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I. Normality of linear combinations of the variables in y:

(a) If a is a vector of constants, the linear function
a′y = a1y1 + a2y2 + · · · + apyp is univariate normal:

If y is MVNp (µ,Σ), then a′y is N (µ,Σ).

The mean and variance of a′y given previously as
E(a′y) = a′µ and var(a′y) = a′Σa for any random vector
y. We now have the additional attribute that a′y has a
(univariate) normal distribution if y is MVNp (µ,Σ).
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(b) If A is a constant q × p matrix of rank q, where q ≤ p, the q

linear combinations in Ay have a multivariate normal
distribution:

If y is MVNp (µ,Σ), then Ay is MVNq

(

Aµ,AΣA′
)

.

E(Ay) = Aµ and var(Ay) = AΣA′ But we now have the
additional feature that the q variables in Ay have a multivariate
normal distribution.
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Standardized Variables

II. Standardized Variables
A standardized vector z can be obtained in two ways.
The first of which is:

z =
(

T′
)

−1
(y − µ)

where T′ is derived from the Cholesky decomposition of
the variance-covariance matrix Σ = T′T.
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Second method

Or by using finding the symmetric square root matrix of the
variance-covariance matrix Σ = Σ1/2Σ1/2, giving the
standardized variable:

z =
(

Σ1/2
)

−1
(y − µ)

In either case it follows that: If y is MVNp (µ,Σ), then z is
MVNp (0, I).
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Chi-square distribution

A chi-square random variable with p degrees of freedom is defined
as the sum of squares of p independent standard normal random
variables. Thus, if z is the standardized vector defined in (4.4) or
(4.5), then this bring us to our definition of Mahalanobis distance,
so that if If y is MVNp (µ,Σ),

(yi − µ)′Σ̂
−1

(yi − µ) = z′z χ2
p (1)
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Normality of marginal distributions

(a) Any subset of the y’s in y has a multivariate normal
distribution, with mean vector consisting of the corresponding
subvector of µ and covariance matrix composed of the
corresponding submatrix of Σ.
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Let y1 = (y1, y2, . . . , yr )
′ denote the subvector containing the first

r elements of y1 and y2 = (yr+1, yr+2, . . . , yp)
′ consist of the

remaining p-r elements. Thus y, µ, and Σ are partitioned as

y =

(

y1

y2

)

,

µ =

(

µ1

µ2

)

,

and

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

,
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In the next three properties, let the observation vector be
partitioned into two subvectors denoted by y and x, where y is
p × 1 and x is q × 1. Or, alternatively, let x represent some
additional variables to be considered along with those in y. Then,
as in (3.45) and (3.46),

E

(

y

x

)

=

(

µy

µx

)

and

cov

(

y

x

)

=

(

Σyy Σyx

Σxy Σxx

)
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So if

(

y

x

)

∼ MVNp+q

((

µy

µx

)

,

(

Σyy Σyx

Σxy Σxx

))
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Independence:

(a) The subvectors y and x are independent if Σyx = 0.

(b) Two individual variables yj and yk are independent if σjk = 0.
Note that this is not true for many nonnormal random
variables, as illustrated in Section 3.2.1.

(c) Further any random variables that are independent are
pairwise independent, and any pairwise independent random
variables are uncorrelated.

(d) Reprise: If the random variables are jointly normally
distributed and uncorrelated, then they are independent.
Therefore, for jointly normally distributed random variables,
independence, pairwise independence, and absence of
correlation are all equivalent.
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Conditional distribution:

If y and x are not independent, then Σyx = 0, and the conditional
distribution of y given x, f (y|x), is multivariate normal with

E (y|x) = µy + ΣyxΣ
−1
xx (x − µx)

and

cov (y|x) = Σyy − ΣyxΣ
−1
xx Σxy
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Note that E (y|x) is a vector of linear functions of x, whereas
cov (y |x) is a matrix that does not depend on x. The linear trend
in (4.7) holds for any pair of variables. Thus to use (4.7) as a check
on normality, one can examine bivariate scatter plots of all pairs of
variables and look for any nonlinear trends. In (4.7), we have the
justification for using the covariance or correlation to measure the
relationship between two bivariate normal random variables.
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As noted in Section 3.2.1, the covariance and correlation are good
measures of relationship only for variables with linear trends and
are generally unsuitable for nonnormal random variables with a
curvilinear relationship. The matrix ΣyxΣ

−1
xx in (4.7) is called the

matrix of regression coefficients because it relates E (y|x) to x.
The sample counterpart of this matrix appears in (10.52) when we
talk about multivariate regression.
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Distribution of the sum of two subvectors:

If y and x are the same size (both p × 1) and independent, then

y + x ∼ MVNp ( µy + µx ,Σyy + Σxx ) ,

y − x ∼ MVNp ( µy − µx ,Σyy + Σxx ) .
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The bivariate normal as a special case

Let

u =

(

y

x

)

so that

E (u) =

(

µy

µx

)

and

cov (u) = Σ =

(

σ2
y σyx

σ2
xy σx

)
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g (x , y) = f (y|x) h (x)
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x = (0 1)

