
the determinants.
Bearing in mind that SSTTotal = SSHBetween + SSEWithin, Wilk’s
Λ can be defined as:

Λ =
|SSEWithin|

|SSTTotal |
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Roy’s Test

To test H0 : µ1 = µ2 = . . . = µk based on λ1 (the largest
eigenvalue of E−1H), we use Roy’s union-intersection test, also
called Roy’s largest root test. The test statistic is given by

θ =
λ1

1 + λ1

Critical values for θ are given in Table A.10 We reject
H0 : µ1 = µ2 = . . . = µk if θ > θα,s,m,N . The parameters s, m,
and N are defined as s = min (νH , p), m = 1

2 (|νH − p| − 1),
N = 1

2 (νE − p − 1).
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Pillai and Lawley-Hotelling Tests

To test H0 : µ1 = µ2 = . . . = µk the Pillai statistic based on the
eigenvalues of E−1H is given by

V (s) = tr
[
(E + H)−1

H
]

We reject H0 : µ1 = µ2 = . . . = µk for values of V (s) > V
(s)
α

given in Table A.11.
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Lawley-Hotelling statistic
Hotelling’s generalized T2-statistic

U(s) = tr
[
E−1H

]
=

s∑

i=1

λi

Table A.12 gives upper percentage points of the test statistic:

νE

νH

U(s)

for which we reject H0 : µ1 = µ2 = . . . = µk for large values.
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Eigenvalues

In term of the eigenvalues of E−1H we can discuss the relationship
between the four tests.

V (s) =
s∑

i=1

λi

1 + λi

: Pillai

U(s) =

s∑

i=1

λi : Lawley-Hotelling

Λ =

s∏

i=1

1

1 + λi

: Wilk’s Λ

θ =
λ1

1 + λ1
: Roy’s largest root
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"rootstockdata"<-structure(.Data = list(

rootstock=as.factor(c(1,1,1,1,1,1,1,1,2,2,

2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,

4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6)),

girth4=c(1.11,1.19,1.09...),

extension4=c(2.569,2.928,2.865,...),

girth15=c(3.58,3.75,3.93,...),

weight=c(0.76,0.821,0.928,...)),

class = "data.frame", row.names

= c("1", "2", "3", "4", "5",...))
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> summary(rootstock.fit,test=’Roys’)

Error in match.arg(test) :

’arg’ should be one of "Pillai","Wilks","Hotelling-Lawley","Ro

> summary(rootstock.fit,test=’Roy’)

Df Roy approx F num Df den Df Pr(>F)

rootstock 5 1.8757 15.756 5 42 1.002e-08 ***

Residuals 42

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’

> summary(rootstock.fit,test=’Hotelling-Lawley’)

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

rootstock 5 2.9214 5.4776 20 150 2.568e-10

Residuals 42

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’

>
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Wilk’s lambda longhand in R

Could be calculated in R as:
Between <- summary(fit)$SS$rootstock

Total <- summary(fit)$SS$Residuals +

summary(fit)$SS$rootstock

Wilks <- det(Between) / det(Total)

But this isn’t the only (or the best) way of getting it!
In performing a MANOVA, we wish to compare the p-dimensional
confidence ellipses under H0 (the means are not different) and H1
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We could ask three questions, for groups g = 1, . . . 3:

Are the profiles parallel:
H01 : µ1j − µ1j−1 = µ2j − µ2j−1 = µ3j − µ3j−1; for
j = 2, . . . p and

if so, are the profiles coincident: H02 : µ1j = µ2j = µ3j for
j = 1, . . . , p and finally

if so are the profiles level: H03 : µ11 = µ12 = . . . = µ1p =
µ21 = µ22 = . . . = µ2p = . . . = µ3p for j = 2, . . . p
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Measures of Multivariate Association

R2 =
regressionsumofsquares

totalsumofsquares

In (one-way) MANOVA, we need to measure the strength of the
association between several dependent variables and several
independent (grouping) variables. Various measurements of
multivariate association have been proposed. Wilks (1932)
suggested a ”generalized η2”:

