Measure Theory

V. Liskevich

1998

1 Introduction

We always denote by X our universe, i.e. all the sets we shall consider are subsets of X.
Recall some standard notation. 2^{X} everywhere denotes the set of all subsets of a given set X. If $A \cap B=\varnothing$ then we often write $A \sqcup B$ rather than $A \cup B$, to underline the disjointness. The complement (in X) of a set A is denoted by A^{c}. By $A \triangle B$ the symmetric difference of A and B is denoted, i.e. $A \triangle B=(A \backslash B) \cup(B \backslash A)$. Letters i, j, k always denote positive integers. The sign \upharpoonright is used for restriction of a function (operator etc.) to a subset (subspace).

1.1 The Riemann integral

Recall how to construct the Riemannian integral. Let $f:[a, b] \rightarrow \mathbb{R}$. Consider a partition π of $[a, b]$:

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b
$$

and set $\Delta x_{k}=x_{k+1}-x_{k},|\pi|=\max \left\{\Delta x_{k}: k=0,1, \ldots, n-1\right\}, m_{k}=\inf \{f(x): x \in$ $\left.\left[x_{k}, x_{k+1}\right]\right\}, M_{k}=\sup \left\{f(x): x \in\left[x_{k}, x_{k+1}\right]\right\}$. Define the upper and lower RiemannDarboux sums

$$
\underline{s}(f, \pi)=\sum_{k=0}^{n-1} m_{k} \Delta x_{k}, \quad \bar{s}(f, \pi)=\sum_{k=0}^{n-1} M_{k} \Delta x_{k} .
$$

One can show (the Darboux theorem) that the following limits exist

$$
\begin{aligned}
& \lim _{|\pi| \rightarrow 0} \underline{s}(f, \pi)=\sup _{\pi} \underline{s}(f, \pi)=\underline{\int_{a}^{b} f d x} \\
& \lim _{|\pi| \rightarrow 0} \bar{s}(f, \pi)=\inf _{\pi} \bar{s}(f, \pi)=\overline{\int_{a}^{b} f d x}
\end{aligned}
$$

Clearly,
for any partition π.
The function f is said to be Riemann integrable on $[a, b]$ if the upper and lower integrals are equal. The common value is called Riemann integral of f on $[a, b]$.

The functions cannot have a large set of points of discontinuity. More presicely this will be stated further.

1.2 The Lebesgue integral

It allows to integrate functions from a much more general class. First, consider a very useful example. For $f, g \in C[a, b]$, two continuous functions on the segment $[a, b]=\{x \in$ $\mathbb{R}: a \leqslant x \leqslant b\}$ put

$$
\begin{aligned}
& \rho_{1}(f, g)=\max _{a \leqslant x \leqslant b}|f(x)-g(x)|, \\
& \rho_{2}(f, g)=\int_{a}^{b}|f(x)-g(x)| \mathrm{d} x .
\end{aligned}
$$

Then $\left(C[a, b], \rho_{1}\right)$ is a complete metric space, when $\left(C[a, b], \rho_{2}\right)$ is not. To prove the latter statement, consider a family of functions $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ as drawn on Fig.1. This is a Cauchy sequence with respect to ρ_{2}. However, the limit does not belong to $C[a, b]$.

Figure 1: The function φ_{n}.

2 Systems of Sets

Definition 2.1 A ring of sets is a non-empty subset in 2^{X} which is closed with respect to the operations \cup and \backslash.

Proposition. Let \mathfrak{K} be a ring of sets. Then $\varnothing \in \mathfrak{K}$.
Proof. Since $\mathfrak{K} \neq \varnothing$, there exists $A \in \mathfrak{K}$. Since \mathfrak{K} contains the difference of every two its elements, one has $A \backslash A=\varnothing \in \mathfrak{K}$.

Examples.

1. The two extreme cases are $\mathfrak{K}=\{\varnothing\}$ and $\mathfrak{K}=2^{X}$.
2. Let $X=\mathbb{R}$ and denote by \mathfrak{K} all finite unions of semi-segments $[a, b)$.

Definition 2.2 A semi-ring is a collection of sets $\mathfrak{P} \subset 2^{X}$ with the following properties:

1. If $A, B \in \mathfrak{P}$ then $A \cap B \in \mathfrak{P}$;
2. For every $A, B \in \mathfrak{P}$ there exists a finite disjoint collection $\left(C_{j}\right) \quad j=1,2, \ldots, n$ of sets (i.e. $C_{i} \cap C_{j}=\varnothing$ if $i \neq j$) such that

$$
A \backslash B=\bigsqcup_{j=1}^{n} C_{j}
$$

Example. Let $X=\mathbb{R}$, then the set of all semi-segments, $[a, b)$, forms a semi-ring.

Definition 2.3 An algebra (of sets) is a ring of sets containing $X \in 2^{X}$.

Examples.

1. $\{\varnothing, X\}$ and 2^{X} are the two extreme cases (note that they are different from the corresponding cases for rings of sets).
2. Let $X=[a, b)$ be a fixed interval on \mathbb{R}. Then the system of finite unions of subintervals $[\alpha, \beta) \subset[a, b)$ forms an algebra.
3. The system of all bounded subsets of the real axis is a ring (not an algebra).

Remark. \mathfrak{A} is algebra if (i) $A, B \in \mathfrak{A} \Longrightarrow A \cup B \in \mathfrak{A}$, (ii) $A \in \mathfrak{A} \Longrightarrow A^{c} \in \mathfrak{A}$.
Indeed, 1) $\left.A \cap B=\left(A^{c} \cup B^{c}\right)^{c} ; 2\right) A \backslash B=A \cap B^{c}$.

Definition 2.4 A σ-ring (a σ-algebra) is a ring (an algebra) of sets which is closed with respect to all countable unions.

Definition 2.5 A ring (an algebra, a σ-algebra) of sets, $\mathfrak{K}(\mathfrak{U})$ generated by a collection of sets $\mathfrak{U} \subset 2^{X}$ is the minimal ring (algebra, σ-algebra) of sets containing \mathfrak{U}.

In other words, it is the intersection of all rings (algebras, σ-algebras) of sets containing \mathfrak{U}.

3 Measures

Let X be a set, \mathfrak{A} an algebra on X.
Definition 3.1 A function $\mu: \mathfrak{A} \longrightarrow \mathbb{R}_{+} \cup\{\infty\}$ is called a measure if

1. $\mu(A) \geqslant 0$ for any $A \in \mathfrak{A}$ and $\mu(\varnothing)=0$;
2. if $\left(A_{i}\right)_{i \geqslant 1}$ is a disjoint family of sets in $\mathfrak{A}\left(A_{i} \cap A_{j}=\varnothing\right.$ for any $\left.i \neq j\right)$ such that $\bigsqcup_{i=1}^{\infty} A_{i} \in \mathfrak{A}$, then

$$
\mu\left(\bigsqcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right) .
$$

The latter important property, is called countable additivity or σ-additivity of the measure μ.

Let us state now some elementary properties of a measure. Below till the end of this section \mathfrak{A} is an algebra of sets and μ is a measure on it.

1. (Monotonicity of μ) If $A, B \in \mathfrak{A}$ and $B \subset A$ then $\mu(B) \leqslant \mu(A)$.

