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Multivariate distance
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Mahalanobis Distance

Introduce Mahalanobis distance and some ideas about
multivariate normality
Cover a range of measures for multivariate distance: we will
use these in cluster analysis and scaling (towards the end of
term)

Similarity / dissimilarity measures

You are very familiar with correlation and covariance
What about similarities and dissimilarities between individuals
(rows, units) rather than variables?
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Here’s a brief word about the multivariate normal distribution. The
mean and covariance can be defined in a similar way to to the
univariate context. And the multivariate normal distribution has a
pdf that shouldn’t seem too strange by now:
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Given that we have E (y) = µ, and that Var(y) = Σ, hence we can
use the notation:

y ∼ MVNp(µ,Σ)
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One method for assessing multivariate normality, quantiles of
the Mahalanobis distance of yi , i = 1, . . . , n with respect to µ

can be plotted against quantiles of the χ2
p distribution as an

assessment of multivariate normality.

We can also define contours as a set of points of equal
probability in terms of equal Mahalanobis distance:

(yi − µ̂)′Σ̂
−1

(yi − µ̂) = z′z = c2 (1)

for any constant c > 0.
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d(y1, y2) =
|y1 − y2|

σ
This is the absolute distance between two observations in units of
standard deviation. †

Invariant under non-degenerate linear transformations,

e.g. consider Z = αY + β, where α 6= 0 and β are fixed
constants.

We can transform y1 and y2 to zi = αyi + β, i = 1, 2,
resulting standard distance:

∆(z1, z2) =
|z1 − z2|
√

var(Z )

=
|α(y1 − y2|)√

α2σ2

= ∆(y1, y2)

†
Note if σ = 1 then this is the Euclidean distance
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Given two vectors y1 and y2, with a common covariance matrix Σ

the multivariate standard distance is given by:

∆(y1, y2) =

√

(y1 − y2)
′Σ−1(y1 − y2)

Depending on whichever textbook is consulted, this multivariate
standard distance may be referred to as the statistical distance, the
elliptical distance or the Mahalanobis distance.
Originally proposed by Mahalanobis (1936) as a measure of
distance between two populations:

∆(µ1,µ2) =

√

(µ1 − µ2)
′Σ−1(µ1 − µ2)
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Sample analogue

This has an obvious sample analogue:

∆(ȳ1, ȳ2) =

√

(ȳ1 − ȳ2)
′S−1(ȳ1 − ȳ2)

where S is the pooled estimate of Σ given by
S = [(n1 − 1)S1 + (n2 − 1)S2] /(n1 + n2 − 2).
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Consider the distance between y, a vector of random variables with
mean µ and covariance matrix Σ and its mean:

∆(y,µ) =

√

(y − µ)′Σ−1(x − µ)

or the sample analogue (estimating µ by y and Σ by
S = 1

n−1

(

Y′Y − Y′
(

1
n
J
)

Y
)

).
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In R, the mahalanobis() function is intended to return the
squared multivariate distance between a matrix Y and a mean
vector µ, given a user-supplied covariance matrix Σ, i.e. we wish
to calculate:

d(yi , µ̂)2 = (yi − µ̂)′Σ̂
−1

(yi − µ̂)
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Distributional properties of the Mahalanobis distance

When z1, . . . , zp ∼ N(0, 1), if we form y =
∑p

j=1
z2
j then

y ∼ χ2
p

∴ with multivariate normal data, with p variables, the squared
Mahalanobis distance can be compared against a χ2

p

distribution:

(yi − µ̂)′Σ̂
−1

(yi − µ̂) = z′z ∼ χ2
p (2)
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