Singular Value Decomposition of a Rectangular Matrix

Singular Value Decomposition

The singular value decomposition and the pursuing eigenanalysis is generally applied to a
square matrix. In this presentation, the eigenanalysis is used to develop a similar decompo-
sition, called the singular value decomposition, for a rectangular matrix. The singular value
decomposition is then used to give the principal component analysis.

Let X be an n X p matrix with n > p. Then X'X is a square symmetric matrix of order
p x p. X’X can be expressed in terms of its eigenvalues L and eigenvectors Z as

X'X = ZLZ

Similarly, XX’ is a square symmetric matrix but of order n x n. The rank of XX’ will be at
most p so there will be at most p nonzero eigenvalues; they are in fact the same p eigenvalues
obtained from X’X In addition, X'X will have n - p eigenvalues that are zero. These n - p
eigenvalues and their vectors are dropped in the following discussion. Denote with U the
matrix of eigenvectors of XX’ that correspond to the p eigenvalues common to X'X. Each
eigenvector u; will be of order n x 1. Then,

XX'=ULU’
The rectangular matrix X can be written as
X = UL:Z (1)

where L2 is the diagonal matrix of the positive square roots of the p eigenvalues of X'X
Thus, LzL? =L. Equation (1) is the singular value decomposition of the rectangular matrix
X The elements of L%, Vi, are called the singular values and the column vectors in U and
Z are the left and right singular vectors, respectively.

Since L2 is a diagonal matrix, the singular value decomposition expresses X as a sum of
p rank-1 matrices,

X = Zp:\/):uzz;
i=1

where summation is over 7 = 1,...,p. Furthermore, if the eigenvalues have been ranked from
largest to smallest, the first of these matrices is the “best” rank-1 approximation to X, the
sum of the first two matrices is the “best” rank-2 approximation of X, and so forth. These
are “best” approximations in the least squares sense; that is, no other matrix (of the same
rank) will give a better agreement with the original matrix X as measured by the sum of
squared differences between the corresponding elements of X and the approximating matrix
(Householder and Young, 1938). The goodness of fit of the approximation in each case is
given by the ratio of the sum of the eigenvalues (squares of the singular values) used in the
approximation to the sum of all eigenvalues. Thus, the rank-1 approximation has a goodness

of fit of 2%1%, the rank-2 approximation has a goodness of fit of )‘f ;_2, and so forth.




Singular value decomposition is illustrated using data on average minimum daily tem-
perature, X, average maximum daily temperature, X5, total rainfall, X3, and total growing
degree days, X, for six locations. The data were reported by Saeed and Francis (1984) to
relate environmental conditions to cultivar-by- environment interactions in sorghum and are

used with their kind permission. Below is the original data.

Average temperature

Minimum Maximum  Total rain Total GDD
Location 1978 1979 1978 1979 1978 1979 1978 1979

C -cm-
Concord 11.1 10.6 25.2 241 33.0 63.4 1576 1438
Mead 12.6 11.9 26.0 27.7 482 42.8 1767 1831
Tyson 9.3 27.3 27.3 1580
Scottsbluff 98 104  26.7 265 343 287 1578 1614
Sidney 5.8 6.7 20.7 254 273 28.2 1222 1232

Garden City 12.1 11.8 283 284 204  64.2 1926 1876

Each variable has been centered to have zero mean, and standardized to have unit sum of
squares. (The centering and standardization are not necessary for a singular value decompo-
sition. The centering removes the mean effect of each variable so that the dispersion about
the mean is being analyzed. The standardization puts all variables on an equal basis and
is desirable in most cases, particularly when the variables have different units of measure.)
The X matrix is

178146 —.523245  .059117 —.060996 ]

449895 —.209298 777976 .301186
—.147952 300866 —.210455 —.053411
—.057369  .065406  .120598 —.057203
—.782003 —.327028 —.210455 —.732264

309312 693299 —.536780  .602687 |

The singular value decomposition of X into UL:Z/ gives

[ —.113995  .308905 —.810678  .260088 ]
251977 707512 339701 —.319261
007580 —.303203 277432  .568364

