
Singular Value Decomposition of a Rectangular Matrix

Singular Value Decomposition

The singular value decomposition and the pursuing eigenanalysis is generally applied to a
square matrix. In this presentation, the eigenanalysis is used to develop a similar decompo-
sition, called the singular value decomposition, for a rectangular matrix. The singular value
decomposition is then used to give the principal component analysis.

Let X be an n × p matrix with n > p. Then X′X is a square symmetric matrix of order
p × p. X′X can be expressed in terms of its eigenvalues L and eigenvectors Z as

X′X = ZLZ′

Similarly, XX′ is a square symmetric matrix but of order n × n. The rank of XX′ will be at
most p so there will be at most p nonzero eigenvalues; they are in fact the same p eigenvalues
obtained from X′X In addition, X′X will have n - p eigenvalues that are zero. These n - p

eigenvalues and their vectors are dropped in the following discussion. Denote with U the
matrix of eigenvectors of XX′ that correspond to the p eigenvalues common to X′X. Each
eigenvector u; will be of order n × 1 . Then,

XX′ = ULU′

The rectangular matrix X can be written as

X = UL
1

2 Z′ (1)

where L
1

2 is the diagonal matrix of the positive square roots of the p eigenvalues of X′X

Thus, L
1

2 L
1

2 =L. Equation (1) is the singular value decomposition of the rectangular matrix

X The elements of L
1

2 ,
√

λi, are called the singular values and the column vectors in U and
Z are the left and right singular vectors, respectively.

Since L
1

2 is a diagonal matrix, the singular value decomposition expresses X as a sum of
p rank-1 matrices,

X =
p

∑

i=1

√

λiuiz
′

i

where summation is over i = 1,. . . ,p. Furthermore, if the eigenvalues have been ranked from
largest to smallest, the first of these matrices is the “best” rank-1 approximation to X, the
sum of the first two matrices is the “best” rank-2 approximation of X, and so forth. These
are “best” approximations in the least squares sense; that is, no other matrix (of the same
rank) will give a better agreement with the original matrix X as measured by the sum of
squared differences between the corresponding elements of X and the approximating matrix
(Householder and Young, 1938). The goodness of fit of the approximation in each case is
given by the ratio of the sum of the eigenvalues (squares of the singular values) used in the
approximation to the sum of all eigenvalues. Thus, the rank-1 approximation has a goodness
of fit of λ1

∑

λi

, the rank-2 approximation has a goodness of fit of λ1+λ2
∑

λi

, and so forth.



Singular value decomposition is illustrated using data on average minimum daily tem-

perature, X1, average maximum daily temperature, X2, total rainfall, X3, and total growing

degree days, X4, for six locations. The data were reported by Saeed and Francis (1984) to

relate environmental conditions to cultivar-by- environment interactions in sorghum and are

used with their kind permission. Below is the original data.

Average temperature

Minimum Maximum Total rain Total GDD

Location 1978 1979 1978 1979 1978 1979 1978 1979

C -cm-

Concord 11.1 10.6 25.2 24.1 33.0 63.4 1576 1438

Mead 12.6 11.9 26.0 27.7 48.2 42.8 1767 1831

Tyson 9.3 27.3 27.3 1580

Scottsbluff 9.8 10.4 26.7 26.5 34.3 28.7 1578 1614

Sidney 5.8 6.7 25.7 25.4 27.3 28.2 1222 1232

Garden City 12.1 11.8 28.3 28.4 20.4 64.2 1926 1876

Each variable has been centered to have zero mean, and standardized to have unit sum of
squares. (The centering and standardization are not necessary for a singular value decompo-
sition. The centering removes the mean effect of each variable so that the dispersion about
the mean is being analyzed. The standardization puts all variables on an equal basis and
is desirable in most cases, particularly when the variables have different units of measure.)
The X matrix is

X =





















.178146 −.523245 .059117 −.060996

.449895 −.209298 .777976 .301186
−.147952 .300866 −.210455 −.053411
−.057369 .065406 .120598 −.057203
−.782003 −.327028 −.210455 −.732264

.359312 .693299 −.536780 .602687





















The singular value decomposition of X into UL
1

2Z′ gives

U =





















−.113995 .308905 −.810678 .260088
.251977 .707512 .339701 −.319261
.007580 −.303203 .277432 .568364

−.028067 .027767 .326626 .357124
−.735417 −.234888 .065551 −.481125

.617923 −.506093 −.198632 −.385189























L
1

2∗ =











1.496896 0 0 0
0 1.244892 0 0
0 0 .454086 0
0 0 0 .057893











Z =











.595025 .336131 −.383204 .621382

.451776 −.540753 .657957 .265663

.004942 .768694 .639051 −.026450

.664695 .060922 −.108909 −.736619











.

