Multivariate Statistical Analysis

 Fall 2011C. L. Williams, Ph.D.

Lecture 5 for Applied Multivariate Analysis

Outline

- Multivariate distance
- Mahalanobis Distance
- Introduce Mahalanobis distance and some ideas about multivariate normality
- Cover a range of measures for multivariate distance: we will use these in cluster analysis and scaling (towards the end of term)
- Similarity / dissimilarity measures
- You are very familiar with correlation and covariance
- What about similarities and dissimilarities between individuals (rows, units) rather than variables?

Here's a brief word about the multivariate normal distribution. The mean and covariance can be defined in a similar way to to the univariate context. And the multivariate normal distribution has a pdf that shouldn't seem too strange by now:

$$
f\left(y_{1}, y_{2}, \ldots y_{p}\right)=\left(\frac{1}{2 \pi}\right)^{\frac{p}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}} \exp \left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right)
$$

Given that we have $E(\mathbf{y})=\boldsymbol{\mu}$, and that $\operatorname{Var}(\mathbf{y})=\boldsymbol{\Sigma}$, hence we can use the notation:

$$
\mathbf{y} \sim M V N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

- One method for assessing multivariate normality, quantiles of the Mahalanobis distance of $\mathbf{y}_{i}, i=1, \ldots, n$ with respect to $\boldsymbol{\mu}$ can be plotted against quantiles of the χ_{p}^{2} distribution as an assessment of multivariate normality.
- We can also define contours as a set of points of equal probability in terms of equal Mahalanobis distance:

$$
\begin{equation*}
\left(\mathbf{y}_{i}-\hat{\boldsymbol{\mu}}\right)^{\prime} \hat{\boldsymbol{\Sigma}}^{-1}\left(\mathbf{y}_{i}-\hat{\boldsymbol{\mu}}\right)=\mathbf{z}^{\prime} \mathbf{z}=c^{2} \tag{1}
\end{equation*}
$$

for any constant $c>0$.

$$
d\left(y_{1}, y_{2}\right)=\frac{\left|y_{1}-y_{2}\right|}{\sigma}
$$

This is the absolute distance between two observations in units of standard deviation. ${ }^{\dagger}$

- Invariant under non-degenerate linear transformations,
- e.g. consider $Z=\alpha Y+\beta$, where $\alpha \neq 0$ and β are fixed constants.
- We can transform y_{1} and y_{2} to $z_{i}=\alpha y_{i}+\beta, i=1,2$, resulting standard distance:

$$
\begin{aligned}
\Delta\left(z_{1}, z_{2}\right) & =\frac{\left|z_{1}-z_{2}\right|}{\sqrt{\operatorname{var}(Z)}} \\
& =\frac{\mid \alpha\left(y_{1}-y_{2} \mid\right)}{\sqrt{\alpha^{2} \sigma^{2}}} \\
& =\Delta\left(y_{1}, y_{2}\right)
\end{aligned}
$$

[^0]Given two vectors \mathbf{y}_{1} and \mathbf{y}_{2}, with a common covariance matrix $\boldsymbol{\Sigma}$ the multivariate standard distance is given by:

$$
\Delta\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\sqrt{\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right)}
$$

Depending on whichever textbook is consulted, this multivariate standard distance may be referred to as the statistical distance, the elliptical distance or the Mahalanobis distance.
Originally proposed by Mahalanobis (1936) as a measure of distance between two populations:

$$
\Delta\left(\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}\right)=\sqrt{\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)}
$$

Sample analogue

This has an obvious sample analogue:

$$
\Delta\left(\overline{\mathbf{y}}_{1}, \overline{\mathbf{y}}_{2}\right)=\sqrt{\left(\overline{\mathbf{y}}_{1}-\overline{\mathbf{y}}_{2}\right)^{\prime} \mathbf{S}^{-1}\left(\overline{\mathbf{y}}_{1}-\overline{\mathbf{y}}_{2}\right)}
$$

where \mathbf{S} is the pooled estimate of $\boldsymbol{\Sigma}$ given by
$\mathbf{S}=\left[\left(n_{1}-1\right) \mathbf{S}_{1}+\left(n_{2}-1\right) \mathbf{S}_{2}\right] /\left(n_{1}+n_{2}-2\right)$.

Consider the distance between \mathbf{y}, a vector of random variables with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$ and its mean:

$$
\Delta(\mathbf{y}, \boldsymbol{\mu})=\sqrt{(\mathbf{y}-\mu)^{\prime} \Sigma^{-1}(\mathbf{x}-\mu)}
$$

or the sample analogue (estimating $\boldsymbol{\mu}$ by $\overline{\mathbf{y}}$ and $\boldsymbol{\Sigma}$ by $\left.\mathbf{S}=\frac{1}{n-1}\left(\mathbf{Y}^{\prime} \mathbf{Y}-\mathbf{Y}^{\prime}\left(\frac{1}{n} \mathbf{J}\right) \mathbf{Y}\right)\right)$.

In \mathbf{R}, the mahalanobis() function is intended to return the squared multivariate distance between a matrix \mathbf{Y} and a mean vector $\boldsymbol{\mu}$, given a user-supplied covariance matrix $\boldsymbol{\Sigma}$, i.e. we wish to calculate:

$$
d\left(\mathbf{y}_{i}, \hat{\boldsymbol{\mu}}\right)^{2}=\left(\mathbf{y}_{i}-\hat{\boldsymbol{\mu}}\right)^{\prime} \hat{\boldsymbol{\Sigma}}^{-1}\left(\mathbf{y}_{i}-\hat{\boldsymbol{\mu}}\right)
$$

Distributional properties of the Mahalanobis distance

- When $z_{1}, \ldots, z_{p} \sim N(0,1)$, if we form $y=\sum_{j=1}^{p} z_{j}^{2}$ then $y \sim \chi_{p}^{2}$
- \therefore with multivariate normal data, with p variables, the squared Mahalanobis distance can be compared against a χ_{p}^{2} distribution:

$$
\begin{equation*}
\left(\mathbf{y}_{i}-\hat{\boldsymbol{\mu}}\right)^{\prime} \hat{\boldsymbol{\Sigma}}^{-1}\left(\mathbf{y}_{i}-\hat{\boldsymbol{\mu}}\right)=\mathbf{z}^{\prime} \mathbf{z} \sim \chi_{p}^{2} \tag{2}
\end{equation*}
$$

[^0]: ${ }^{\dagger}$ Note if $\sigma=1$ then this is the Euclidean distance