Proof. $A=(A \backslash B) \sqcup B$ implies that

$$
\mu(A)=\mu(A \backslash B)+\mu(B)
$$

Since $\mu(A \backslash B) \geq 0$ it follows that $\mu(A) \geq \mu(B)$.
2. (Subtractivity of μ). If $A, B \in \mathfrak{A}$ and $B \subset A$ and $\mu(B)<\infty$ then $\mu(A \backslash B)=$ $\mu(A)-\mu(B)$.
Proof. In 1) we proved that

$$
\mu(A)=\mu(A \backslash B)+\mu(B)
$$

If $\mu(B)<\infty$ then

$$
\mu(A)-\mu(B)=\mu(A \backslash B)
$$

3. If $A, B \in \mathfrak{A}$ and $\mu(A \cap B)<\infty$ then $\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)$.

Proof. $A \cap B \subset A, A \cap B \subset B$, therefore

$$
A \cup B=(A \backslash(A \cap B)) \sqcup B
$$

Since $\mu(A \cap B)<\infty$, one has

$$
\mu(A \cup B)=(\mu(A)-\mu(A \cap B))+\mu(B)
$$

4. (Semi-additivity of μ). If $\left(A_{i}\right)_{i \geq 1} \subset \mathfrak{A}$ such that $\bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{A}$ then

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leqslant \sum_{i=1}^{\infty} \mu\left(A_{i}\right) .
$$

Proof. First let us proove that

$$
\mu\left(\bigcup_{i=1}^{n} A_{i}\right) \leqslant \sum_{i=1}^{n} \mu\left(A_{i}\right) .
$$

Note that the family of sets

$$
\begin{array}{r}
B_{1}=A_{1} \\
B_{2}=A_{2} \backslash A_{1} \\
B_{3}=A_{3} \backslash\left(A_{1} \cup A_{2}\right) \\
\cdots \\
B_{n}=A_{n} \backslash \bigcup_{i=1}^{n-1} A_{i}
\end{array}
$$

is disjoint and $\bigsqcup_{i=1}^{n} B_{i}=\bigcup_{i=1}^{n} A_{i}$. Moreover, since $B_{i} \subset A_{i}$, we see that $\mu\left(B_{i}\right) \leq$ $\mu\left(A_{i}\right)$. Then

$$
\mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\mu\left(\bigsqcup_{i=1}^{n} B_{i}\right)=\sum_{i=1}^{n} \mu\left(B_{i}\right) \leq \sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

Now we can repeat the argument for the infinite family using σ-additivity of the measure.

3.1 Continuity of a measure

Theorem 3.1 Let \mathfrak{A} be an algebra, $\left(A_{i}\right)_{i \geq 1} \subset \mathfrak{A}$ a monotonically increasing sequence of sets $\left(A_{i} \subset A_{i+1}\right)$ such that $\bigcup_{i \geq 1} \in \mathfrak{A}$. Then

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Proof. 1). If for some $n_{0} \mu\left(A_{n_{0}}\right)=+\infty$ then $\mu\left(A_{n}\right)=+\infty \forall n \geq n_{0}$ and $\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=+\infty$.
2). Let now $\mu\left(A_{i}\right)<\infty \forall i \geq 1$.

Then

$$
\begin{array}{r}
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\mu\left(A_{1} \sqcup\left(A_{2} \backslash A_{1}\right) \sqcup \ldots \sqcup\left(A_{n} \backslash A_{n-1}\right) \sqcup \ldots\right) \\
=\mu\left(A_{1}\right)+\sum_{k=2}^{\infty} \mu\left(A_{k} \backslash A_{k-1}\right) \\
=\mu\left(A_{1}\right)+\lim _{n \rightarrow \infty} \sum_{k=2}^{n}\left(\mu\left(A_{k}\right)-\mu\left(A_{k-1}\right)\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) .
\end{array}
$$

3.2 Outer measure

Let a be an algebra of subsets of X and μ a measure on it. Our purpose now is to extend μ to as many elements of 2^{X} as possible.

An arbitrary set $A \subset X$ can be always covered by sets from \mathfrak{A}, i.e. one can always find $E_{1}, E_{2}, \ldots \in \mathfrak{A}$ such that $\bigcup_{i=1}^{\infty} E_{i} \supset A$. For instance, $E_{1}=X, E_{2}=E_{3}=\ldots=\varnothing$.

Definition 3.2 For $A \subset X$ its outer measure is defined by

$$
\mu^{*}(A)=\inf \sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

where the infimum is taken over all \mathfrak{A}-coverings of the set A, i.e. all collections $\left(E_{i}\right), E_{i} \in$ \mathfrak{A} with $\bigcup_{i} E_{i} \supset A$.

Remark. The outer measure always exists since $\mu(A) \geqslant 0$ for every $A \in \mathfrak{A}$.
Example. Let $X=\mathbb{R}^{2}, \mathfrak{A}=\mathfrak{K}(\mathfrak{P})$, $-\sigma$-algebra generated by $\mathfrak{P}, \mathfrak{P}=\left\{[a, b) \times \mathbb{R}^{1}\right\}$. Thus \mathfrak{A} consists of countable unions of strips like one drawn on the picture. Put $\mu([a, b) \times$ $\left.\mathbb{R}^{1}\right)=b-a$. Then, clearly, the outer measure of the unit disc $x^{2}+y^{2} \leqslant 1$ is equal to 2 . The same value is for the square $|x| \leqslant 1,|y| \leqslant 1$.

Theorem 3.2 For $A \in \mathfrak{A}$ one has $\mu^{*}(A)=\mu(A)$.
In other words, μ^{*} is an extension of μ.
Proof. 1. A is its own covering. This implies $\mu^{*}(A) \leqslant \mu(A)$.
2. By definition of infimum, for any $\varepsilon>0$ there exists a \mathfrak{A}-covering $\left(E_{i}\right)$ of A such that $\sum_{i} \mu\left(E_{i}\right)<\mu^{*}(A)+\varepsilon$. Note that

$$
A=A \cap\left(\bigcup_{i} E_{i}\right)=\bigcup_{i}\left(A \cap E_{i}\right)
$$

Using consequently σ-semiadditivity and monotonicity of μ, one obtains:

$$
\mu(A) \leqslant \sum_{i} \mu\left(A \cap E_{i}\right) \leqslant \sum_{i} \mu\left(E_{i}\right)<\mu^{*}(A)+\varepsilon .
$$

Since ε is arbitrary, we conclude that $\mu(A) \leqslant \mu^{*}(A)$.
It is evident that $\mu^{*}(A) \geqslant 0, \quad \mu^{*}(\varnothing)=0$ (Check !).
Lemma. Let \mathfrak{A} be an algebra of sets (not necessary σ-algebra), μ a measure on \mathfrak{A}. If there exists a set $A \in \mathfrak{A}$ such that $\mu(A)<\infty$, then $\mu(\varnothing)=0$.

Proof. $\mu(A \backslash A)=\mu(A)-\mu(A)=0$.
Therefore the property $\mu(\varnothing)=0$ can be substituted with the existence in \mathfrak{A} of a set with a finite measure.

Theorem 3.3 (Monotonicity of outer measure). If $A \subset B$ then $\mu^{*}(A) \leqslant \mu^{*}(B)$.

Proof. Any covering of B is a covering of A.
Theorem 3.4 (σ-semiadditivity of μ^{*}). $\mu^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right) \leqslant \sum_{j=1}^{\infty} \mu^{*}\left(A_{j}\right)$.