The columns of U and Z are the left and right singular vectors, respectively. The first
column of U, u1, the first column of Z, z1, and the first singular value,

√
λ1= 1.496896, or

and eigen value of λ1 = give the best rank-1 approximation of X

X1 =
√

λ1u1z
′

1

= (1.4969)


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











−.113995
.251977
.007580

−.028067
−.735417

.617923


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
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(

.595025 .451776 .004942 .664695
)

=





















−.101535 −.077091 −.000843 −.113423
.224434 .170403 .001864 .250712
.006752 .005126 .000056 .007542

−.024999 −.018981 −.000208 −.027927
−.655029 −.497335 −.005440 −.731725

.550378 .417877 .004571 .614820
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



.

The goodness of fit of X1 to X is measured by

λ1
∑

4

i=1 λi

=
1.49692

4
= 0.56

or the sum of squares of the differences between the elements of X and X1, the lack of fit, is
44% of the total sum of squares of the elements in X. This is not a very good approximation.
The rank-2 approximation to X is obtained by adding to X1 the matrix X2.

X2 =
√

λ2u2z
′

2

= (1.2449)


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




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

.308905

.707512
−.303203

.027767
−.234888
−.506093
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


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
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(

.336131 −.540753 .768694 .060922
)



=





















0.1293 −0.2079 0.2956 0.0234
0.2961 −0.4763 0.6771 0.0537

−0.1269 0.2041 −0.2901 −0.0230
0.0116 −0.0187 0.0266 0.0021

−0.0983 0.1581 −0.2248 −0.0178
−0.2118 0.3407 −0.4843 −0.0384





















Which gives

X1 + X2 =





















0.0277 −0.2850 0.2948 −0.0900
0.5205 −0.3059 0.6789 0.3044

−0.1201 0.2092 −0.2901 −0.0155
−0.0134 −0.0377 0.0264 −0.0258
−0.7533 −0.3392 −0.2302 −0.7495

0.3386 0.7586 −0.4797 0.5764





















which has goodness of fit

λ1 + λ2
∑

4

i=1 λi

=
1.49692 + 1.24482

4
= 0.95

In terms of approximating X with the rank-2 matrix X1 + X2, the goodness of fit of .95
means that the sum of squares of the discrepancies between X and ( X1 + X2,) is 5% of the
total sum of squares of all elements in X. The sum of squares of all elements in X is

∑

4

i=1 λi,
the sum of squares of all elements in ( X1 + X2,) is (λ1 + λ2), and the sum of squares of
all elements in [X-( X1 + X2,)] is (λ3 + λ4). In terms of the geometry of the data vectors,
the goodness of fit of .95 means that 95% of the dispersion of the “cloud” of points in the
original four-dimensional space is, in reality, contained in two dimensions, or the points in
four-dimensional space very nearly fall on a plane. Only 5% of the dispersion is lost if the
third and fourth dimensions are ignored. Using all four singular values and their singular
vectors gives the complete decomposition of X into four orthogonal rank-1 matrices. The
sum of the four matrices equals X within the limits of rounding error. The analysis has
shown, by the relatively small size of the third and fourth singular values, that the last two
dimensions contain little of the dispersion and can safely be ignored in interpretation of the
data.