η2 = 1 − Λ

Λ is small if the spread in the means is large, then obviously η2 is
large when there is large disparity in the means.
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Choice of Statistic

When H0: µ1 = µ2 = . . . µk is true, all the mean vectors are
at the same point. Therefore, all four MANOVA test statistics
have the same Type I error rate, α, as noted in Section 6.1.7; that
is, all have the same probability of rejection when H0 is true.
However, when H0 is false, the four tests have different
probabilities of rejection. We noted in Section 6.1.7 that in a given
sample the four tests need not agree, even if H0 is true. One test
could reject H0 and the others don’t reject H0, for example.
Wilks’Λ has played the dominant role in significance tests in
MANOVA because it was the first to be derived and has
well-known χ2 and F-approximations. It can also be partitioned in
certain ways we will find useful later. However, it is not always the
most powerful among the four tests. The probability of rejecting
H0 when it is false is known as the power of the test.
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We have four tests, not one of which is uniformly most powerful.
The relative powers of the four test statistics depend on the
configuration of the mean vectors µ1, µ2, . . . µk in the
s-dimensional space. A given test will be more powerful for one
configuration of mean vectors than another. An indication of the
pattern of the mean vectors is given by the eigenvalues of E−1H. If
there is one large eigenvalue and the others are small, the mean
vectors lie close to a line. If there are two large eigenvalues, the
mean vectors lie mostly in two dimensions, and so on. Because
Roy’s test uses only the largest eigenvalue of E−1H, it is more
powerful than the others if the mean vectors are collinear. The
other three tests have greater power than Roy’s when the mean
vectors are diffuse (spread out in several dimensions).
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In conclusion, the use of Roy’s θ is not recommended in any
situation except the collinear case under standard assumptions. In
the diffuse case its performance is inferior to that of the other
three, both when the assumptions hold and when they do not. If
the data come from nonnormal populations exhibiting skewness or
positive kurtosis, any of the other three tests perform acceptably
well. Among these three, V (s) is superior to the other two when
there is heterogeneity of covariance matrices. Indeed V (s) is first in
all rankings except those for the collinear case.
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Consider C =





−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1





Parallel: Test Cµ1 = Cµ2 = Cµ3 (note this is rank p − 1)

Coincident: Test 1µ1 = 1µ2 = 1µ3 (note this is univariate)

Level: Test Cµ = 0 (note this is rank p − 1)

(also note all need to use pooled estimates of means and
covariances where appropriate)
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Multivariate Contrasts

A multivariate contrast across all group means is defined:

δ = c1µ1 + c2µ2, · · · + ckµk

where we know that
∑k

i=1 ci = 0. We also know that an unbiased
estimator for this contrast is

δ̂ = c1y1 + c2y2, · · · + ckyk
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Variance-covariance of contrasts

cov (δ) =
Σ

n

k∑

i=1

c2
i

so that

ĉov (δ) =
Spl

νE

(∑k
i=1 c2

i

n

)

where Spl is and unbiased estimate of
Σpl

νE
.
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δ = 0

or H0: c1µ1 + c2µ2 + · · · ckµk = 0 is used to compare
population mean vectors.

µ1 − 2µ2 + µ3 = 0is equivalent to

µ2 =
1

2
(µ1 + µ3)

”says” that the mean for group 2 is equal to the average of groups
1 and 3.





µ21

µ22
...

µ2p




=





1
2 (µ11 + µ31)
1
2 (µ12 + µ32)

...
1
2 (µ1p + µ3p)




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Under the appropriate multivariate normality assumptions δ = 0 or
H0: c1µ1 + c2µ2 + · · · ckµk = 0 can be tested with a
one-sample T 2 test.

T 2 = δ̂
′

(
Spl

n

k∑

i=1

c2
i

)−1

δ̂

=
n

∑k
i=1 c2

i

(
k∑

i=1

ciyi .