Proof. If the series in the right-hand side diverges, there is nothing to prove. So assume that it is convergent.

By the definition of outer measur for any $\varepsilon>0$ and for any j there exists an \mathfrak{A}-covering $\bigcup_{k} E_{k j} \supset A_{j}$ such that

$$
\sum_{k=1}^{\infty} \mu\left(E_{k j}\right)<\mu^{*}\left(A_{j}\right)+\frac{\varepsilon}{2^{j}} .
$$

Since

$$
\bigcup_{j, k=1}^{\infty} E_{k j} \supset \bigcup_{j=1}^{\infty} A_{j}
$$

the definition of μ^{*} implies

$$
\mu^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right) \leqslant \sum_{j, k=1}^{\infty} \mu\left(E_{k j}\right)
$$

and therefore

$$
\mu^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right)<\sum_{j=1}^{\infty} \mu^{*}\left(A_{j}\right)+\varepsilon .
$$

3.3 Measurable Sets

Let \mathfrak{A} be an algebra of subsets of X, μ a measure on it, μ^{*} the outer measure defined in the previous section.

Definition 3.3 $A \subset X$ is called a measurable set (by Carathèodory) if for any $E \subset X$ the following relation holds:

$$
\mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)
$$

Denote by $\tilde{\mathfrak{A}}$ the collection of all set which are measurable by Carathèodory and set $\tilde{\mu}=\mu^{*} \upharpoonright \tilde{\mathfrak{A}}$.

Remark Since $E=(E \cap A) \cup\left(E \cap A^{c}\right)$, due to semiadditivity of the outer measure

$$
\mu^{*}(E) \leq \mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)
$$

Theorem 3.5 $\tilde{\mathfrak{A}}$ is a σ-algebra containing \mathfrak{A}, and $\tilde{\mu}$ is a measure on $\tilde{\mathfrak{A}}$.

Proof. We devide the proof into several steps.

1. If $A, B \in \tilde{\mathfrak{A}}$ then $A \cup B \in \tilde{\mathfrak{A}}$.

By the definition one has

$$
\begin{equation*}
\mu^{*}(E)=\mu^{*}(E \cap B)+\mu^{*}\left(E \cap B^{c}\right) \tag{1}
\end{equation*}
$$

Take $E \cap A$ instead of E :

$$
\begin{equation*}
\mu^{*}(E \cap A)=\mu^{*}(E \cap A \cap B)+\mu^{*}\left(E \cap A \cap B^{c}\right) \tag{2}
\end{equation*}
$$

Then put $E \cap A^{c}$ in (1) instead of E

$$
\begin{equation*}
\mu^{*}\left(E \cap A^{c}\right)=\mu^{*}\left(E \cap A^{c} \cap B\right)+\mu^{*}\left(E \cap A^{c} \cap B^{c}\right) \tag{3}
\end{equation*}
$$

Add (2) and (3):

$$
\begin{equation*}
\mu^{*}(E)=\mu^{*}(E \cap A \cap B)+\mu^{*}\left(E \cap A \cap B^{c}\right)+\mu^{*}\left(E \cap A^{c} \cap B\right)+\mu^{*}\left(E \cap A^{c} \cap B^{c}\right) \tag{4}
\end{equation*}
$$

Substitute $E \cap(A \cup B)$ in (4) instead of E. Note that

1) $E \cap(A \cup B) \cap A \cap B=E \cap A \cap B$
2) $E \cap(A \cup B) \cap A^{c} \cap B=E \cap A^{c} \cap B$
3) $E \cap(A \cup B) \cap A \cap B^{c}=E \cap A \cap B^{c}$
4) $\quad E \cap(A \cup B) \cap A^{c} \cap B^{c}=\varnothing$.

One has

$$
\begin{equation*}
\mu^{*}(E \cap(A \cup B))=\mu^{*}(E \cap A \cap B)+\mu^{*}\left(E \cap A^{c} \cap B\right)+\mu^{*}\left(E \cap A \cap B^{c}\right) \tag{5}
\end{equation*}
$$

From (4) and (5) we have

$$
\mu^{*}(E)=\mu^{*}(E \cap(A \cup B))+\mu^{*}\left(E \cap(A \cup B)^{c}\right) .
$$

2. If $A \in \tilde{\mathfrak{A}}$ then $A^{c} \in \tilde{\mathfrak{A}}$.

The definition of measurable set is symmetric with respect to A and A^{c}.
Therefore $\tilde{\mathfrak{A}}$ is an algebra of sets.
3.

Let $A, B \in \mathfrak{A}, A \cap B=\varnothing$. From (5)

$$
\mu^{*}(E \cap(A \sqcup B))=\mu^{*}\left(E \cap A^{c} \cap B\right)+\mu^{*}\left(E \cap A \cap B^{c}\right)=\mu^{*}(E \cap B)+\mu^{*}(E \cap A)
$$

4. $\tilde{\mathfrak{A}}$ is a σ-algebra.

From the previous step, by induction, for any finite disjoint collection $\left(B_{j}\right)$ of sets:

$$
\begin{equation*}
\mu^{*}\left(E \cap\left(\bigsqcup_{j=1}^{n} B_{j}\right)\right)=\sum_{j=1}^{n} \mu^{*}\left(E \cap B_{j}\right) . \tag{6}
\end{equation*}
$$

Let $A=\bigcup_{j=1}^{\infty} A_{j}, A_{j} \in \mathfrak{A}$. Then $A=\bigcup_{j=1}^{\infty} B_{j}, B_{j}=A_{j} \backslash \bigcup_{k=1}^{j-1} A_{k}$ and $B_{i} \cap B_{j}=\varnothing(i \neq j)$. It suffices to prove that

$$
\begin{equation*}
\mu^{*}(E) \geqslant \mu^{*}\left(E \cap\left(\bigsqcup_{j=1}^{\infty} B_{j}\right)\right)+\mu^{*}\left(E \cap\left(\bigsqcup_{j=1}^{\infty} B_{j}\right)^{c}\right) \tag{7}
\end{equation*}
$$

Indeed, we have already proved that μ^{*} is σ-semi-additive.
Since $\tilde{\mathfrak{A}}$ is an algebra, it follows that $\bigsqcup_{j=1}^{n} B_{j} \in \tilde{\mathfrak{A}}(\forall n \in \mathbb{N})$ and the following inequality holds for every n :

$$
\begin{equation*}
\mu^{*}(E) \geqslant \mu^{*}\left(E \cap\left(\bigsqcup_{j=1}^{n} B_{j}\right)\right)+\mu^{*}\left(E \cap\left(\bigsqcup_{j=1}^{n} B_{j}\right)^{c}\right) \tag{8}
\end{equation*}
$$

Since $E \cap\left(\bigsqcup_{j=1}^{\infty} B_{j}\right)^{c} \subset E \cap\left(\bigsqcup_{j=1}^{n} B_{j}\right)^{c}$, by monotonicity of the mesasure and (8)

$$
\begin{equation*}
\mu^{*}(E) \geq \sum_{j=1}^{n} \mu^{*}\left(E \cap B_{j}\right)+\mu^{*}\left(E \cap A^{c}\right) \tag{9}
\end{equation*}
$$

Passing to the limit we get

$$
\begin{equation*}
\mu^{*}(E) \geq \sum_{j=1}^{\infty} \mu^{*}\left(E \cap B_{j}\right)+\mu^{*}\left(E \cap A^{c}\right) \tag{10}
\end{equation*}
$$

Due to semiadditivity

$$
\mu^{*}(E \cap A)=\mu^{*}\left(E \cap\left(\bigsqcup_{j=1}^{\infty} B_{j}\right)\right)=\mu^{*}\left(\bigsqcup_{j=1}^{\infty}\left(E \cap B_{j}\right)\right) \leq \sum_{j=1}^{\infty} \mu^{*}\left(E \cap B_{j}\right)
$$

Compare this with (10):

$$
\mu^{*}(E) \geq \mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)
$$

Thus, $A \in \tilde{\mathfrak{A}}$, which means that $\tilde{\mathfrak{A}}$ is a σ-algebra.
5. $\tilde{\mu}=\mu^{*} \upharpoonright \tilde{\mathfrak{A}}$ is a measure.