X =

0.1781 -0.5232 0.0591 -0.0610

0.4499 -0.2093 0.7780 0.3012

-0.1480 0.3009 -0.2105 -0.0534

-0.0574 0.0654 0.1206 -0.0572

-0.7820 -0.3270 -0.2105 -0.7323

0.3593 0.6933 -0.5368 0.6027

svd(X)

ans =

1.4969

1.2449

0.4541

0.0579

[U,L,Z]=svd(X)

U =

-0.1140 -0.3089 0.8107 -0.2602 0.4071 0.0311

0.2520 -0.7075 -0.3397 0.3192 0.4284 -0.1873

0.0076 0.3032 -0.2774 -0.5684 0.4628 -0.5420

-0.0281 -0.0278 -0.3266 -0.3572 0.3314 0.8089

-0.7354 0.2349 -0.0655 0.4811 0.4102 0.0004

0.6179 0.5061 0.1986 0.3851 0.3980 0.1260

L =

1.4969 0 0 0

0 1.2449 0 0

0 0 0.4541 0

0 0 0 0.0579

0 0 0 0

0 0 0 0

Z =

0.5950 -0.3361 0.3832 -0.6214

0.4518 0.5407 -0.6580 -0.2657

0.0049 -0.7687 -0.6390 0.0264

0.6647 -0.0609 0.1089 0.7366

X1=L(1:1,1:1)*U(1:6,1:1)*Z(1:4,1:1)’

X1 =



-0.1015 -0.0771 -0.0008 -0.1134

0.2244 0.1704 0.0019 0.2507

0.0068 0.0051 0.0001 0.0075

-0.0250 -0.0190 -0.0002 -0.0279

-0.6550 -0.4973 -0.0054 -0.7317

0.5504 0.4179 0.0046 0.6148

X2=L(2:2,2:2)*U(1:6,2:2)*Z(1:4,2:2)’

X2 =

0.1293 -0.2079 0.2956 0.0234

0.2961 -0.4763 0.6771 0.0537

-0.1269 0.2041 -0.2901 -0.0230

0.0116 -0.0187 0.0266 0.0021

-0.0983 0.1581 -0.2248 -0.0178

-0.2118 0.3407 -0.4843 -0.0384

X3=L(3:3,3:3)*U(1:6,3:3)*Z(1:4,3:3)’

X3 =

0.1411 -0.2422 -0.2352 0.0401

-0.0591 0.1015 0.0986 -0.0168

-0.0483 0.0829 0.0805 -0.0137

-0.0568 0.0976 0.0948 -0.0162

-0.0114 0.0196 0.0190 -0.0032

0.0346 -0.0593 -0.0576 0.0098

X4=L(4:4,4:4)*U(1:6,4:4)*Z(1:4,4:4)’

X4 =

0.0094 0.0040 -0.0004 -0.0111

-0.0115 -0.0049 0.0005 0.0136

0.0204 0.0087 -0.0009 -0.0242

0.0128 0.0055 -0.0005 -0.0152

-0.0173 -0.0074 0.0007 0.0205

-0.0139 -0.0059 0.0006 0.0164

X1+X2

ans =

0.0277 -0.2850 0.2948 -0.0900

0.5205 -0.3059 0.6789 0.3044

-0.1201 0.2092 -0.2901 -0.0155

-0.0134 -0.0377 0.0264 -0.0258

-0.7533 -0.3392 -0.2302 -0.7495

0.3386 0.7586 -0.4797 0.5764



X1+X2+X3

ans =

0.1688 -0.5272 0.0595 -0.0499

0.4614 -0.2044 0.7775 0.2876

-0.1684 0.2921 -0.2096 -0.0292

-0.0702 0.0599 0.1211 -0.0420

-0.7647 -0.3196 -0.2112 -0.7528

0.3732 0.6992 -0.5374 0.5863

X1+X2+X3+X4 (Which is the original X-matrix )

ans =

0.1781 -0.5232 0.0591 -0.0610

0.4499 -0.2093 0.7780 0.3012

-0.1480 0.3009 -0.2105 -0.0534

-0.0574 0.0654 0.1206 -0.0572

-0.7820 -0.3270 -0.2105 -0.7323

0.3593 0.6933 -0.5368 0.6027

L =

1.4969 0 0 0

0 1.2449 0 0

0 0 0.4541 0

0 0 0 0.0579

0 0 0 0

0 0 0 0

L’*L (Eigenvalues)

ans =

2.2407 0 0 0

0 1.5498 0 0

0 0 0.2062 0

0 0 0 0.0034