(

y

x

)

= (0 1) u = a′u,

z = y − βx = (1,−β) u = b′u.
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cov (x , z) = cov
(

a′u,b′u
)

= a′Σb

= (0 1)

(

σ2
y σ2

xy

σ2
yx σ2

x

)(

1
−β

)

=
(

σ2
yx σ2

x

)

(

1
−β

)

= σ2
yx − βσ2

x
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z = y − σyx

σ2
x

x

E

(

y − σyx

σ2
x

x

)

= µy − σyx

σ2
x

µx

var

(

y − σyx

σ2
x

x

)

= var
(

b′u
)

= b′Σb

= σ2
y − σyx

σ2
x
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E (y |x) = βx + E (y − βx) = βx + µy − βµx

= µy +
σyx

σ2
x

(x − µx)

var (y |x) = σ2
y − σyx

σ2
x
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Marginals and Conditionals

Let Y = (Y1,Y2,Y3,Y4)
′ have a multivariate normal distribution

with mean vector

µ = E (Y) =









1
2
3
4









, and covariance matrix

Σ =









1 1 1 1
1 2 2 2
1 1 3 3
1 2 3 4
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Now let Q1 = (Y1,Y2)
′ and Q2 = (Y3,Y4)

′. We know that both
Q1 and Q2 both have bivariate normal distributions.
That is

Q1 =

(

Y1

Y2

)

∼ MVN2

((

1
2

)

,

(

1 1
1 2

))

and

Q2 =

(

Y3

Y4

)

∼ MVN2

((

3
4

)

,

(

3 3
3 4

))
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So that Y1 and Y2 have a bivariate normal distribution with means
1 and 2 and variances 1 and 2, and covariance 1. What is the
correlation coefficient rY1,Y2

?

rY1,Y2
=

√

1

1 × 2
=

(

√

1

2

)

=
1√
2
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So that Y1 and Y2 have a bivariate normal distribution with means
1 and 2 and variances 1 and 2, and covariance 1. What is the
correlation coefficient rY1,Y2

?

rY1,Y2
=

√

1

1 × 2
=

(

√

1

2

)

=
1√
2
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We can then find the conditional distribution of Y3 and Y4 given
Y1 and Y2,

Σ−1
11 =

(

1 1
1 2

)−1

=

(

2 −1
−1 1

)

and

Σ21Σ
−1
11 =

(

1 2
1 2

)

−1 (
2 −1
−1 1

)

=

(

0 1
0 1

)
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So that

µ2 + Σ21Σ
−1
11 (Q1 − µ1) =

(

3
4

)

+

(

0 1
0 1

)(

Y1 − 1
Y2 − 2

)

=

(

Y2 + 1
Y2 + 2

)

and

Σ22 − Σ21Σ
−1
11 Σ12 =

(

3 3
3 4

)

−
(

1 2
1 2

)(

2 −1
−1 1

)(

1 1
2 2

)

=

(

1 1
1 2

)
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Q2|Q1 ∼ MVN2

((

Y2 + 1
Y2 + 2

)

,

(

1 1
1 2

))

That is conditionally on Y1 and Y2, Y3 and Y4, have a bivariate
normal distribution with mean Y2+1 and Y2+2, variances 1 and 2
and covariance 1.
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Note that the previous holds with any rearrangement of the
random variables. So that if









Y1

Y3

Y2

Y4









∼ MVN4

















1
3
2
4









,









1 1 1 1
1 3 2 3
1 2 2 2
1 3 2 4
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The multivariate normal likelihood, with parameters µ and Σ is
given by:

L (y|µ, Σ) =
1

(2π)np/2|Σ̂|n/2
e−

1
2

Pn
i=1(yi−µ)′Σ−1(yi−µ) (2)

which is maximised taking Σ̂ = 1
n

∑n
i=1(yi − ȳ)(yi − ȳ)′ and µ̂ = ȳ.

A little algebra shows that
∑n

i=1(yi − µ̂)′Σ̂
−1

(yi − µ̂) = np so we
can express the maximum as:

maxL (µ,Σ) =
1

(2π)np/2|Σ̂|n/2
e−np/2 (3)
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Under the hypothesis H0 : µ = µ0

L (µ0,Σ) =
1

(2π)np/2|Σ|n/2
e−

1
2

Pn
i=1(xi−µ0)Σ

−1(yi−µ0)
′

(4)

so µ0 is now fixed but Σ can be varied to find the most likely
value. As before, this can be rearranged to give:
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maxL (µ0,Σ) =
1

(2π)np/2|Σ̂0|n/2
e−np/2 (5)

where Σ̂0 = 1
n

∑n
i=1(xi − µ0)(xi − µ0)

′
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To determine whether µ0 is plausible, we wish to compare
L (µ0,Σ) with L (µ,Σ), conventionally performed by means of
the likelihood ratio statistic:

Λ =
maxL (µ0,Σ)

maxL (µ,Σ)
=

(

|Σ̂|
|Σ̂0|

)n/2

(6)
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