We need to prove only σ-additivity. Let $E=\bigsqcup_{j=1}^{\infty} A_{j}$. From(10) we get

$$
\mu^{*}\left(\bigsqcup_{j=1}^{\infty} A_{j}\right) \geqslant \sum_{j=1}^{\infty} \mu^{*}\left(A_{j}\right)
$$

The oposite inequality follows from σ-semiadditivity of μ^{*}.
6. $\tilde{\mathfrak{A}} \supset \mathfrak{A}$.

Let $A \in \mathfrak{A}, E \subset X$. We need to prove:

$$
\begin{equation*}
\mu^{*}(E) \geqslant \mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right) . \tag{11}
\end{equation*}
$$

If $E \in \mathfrak{A}$ then (11) is clear since $E \cap A$ and $E \cap A^{c}$ are disjoint and both belong to \mathfrak{A} where $\mu^{*}=\mu$ and so is additive.

For $E \subset X$ for $\forall \varepsilon>0$ there exists a \mathfrak{A}-covering $\left(E_{j}\right)$ of E such that

$$
\begin{equation*}
\mu^{*}(E)+\varepsilon>\sum_{j=1}^{\infty} \mu\left(E_{j}\right) \tag{12}
\end{equation*}
$$

Now, since $E_{j}=\left(E_{j} \cap A\right) \cup\left(E_{j} \cap A^{c}\right)$, one has

$$
\mu\left(E_{j}\right)=\mu\left(E_{j} \cap A\right)+\mu\left(E_{j} \cap A\right)
$$

and also

$$
\begin{aligned}
& E \cap A \subset \bigcup_{j=1}^{\infty}\left(E_{j} \cap A\right) \\
& E \cap A^{c} \subset \bigcup_{j=1}^{\infty}\left(E_{j} \cap A^{c}\right)
\end{aligned}
$$

By monotonicity and σ-semiadditivity

$$
\begin{aligned}
\mu^{*}(E \cap A) & \leqslant \sum_{j=1}^{\infty} \mu\left(E_{j} \cap A\right) \\
\mu^{*}\left(E \cap A^{c}\right) & \leqslant \sum_{j=1}^{\infty} \mu\left(E_{j} \cap A^{c}\right) .
\end{aligned}
$$

Adding the last two inequalities we obtain

$$
\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right) \leq \sum_{j=1}^{\infty} \mu^{*}\left(E_{j}\right)<\mu^{*}(E)+\varepsilon
$$

Since $\varepsilon>0$ is arbitrary, (11) is proved.
The following theorem is a direct consequence of the previous one.

Theorem 3.6 Let \mathfrak{A} be an algebra of subsets of X and μ be a measure on it. Then there exists a σ-algebra $\mathfrak{A}_{1} \supset \mathfrak{A}$ and a measure μ_{1} on \mathfrak{A}_{1} such that $\mu_{1} \upharpoonright \mathfrak{A}=\mu$.

Remark. Consider again an algebra \mathfrak{A} of subsets of X. Denot by \mathfrak{A}_{σ} the generated σ-algebra and construct the extension μ_{σ} of μ on \mathfrak{A}_{σ}. This extension is called minimal extension of measure.

Since $\tilde{\mathfrak{A}} \supset \mathfrak{A}$ therefore $\mathfrak{A}_{\sigma} \subset \tilde{\mathfrak{A}}$. Hence one can set $\mu_{\sigma}=\tilde{\mu} \upharpoonright \mathfrak{A}_{\sigma}$. Obviously μ_{σ} is a minimal extension of μ. It always exists. On can also show (see below) that this extension is unique.

Theorem 3.7 Let μ be a measure on an algebra \mathfrak{A} of subsets of X, μ^{*} the corresponding outer measure. If $\mu^{*}(A)=0$ for a set $A \subset X$ then $A \in \tilde{\mathfrak{A}}$ and $\tilde{\mu}(A)=0$.

Proof. Clearly, it suffices to prove that $A \in \tilde{\mathfrak{A}}$. Further, it suffices to prove that $\mu^{*}(E) \geqslant$ $\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)$. The latter statement follows from monotonicity of μ^{*}. Indeed, one has $\mu^{*}(E \cap A) \leqslant \mu^{*}(A)=0$ and $\mu^{*}\left(E \cap A^{c}\right) \leqslant \mu^{*}(E)$.

Definition 3.4 A measure μ on an algebra of sets \mathfrak{A} is called complete if conditions $B \subset A, \quad A \in \mathfrak{A}, \quad \mu(A)=0$ imply $B \in \mathfrak{A}$ and $\mu(B)=0$.

Corollary. $\tilde{\mu}$ is a complete measure.

Definition 3.5 A measure μ on an algebra \mathfrak{A} is called finite if $\mu(X)<\infty$. It is called σ-finite if the is an increasing sequence $\left(F_{j}\right)_{j \geq 1} \subset \mathfrak{A}$ such that $X=\bigcup_{j} F_{j}$ and $\mu\left(F_{j}\right)<\infty$ $\forall j$.

Theorem 3.8 Let μ be a σ-finite measure on an algebra \mathfrak{A}. Then there exist a unique extension of μ to a measure on $\tilde{\mathfrak{A}}$.

Proof. It suffices to sjow uniqueness. Let ν be another extension of $\mu(\nu \upharpoonright \mathfrak{A}=\mu \upharpoonright \mathfrak{A})$.
First, let μ (and therefore ν, μ^{*}) be finite. Let $A \in \tilde{\mathfrak{A}}$. Let $\left(E_{j}\right) \subset \mathfrak{A}$ such that $A \subset \bigcup_{j} E_{j}$. We have

$$
\nu(A) \leq \nu\left(\bigcup_{j=1}^{\infty} E_{j}\right) \leq \sum_{j=1}^{\infty} \nu\left(E_{j}\right)=\sum_{j=1}^{\infty} \mu\left(E_{j}\right) .
$$