)′(
E

νE

)
−1
(
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ciyi .

)
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Or equivalently,

H1 =
n

∑k
i=1 c2

i

(
k∑

i=1

ciyi .

)
n

∑k
i=1 c2

i

(
k∑
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ciyi .

)′

so that

Λ =
|E|

|E + H1|
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Rootstock contrasts

Consider two orthogonal contrasts. First

2 -1 -1 -1 -1 2

which compares the means from groups 1 and 6, µ1 and µ6, with
the other four group mean vectors, groups 2,3,4 and 5
(µ2,µ3,µ4,µ5).

H01 : 2µ1 + 2µ6 = µ2 + µ3 + µ4 + µ5

or in terms of averages

H01 :
1

2
(µ1 + µ6) =

1

4
(µ2 + µ3 + µ4 + µ5)
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Mean vectors for Rootstock Data

> apply(as.matrix(rootstockdata[,2:5]),2,mean)

girth4 extension4 girth15 weight

1.102708 2.758854 4.087292 1.083000

> apply(as.matrix(rootstockdata[1:8,2:5]),2,mean)

girth4 extension4 girth15 weight

1.137500 2.977125 3.738750 0.871125
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Mean vectors for Rootstock Data

> apply(as.matrix(rootstockdata[9:16,2:5]),2,mean)

girth4 extension4 girth15 weight

1.157500 3.109125 4.515000 1.280500

> apply(as.matrix(rootstockdata[17:24,2:5]),2,mean)

girth4 extension4 girth15 weight

1.107500 2.815250 4.455000 1.391375

Instructor: C. L. Williams, Ph.D. MthSc 807



Multivariate Analysis of Variance

> apply(as.matrix(rootstockdata[25:32,2:5]),2,mean)

girth4 extension4 girth15 weight

1.09750 2.87975 3.90625 1.03900

> apply(as.matrix(rootstockdata[33:40,2:5]),2,mean)

girth4 extension4 girth15 weight

1.08000 2.55725 4.31250 1.18100

> apply(as.matrix(rootstockdata[41:48,2:5]),2,mean)

girth4 extension4 girth15 weight

1.036250 2.214625 3.596250 0.735000
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contrast1<-as.matrix(c(2,-1,-1,-1,-1,2))

#

y1<-tapply(rootstockdata[,2],rootstock,mean)

y1contrast1<-t(contrast1)%*%y1

#

y2<-tapply(rootstockdata[,3],rootstock,mean)

y2contrast1<-t(contrast1)%*%y2

#

y3<-tapply(rootstockdata[,4],rootstock,mean)

y3contrast1<-t(contrast1)%*%y3

#

y4<-tapply(rootstockdata[,5],rootstock,mean)

y4contrast1<-t(contrast1)%*%y4
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#

prod1<-rbind(y1contrast1,y2contrast1,y3contrast1,

y4contrast1)

n<-8

constant<-(n/t(contrast1)%*%contrast1)

H<-constant[1,1]*prod1%*%t(prod1)

E<-summary(rootstock.fit)$SS$Residuals

wilks<-det(E)/det(H+E)
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contrast2<-as.matrix(c(1,0,0,0,0,-1))

y1<-tapply(rootstockdata[,2],rootstock,mean)

y1contrast2<-t(contrast2)%*%y1

#

y2<-tapply(rootstockdata[,3],rootstock,mean)

y2contrast2<-t(contrast2)%*%y2

#

y3<-tapply(rootstockdata[,4],rootstock,mean)

y3contrast2<-t(contrast2)%*%y3

#

y4<-tapply(rootstockdata[,5],rootstock,mean)

y4contrast2<-t(contrast2)%*%y4
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#

prod1<-rbind(y1contrast2,y2contrast2,y3contrast2,

y4contrast2)

n<-8

constant<-(n/t(contras2)%*%contrast2)

H<-constant[1,1]*prod1%*%t(prod1)

E<-summary(rootstock.fit)$SS$Residuals

wilks<-det(E)/det(H+E)
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