—.028067  .027767  .326626  .357124
—.735417 —.234888  .065551 —.481125
617923 —.506093 —.198632 —.385189 |




1.496896 0 0 0
0

b, 0 1.244802 0
0 0 454086 0
0 0 0  .057893
595025  .336131 —.383204  .621382
7 _ | 451776 —510753 657957 265663

004942 768694  .639051 —.026450
664695  .060922 —.108909 —.736619

The columns of U and Z are the left and right singular vectors, respectively. The first
column of U, uy, the first column of Z, z;, and the first singular value, VA= 1.496896, or
and eigen value of \; = give the best rank-1 approximation of X

X1 = \/)\Tulzi

—.113995
251977
.007580

—.028067

—. 735417
617923

[ —.101535 —.077091 —.000843 —.113423
224434 170403  .001864  .250712
006752 .005126  .000056  .007542

—.024999 —-.018981 —.000208 —.027927
—.655029 —.497335 —.005440 —.731725
550378 417877 .004571  .614820

—  (1.4969) (595025 451776 .004942 664695 )

The goodness of fit of X; to X is measured by

N 149692
iAo 4
= 0.56

or the sum of squares of the differences between the elements of X and X, the lack of fit, is
44% of the total sum of squares of the elements in X. This is not a very good approximation.
The rank-2 approximation to X is obtained by adding to X; the matrix Xos.

X2 = \/)\721122;

308905
707512
—.303203
027767
—.234888
—.506093

= (1.2449) (-336131 —.540753 768694 060922 )



0.1293 —0.2079  0.2956  0.0234
0.2961 —-0.4763  0.6771  0.0537
—-0.1269  0.2041 -0.2901 -0.0230
0.0116 -0.0187  0.0266  0.0021
—0.0983  0.1581 —0.2248 —0.0178

| —0.2118  0.3407 —0.4843 —0.0384

Which gives

0.0277 —0.2850  0.2948 —0.0900
0.5205 —0.3059  0.6789  0.3044
—-0.1201  0.2092 -0.2901 —0.0155
—0.0134 —-0.0377  0.0264 —0.0258
—0.7533 —0.3392 —-0.2302 —0.7495
0.3386  0.7586 —0.4797  0.5764

X+ X, =

which has goodness of fit

AM+A 149697 + 1.24487

Yic1 A 4
= 0.95

In terms of approximating X with the rank-2 matrix X; + Xj, the goodness of fit of .95
means that the sum of squares of the discrepancies between X and ( X; + Xs,) is 5% of the
total sum of squares of all elements in X. The sum of squares of all elements in X is 327 | \;,
the sum of squares of all elements in ( X; + Xy,) is (A; + A2), and the sum of squares of
all elements in [X-( X; + Xa,)] is (A3 + A4). In terms of the geometry of the data vectors,
the goodness of fit of .95 means that 95% of the dispersion of the “cloud” of points in the
original four-dimensional space is, in reality, contained in two dimensions, or the points in
four-dimensional space very nearly fall on a plane. Only 5% of the dispersion is lost if the
third and fourth dimensions are ignored. Using all four singular values and their singular
vectors gives the complete decomposition of X into four orthogonal rank-1 matrices. The
sum of the four matrices equals X within the limits of rounding error. The analysis has
shown, by the relatively small size of the third and fourth singular values, that the last two
dimensions contain little of the dispersion and can safely be ignored in interpretation of the
data.
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[U,L,Z]=svd(X)
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L2774
.3266
.0655
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X1

.0610
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.1015
.2244
.0068
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2422
1015
0829
0976
0196
0593

X4=L(4:4,4:4)%xU(1:6,4

X4 =

.0094
.0115
.0204
.0128
.0173
.0139

L0277
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.3386

.0040
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.0019
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:2)%Z(1:4,2:2)°

.2956
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.2901
.0266
.2248
.4843

:3)%Z(1:4,3:3)°
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.0986
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.0190
.0576
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L’*L (Eigenvalues)

ans =

1.5498
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