Therefore

$$
\nu(A) \leq \mu^{*}(A) \quad \forall A \in \tilde{\mathfrak{A}} .
$$

Since μ^{*} and ν are additive (on $\tilde{\mathfrak{A}}$) it follows that

$$
\mu^{*}(A)+\mu^{*}\left(A^{c}\right)=\nu(A)+\nu\left(A^{c}\right) .
$$

The terms in the RHS are finite and $\nu(A) \leq \mu^{*}(A), \nu\left(A^{c}\right) \leq \mu^{*}\left(A^{c}\right)$. From this we infer that

$$
\nu(A)=\mu^{*}(A) \quad \forall A \in \tilde{\mathfrak{A}} .
$$

Now let μ be σ-finite, $\left(F_{j}\right)$ be an increasing sequence of sets from \mathfrak{A} such that $\mu\left(F_{j}\right)<$ $\infty \forall j$ and $X=\bigcup_{j=1}^{\infty} F_{j}$. From what we have already proved it follows that

$$
\mu^{*}\left(A \cap F_{j}\right)=\nu\left(A \cap F_{j}\right) \forall A \in \tilde{\mathfrak{A}} .
$$

Therefore

$$
\mu^{*}(A)=\lim _{j} \mu^{*}\left(A \cap F_{j}\right)=\lim _{j} \nu\left(A \cap F_{j}\right)=\nu(A)
$$

Theorem 3.9 (Continuity of measure). Let \mathfrak{A} be a σ-algebra with a measure $\mu,\left\{A_{j}\right\} \subset$ \mathfrak{A} a monotonically increasing sequence of sets. Then

$$
\mu\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\lim _{j \rightarrow \infty} \mu\left(A_{j}\right)
$$

Proof. One has:

$$
A=\bigsqcup_{j=1}^{\infty} A_{j}=\bigsqcup_{j=2}^{\infty}\left(A_{j+1} \backslash A_{j}\right) \sqcup A_{1}
$$

Using σ-additivity and subtractivity of μ,

$$
\mu(A)=\sum_{j=1}^{\infty}\left(\mu\left(A_{j+1}\right)-\mu\left(A_{j}\right)\right)+\mu\left(A_{1}\right)=\lim _{j \rightarrow \infty} \mu\left(A_{j}\right)
$$

Similar assertions for a decreasing sequence of sets in \mathfrak{A} can be proved using de Morgan formulas.

Theorem 3.10 Let $A \in \tilde{\mathfrak{A}}$. Then for any $\varepsilon>0$ there exists $A_{\varepsilon} \in \mathfrak{A}$ such that $\mu^{*}(A \triangle$ $\left.A_{\varepsilon}\right)<\varepsilon$.

Proof. 1. For any $\varepsilon>0$ there exists an \mathfrak{A} cover $\bigcup E_{j} \supset A$ such that

$$
\sum_{j} \mu\left(E_{j}\right)<\mu^{*}(A)+\frac{\varepsilon}{2}=\tilde{\mu}(A)+\frac{\varepsilon}{2}
$$

On the other hand,

$$
\sum_{j} \mu\left(E_{j}\right) \geqslant \tilde{\mu}\left(\bigcup_{j} E_{J}\right) .
$$

The monotonicity of $\tilde{\mu}$ implies

$$
\tilde{\mu}\left(\bigcup_{j=1}^{\infty} E_{J}\right)=\lim _{n \rightarrow \infty} \tilde{\mu}\left(\bigcup_{j=1}^{n} E_{j}\right),
$$

hence there exists a positive integer N such that

$$
\begin{equation*}
\tilde{\mu}\left(\bigcup_{j=1}^{\infty} E_{j}\right)-\tilde{\mu}\left(\bigcup_{j=1}^{N} E_{j}\right)<\frac{\varepsilon}{2} . \tag{13}
\end{equation*}
$$

2. Now, put

$$
A_{\varepsilon}=\bigcup_{j=1}^{N} E_{j}
$$

and prove that $\mu^{*}\left(A \triangle A_{\varepsilon}\right)<\varepsilon$.
$2 a$. Since

$$
A \subset \bigcup_{j=1}^{\infty} E_{j}
$$

one has

$$
A \backslash A_{\varepsilon} \subset \bigcup_{j=1}^{\infty} E_{j} \backslash A_{\varepsilon}
$$

Since

$$
A_{\varepsilon} \subset \bigcup_{j=1}^{\infty} E_{j}
$$

one can use the monotonicity and subtractivity of $\tilde{\mu}$. Together with estimate (13), this gives

$$
\tilde{\mu}\left(A \backslash A_{\varepsilon}\right) \leq \tilde{\mu}\left(\bigcup_{j=1}^{\infty} E_{j} \backslash A_{\varepsilon}\right)<\frac{\varepsilon}{2}
$$

$2 b$. The inclusion

$$
A_{\varepsilon} \backslash A \subset \bigcup_{j=1}^{\infty} E_{j} \backslash A
$$

implies

$$
\tilde{\mu}\left(A_{\varepsilon} \backslash A\right) \leqslant \tilde{\mu}\left(\bigcup_{j=1}^{\infty} E_{j} \backslash A\right)=\tilde{\mu}\left(\bigcup_{j=1}^{\infty} E_{j}\right)-\tilde{\mu}(A)<\frac{\varepsilon}{2} .
$$

Here we used the same properties of $\tilde{\mu}$ as above and the choice of the cover $\left(E_{j}\right)$.
3. Finally,

$$
\tilde{\mu}\left(A \triangle A_{\varepsilon}\right) \leqslant \tilde{\mu}\left(A \backslash A_{\varepsilon}\right)+\tilde{\mu}\left(A_{\varepsilon} \backslash A\right) .
$$

4 Monotone Classes and Uniqueness of Extension of Measure

Definition 4.1 A collection of sets, \mathfrak{M} is called a monotone class if together with any monotone sequence of sets \mathfrak{M} contains the limit of this sequence.

Example. Any σ-ring. (This follows from the Exercise 1. below).

Exercises.

1. Prove that any σ-ring is a monotone class.
2. If a ring is a monotone class, then it is a σ-ring.

We shall denote by $\mathfrak{M}(\mathfrak{K})$ the minimal monotone class containing \mathfrak{K}.

Theorem 4.1 Let \mathfrak{K} be a ring of sets, \mathfrak{K}_{σ} the σ-ring generated by \mathfrak{K}. Then $\mathfrak{M}(\mathfrak{K})=\mathfrak{K}_{\sigma}$.

Proof. 1. Clearly, $\mathfrak{M}(\mathfrak{K}) \subset \mathfrak{K}_{\sigma}$. Now, it suffices to prove that $\mathfrak{M}(\mathfrak{K})$ is a ring. This follows from the Exercise (2) above and from the minimality of \mathfrak{K}_{σ}.
2. $\mathfrak{M}(\mathfrak{K})$ is a ring.
$2 a$. For $B \subset X$, set

$$
\mathfrak{K}_{B}=\{A \subset X: A \cup B, A \cap B, A \backslash B, B \backslash A \in \mathfrak{M}(\mathfrak{K})\} .
$$

This definition is symmetric with respect to A and B, therefore $A \in \mathfrak{K}_{B}$ implies $B \in \mathfrak{K}_{A}$.
2b. \mathfrak{K}_{B} is a monotone class.
Let $\left(A_{j}\right) \subset \mathfrak{K}_{B}$ be a monotonically increasing sequence. Prove that the union, $A=\bigcup A_{j}$ belongs to \mathfrak{K}_{B}.

Since $A_{j} \in \mathfrak{K}_{B}$, one has $A_{j} \cup B \in \mathfrak{K}_{B}$, and so

$$
A \cup B=\bigcup_{j=1}^{\infty}\left(A_{j} \cup B\right) \in \mathfrak{M}(\mathfrak{K}) .
$$

In the same way,

$$
A \backslash B=\left(\bigcup_{j=1}^{\infty} A_{j}\right) \backslash B=\bigcup_{j=1}^{\infty}\left(A_{j} \backslash B\right) \in \mathfrak{M}(\mathfrak{K}) ;
$$

$$
B \backslash A=B \backslash\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\bigcap_{j=1}^{\infty}\left(B \backslash A_{j}\right) \in \mathfrak{M}(\mathfrak{K})
$$

Similar proof is for the case of decreasing sequence $\left(A_{j}\right)$.
$2 c$. If $B \in \mathfrak{K}$ then $\mathfrak{M}(\mathfrak{K}) \subset \mathfrak{K}_{B}$.
Obviously, $\mathfrak{K} \subset \mathfrak{K}_{B}$. Together with minimality of $\mathfrak{M}(\mathfrak{K})$, this implies $\mathfrak{M}(\mathfrak{K}) \subset \mathfrak{K}_{B}$.
$2 d$. If $B \in \mathfrak{M}(\mathfrak{K})$ then $\mathfrak{M}(\mathfrak{K}) \subset \mathfrak{K}_{B}$.
Let $A \in \mathfrak{K}$. Then $\mathfrak{M}(\mathfrak{K}) \subset \mathfrak{K}_{A}$. Thus if $B \in \mathfrak{M}(\mathfrak{K})$, one has $B \in \mathfrak{K}_{A}$, so $A \in \mathfrak{K}_{B}$.
Hence what we have proved is $\mathfrak{K} \subset \mathfrak{K}_{B}$. This implies $\mathfrak{M}(\mathfrak{K}) \subset \mathfrak{K}_{B}$.
$2 e$. It follows from $2 a$. - $2 d$. that if $A, B \in \mathfrak{M}(\mathfrak{K})$ then $A \in \mathfrak{K}_{B}$ and so $A \cup B, A \cap B$, $A \backslash B$ and $B \backslash A$ all belong to $\mathfrak{M}(\mathfrak{K})$.

Theorem 4.2 Let \mathfrak{A} be an algebra of sets, μ and ν two measures defined on the σ algebra \mathfrak{A}_{σ} generated by \mathfrak{A}. Then $\mu \upharpoonright \mathfrak{A}=\nu \upharpoonright \mathfrak{A}$ implies $\mu=\nu$.

Proof. Choose $A \in \mathfrak{A}_{\sigma}$, then $A=\lim _{n \rightarrow \infty} A_{n}, \quad A_{n} \in \mathfrak{A}$, for $\mathfrak{A}_{\sigma}=\mathfrak{M}(\mathfrak{A})$. Using continuity of measure, one has

$$
\mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\lim _{n \rightarrow \infty} \nu\left(A_{n}\right)=\nu(A) .
$$

Theorem 4.3 Let \mathfrak{A} be an algebra of sets, $B \subset X$ such that for any $\varepsilon>0$ there exists $A_{\varepsilon} \in \mathfrak{A}$ with $\mu^{*}\left(B \triangle A_{\varepsilon}\right)<\varepsilon$. Then $B \in \tilde{\mathfrak{A}}$.

Proof. 1. Since any outer measure is semi-additive, it suffices to prove that for any $E \subset X$ one has

$$
\mu^{*}(E) \geqslant \mu^{*}(E \cap B)+\mu^{*}\left(E \cap B^{c}\right)
$$

2a. Since $\mathfrak{A} \subset \tilde{\mathfrak{A}}$, one has

$$
\begin{equation*}
\mu^{*}\left(E \cap A_{\varepsilon}\right)+\mu^{*}\left(E \cap A_{\varepsilon}^{c}\right) \leqslant \mu^{*}(E) . \tag{14}
\end{equation*}
$$

$2 b$. Since $A \subset B \cup(A \triangle B)$ and since the outer measure μ^{*} is monotone and semiadditive, there is an estimate $\left|\mu^{*}(A)-\mu^{*}(B)\right| \leqslant \mu^{*}(A \triangle B)$ for any $A, B \subset X$. (C.f. the proof of similar fact for measures above).
$2 c$. It follows from the monotonicity of μ^{*} that

$$
\left|\mu^{*}\left(E \cap A_{\varepsilon}\right)-\mu^{*}(E \cap B)\right| \leqslant \mu^{*}\left(\left(E \cap A_{\varepsilon}\right) \triangle(E \cap B)\right) \leqslant \mu\left(A_{\varepsilon} \cap B\right)<\varepsilon
$$

Therefore, $\mu^{*}\left(E \cap A_{\varepsilon}\right)>\mu^{*}(E \cap B)-\varepsilon$.
In the same manner, $\mu^{*}\left(E \cap A_{\varepsilon}^{c}\right)>\mu^{*}\left(E \cap B^{c}\right)-\varepsilon$.
$2 d$. Using (14), one obtains

$$
\mu^{*}(E)>\mu^{*}(E \cap B)+\mu^{*}\left(E \cap B^{c}\right)-2 \varepsilon .
$$

5 The Lebesgue Measure on the real line \mathbb{R}^{1}

5.1 The Lebesgue Measure of Bounded Sets of \mathbb{R}^{1}

Put \mathfrak{A} for the algebra of all finite unions of semi-segments (semi-intervals) on \mathbb{R}^{1}, i.e. all sets of the form

$$
A=\bigcup_{j=1}^{k}\left[a_{j}, b_{j}\right)
$$

Define a mapping $\mu: \mathfrak{A} \longrightarrow \mathbb{R}$ by:

$$
\mu(A)=\sum_{j=1}^{k}\left(b_{j}-a_{j}\right) .
$$

Theorem 5.1μ is a measure.
Proof. 1. All properties including the (finite) additivity are obvious. The only thing to be proved is the σ-additivity.

Let $\left(A_{j}\right) \subset \mathfrak{A}$ be such a countable disjoint family that

$$
A=\bigsqcup_{j=1}^{\infty} A_{j} \in \mathfrak{A}
$$

The condition $A \in \mathfrak{A}$ means that $\bigsqcup A_{j}$ is a finite union of intervals.
2 . For any positive integer n,

$$
\bigcup_{j=1}^{n} A_{j} \subset A,
$$

hence

$$
\sum_{j=1}^{n} \mu\left(A_{j}\right) \leqslant \mu(A)
$$

and

$$
\sum_{j=1}^{\infty} \mu\left(A_{j}\right)=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \mu\left(A_{j}\right) \leqslant \mu(A) .
$$

3. Now, let A^{ε} a set obtained from A by the following construction. Take a connected component of A. It is a semi-segment of the form $[s, t)$. Shift slightly on the left its right-hand end, to obtain a (closed) segment. Do it with all components of A, in such a way that

$$
\begin{equation*}
\mu(A)<\mu\left(A^{\varepsilon}\right)+\varepsilon . \tag{15}
\end{equation*}
$$

Apply a similar procedure to each semi-segment shifting their left end point to the left $A_{j}=\left[a_{j}, b_{j}\right.$), and obtain (open) intervals, A_{j}^{ε} with

$$
\begin{equation*}
\mu\left(A_{j}^{\varepsilon}\right)<\mu\left(A_{j}\right)+\frac{\varepsilon}{2^{j}} . \tag{16}
\end{equation*}
$$

4. By the construction, A^{ε} is a compact set and $\left(A_{j}^{\varepsilon}\right)$ its open cover. Hence, there exists a positive integer n such that

$$
\bigcup_{j=1}^{n} A_{j}^{\varepsilon} \supset A^{\varepsilon} .
$$

Thus

$$
\mu\left(A^{\varepsilon}\right) \leqslant \sum_{j=1}^{n} \mu\left(A_{j}^{\varepsilon}\right) .
$$

The formulas (15) and (16) imply

$$
\mu(A)<\sum_{j=1}^{n} \mu\left(A_{j}^{\varepsilon}\right)+\varepsilon \leqslant \sum_{j=1}^{n} \mu\left(A_{j}\right)+\sum_{j=1}^{n} \frac{\varepsilon}{2^{j}}+\varepsilon,
$$

thus

$$
\mu(A)<\sum_{j=1}^{\infty} \mu\left(A_{j}\right)+2 \varepsilon
$$

Now, one can apply the Carathèodory's scheme developed above, and obtain the measure space $(\tilde{\mathfrak{A}}, \tilde{\mu})$. The result of this extension is called the Lebesgue measure. We shall denote the Lebesgue measure on \mathbb{R}^{1} by m.

Exercises.

1. A one point set is measurable, and its Lebesgue measure is equal to 0 .
2. The same for a countable subset in \mathbb{R}^{1}. In particular, $m(\mathbb{Q} \cap[0,1])=0$.
3. Any open or closed set in \mathbb{R}^{1} is Lebesgue measurable.

Definition 5.1 Borel algebra of sets, \mathfrak{B} on the real line \mathbb{R}^{1} is a σ-algebra generated by all open sets on \mathbb{R}^{1}. Any element of \mathfrak{B} is called a Borel set.

Exercise. Any Borel set is Lebesgue measurable.
Theorem 5.2 Let $E \subset \mathbb{R}^{1}$ be a Lebesgue measurable set. Then for any $\varepsilon>0$ there exists an open set $G \supset E$ such that $m(G \backslash E)<\varepsilon$.

Proof. Since E is measurable, $m^{*}(E)=m(E)$. According the definition of an outer measure, for any $\varepsilon>0$ there exists a cover $A=\bigcup\left[a_{k}, b_{k}\right) \supset E$ such that

$$
m(A)<m(E)+\frac{\varepsilon}{2}
$$

Now, put

$$
G=\bigcup\left(a_{k}-\frac{\varepsilon}{2^{k+1}}, b^{k}\right)
$$

Problem. Let $E \subset \mathbb{R}^{1}$ be a bounded Lebesgue measurable set. Then for any $\varepsilon>0$ there exists a compact set $F \subset E$ such that $m(E \backslash F)<\varepsilon$. (Hint: Cover E with a semi-segment and apply the above theorem to the σ-algebra of measurable subsets in this semi-segment).

Corollary. For any $\varepsilon>0$ there exist an open set G and a compact set F such that $G \supset E \supset F$ and $m(G \backslash F)<\varepsilon$.

Such measures are called regular.

5.2 The Lebesgue Measure on the Real Line \mathbb{R}^{1}

We now abolish the condition of boundness.

Definition 5.2 A set A on the real numbers line \mathbb{R}^{1} is Lebesgue measurable if for any positive integer n the bounded set $A \cap[-n, n)$ is a Lebesgue measurable set.

Definition 5.3 The Lebesgue measure on \mathbb{R}^{1} is

$$
m(A)=\lim _{n \rightarrow \infty} m(A \cap[-n, n)) .
$$

Definition 5.4 A measure is called σ-finite if any measurable set can be represented as a countable union of subsets each has a finite measure.

Thus the Lebesgue measure m is σ-finite.
Problem. The Lebesgue measure on \mathbb{R}^{1} is regular.

5.3 The Lebesgue Measure in \mathbb{R}^{d}

Definition 5.5 We call a d-dimensional rectangle in \mathbb{R}^{d} any set of the form

$$
\left\{x: x \in \mathbb{R}^{d}: a_{i} \leqslant x_{i}<b_{i}\right\} .
$$

Using rectangles, one can construct the Lebesque measure in \mathbb{R}^{d} in the same fashion as we deed for the \mathbb{R}^{1} case.

6 Measurable functions

Let X be a set, \mathfrak{A} a σ-algebra on X.

Definition 6.1 A pair (X, \mathfrak{A}) is called a measurable space.
Definition 6.2 Let f be a function defined on a measurable space (X, \mathfrak{A}), with values in the extended real number system. The function f is called measurable if the set

$$
\{x: f(x)>a\}
$$

is measurable for every real a.

Example.

Theorem 6.1 The following conditions are equivalent

$$
\begin{align*}
& \{x: f(x)>a\} \text { is measurable for every real } a . \tag{17}\\
& \{x: f(x) \geq a\} \text { is measurable for every real } a . \tag{18}\\
& \{x: f(x)<a\} \text { is measurable for every real } a . \tag{19}\\
& \{x: f(x) \leq a\} \text { is measurable for every real } a . \tag{20}
\end{align*}
$$

Proof. The statement follows from the equalities

$$
\begin{array}{r}
\{x: f(x) \geq a\}=\bigcap_{n=1}^{\infty}\left\{x: f(x)>a-\frac{1}{n}\right\}, \\
\{x: f(x)<a\}=X \backslash\{x: f(x) \geq a\}, \\
\{x: f(x) \leq a\}=\bigcap_{n=1}^{\infty}\left\{x: f(x)<a+\frac{1}{n}\right\}, \\
\{x: f(x)>a\}=X \backslash\{x: f(x) \leq a\} \tag{24}
\end{array}
$$

Theorem 6.2 Let $\left(f_{n}\right)$ be a sequence of measurable functions. For $x \in X$ set

$$
\begin{gathered}
g(x)=\sup _{n} f_{n}(x)(n \in \mathbb{N}) \\
h(x)=\limsup _{n \rightarrow \infty} f_{n}(x) .
\end{gathered}
$$

Then g and h are measurable.

Proof.

$$
\{x: g(x) \leq a\}=\bigcap_{n=1}^{\infty}\left\{x: f_{n}(x) \leq a\right\} .
$$

Since the LHS is measurable it follows that the RHS is measurable too. The same proof works for inf.

Now

$$
h(x)=\inf g_{m}(x),
$$

where

$$
g_{m}(x)=\sup _{n \geq m} f_{n}(x) .
$$

Theorem 6.3 Let f and g be measurable real-valued functions defined on X. Let F be real and continuous function on \mathbb{R}^{2}. Put

$$
h(x)=F(f(x), g(x))(x \in X)
$$

Then h is measurable.
Proof. Let $G_{a}=\{(u, v): F(u, v)>a\}$. Then G_{a} is an open subset of \mathbb{R}^{2}, and thus

$$
G_{a}=\bigcup_{n=1}^{\infty} I_{n}
$$

where $\left(I_{n}\right)$ is a sequence of open intervals

$$
I_{n}=\left\{(u, v): a_{n}<u<b_{n}, c_{n}<v<d_{n}\right\} .
$$

The set $\left\{x: a_{n}<f(x)<b_{n}\right\}$ is measurable and so is the set

$$
\left\{x:(f(x), g(x)) \in I_{n}\right\}=\left\{x: a_{n}<f(x)<b_{n}\right\} \cap\left\{x: c_{n}<g(x)<d_{n}\right\}
$$

Hence the same is true for

$$
\{x: h(x)>a\}=\left\{x:(f(x), g(x)) \in G_{a}\right\}=\bigcup_{n=1}^{\infty}\left\{x:(f(x), g(x)) \in I_{n}\right\} .
$$

Corollories. Let f and g be measurable. Then the following functions are measurable

$$
\begin{array}{r}
(i) f+g \\
(i i) f \cdot g \\
(i i i)|f| \\
(i v) \frac{f}{g}(\mathrm{if} g \neq 0) \\
(v) \max \{f, g\}, \min \{f, g\} \tag{29}
\end{array}
$$

since $\max \{f, g\}=1 / 2(f+g+|f-g|), \min \{f, g\}=1 / 2(f+g-|f-g|)$.

6.1 Step functions (simple functions)

Definition 6.3 A real valued function $f: X \rightarrow \mathbb{R}$ is called simple function if it takes only a finite number of distinct values.

We will use below the following notation

$$
\chi_{E}(x)=\left\{\begin{array}{lc}
1 & \text { if } x \in E \\
0 & \text { otherwise }
\end{array}\right.
$$

Theorem 6.4 A simple function $f=\sum_{j=1}^{n} c_{j} \chi_{E_{j}}$ is measurable if and only if all the sets E_{j} are measurable.

Exercise. Prove the theorem.

Theorem 6.5 Let f be real valued. There exists a sequence $\left(f_{n}\right)$ of simple functions such that $f_{n}(x) \longrightarrow f(x)$ as $n \rightarrow \infty$, for every $x \in X$. If f is measurable, $\left(f_{n}\right)$ may be chosen to be a sequence of measurable functions. If $f \geq 0,\left(f_{n}\right)$ may be chosen monotonically increasing.

Proof. If $f \geq 0$ set
$f_{n}(x)=\sum_{i=1}^{n \cdot 2^{n}} \frac{i-1}{2^{n}} \chi_{E_{n_{i}}}+n \chi_{F_{n}}$
where
$E_{n_{i}}=\left\{x: \frac{i-1}{2^{n}} \leq f(x)<\frac{i}{2^{n}}\right\}, F_{n}=\{x: f(x) \geq n\}$.
The sequence $\left(f_{n}\right)$ is monotonically increasing, f_{n} is a simple function. If $f(x)<\infty$ then $f(x)<n$ for a sufficiently large n and $\left|f_{n}(x)-f(x)\right|<1 / 2^{n}$. Therefore $f_{n}(x) \longrightarrow f(x)$. If $f(x)=+\infty$ then $f_{n}(x)=n$ and again $f_{n}(x) \longrightarrow f(x)$.

In the general case $f=f^{+}-f^{-}$, where
$f^{+}(x):=\max \{f(x), 0\}, f^{-}(x):=-\min \{f(x), 0\}$.
Note that if f is bounded then $f_{n} \longrightarrow f$ uniformly.

$7 \quad$ Integration

Definition 7.1 A triple (X, \mathfrak{A}, μ), where \mathfrak{A} is a σ-algebra of subsets of X and μ is a measure on it, is called a measure space.

Let (X, \mathfrak{A}, μ) be a measure space. Let $f: X \mapsto \mathbb{R}$ be a simple measurable function.

$$
\begin{equation*}
f(x)=\sum_{i=1}^{n} c_{i} \chi_{E_{i}}(x) \tag{31}
\end{equation*}
$$

and

$$
\bigcup_{i=1}^{n} E_{i}=X, \quad E_{i} \cap E_{j}=\varnothing(i \neq j)
$$

There are different representations of f by means of (31). Let us choose the representation such that all c_{i} are distinct.

Definition 7.2 Define the quantity

$$
I(f)=\sum_{i=1}^{n} c_{i} \mu\left(E_{i}\right)
$$

First, we derive some properties of $I(f)$.
Theorem 7.1 Let f be a simple measurable function. If $X=\bigsqcup_{j=1}^{k} F_{j}$ and f takes the constant value b_{j} on F_{j} then

$$
I(f)=\sum_{j=1}^{k} b_{j} \mu\left(F_{j}\right) .
$$

Proof. Clearly, $E_{i}=\bigsqcup_{j: b_{j}=c_{i}} F_{j}$.

$$
\sum_{i} c_{i} \mu\left(E_{i}\right)=\sum_{i=1}^{n} c_{i} \mu\left(\bigsqcup_{j: b_{j}=c_{i}} F_{j}\right)=\sum_{i=1}^{n} c_{i} \sum_{j: b_{j}=c_{i}} \mu\left(F_{j}\right)=\sum_{j=1}^{k} b_{j} \mu\left(F_{j}\right) .
$$

This show that the quantity $I(f)$ is well defined.

Theorem 7.2 If f and g are measurable simple functions then

$$
I(\alpha f+\beta g)=\alpha I(f)+\beta I(g) .
$$

Proof. Let $f(x)=\sum_{j=1}^{n} b_{j} \chi_{F_{j}}(x), X=\bigsqcup_{j=1}^{n} F_{j}, g(x)=\sum_{k=1}^{m} c_{k} \chi_{G_{k}}(x), X=\bigsqcup_{k=1}^{n} G_{k}$.
Then

$$
\alpha f+\beta g=\sum_{j=1}^{n} \sum_{k=1}^{m}\left(\alpha b_{j}+\beta c_{k}\right) \chi_{E_{j k}}(x)
$$

where $E_{j k}=F_{j} \cap G_{k}$.
Exercise. Complete the proof.
Theorem 7.3 Let f and g be simple measurable functions. Suppose that $f \leq g$ everywhere except for a set of measure zero. Then

$$
I(f) \leq I(g)
$$

Proof. If $f \leq g$ everywhere then in the notation of the previous proof $b_{j} \leq c_{k}$ on $E_{j k}$ and $I(f) \leq I(g)$ follows.

Otherwise we can assume that $f \leq g+\phi$ where ϕ is non-negative measurable simple function which is zero every exept for a set N of measure zero. Then $I(\phi)=0$ and

$$
I(f) \leq I(g+\phi)=I(f)+I(\phi)=I(g) .
$$

Definition 7.3 If $f: X \mapsto \mathbb{R}^{1}$ is a non-negative measurable function, we define the Lebesgue integral of f by

$$
\int f d \mu:=\sup I(\phi)
$$

where sup is taken over the set of all simple functions ϕ such that $\phi \leq f$.
Theorem 7.4 If f is a simple measurable function then $\int f d \mu=I(f)$.
Proof. Since $f \leq f$ it follows that $\int f d \mu \geq I(f)$.
On the other hand, if $\phi \leq f$ then $I(\phi) \leq I(f)$ and also

$$
\sup _{\phi \leq f} I(\phi) \leq I(f)
$$

which leads to the inequality

$$
\int f d \mu \leq I(f)
$$

Definition 7.4 1. If A is a measurable subset of $X(A \in \mathfrak{A})$ and f is a non-negative measurable function then we define

$$
\int_{A} f d \mu=\int f \chi_{A} d \mu
$$

2.

$$
\int f d \mu=\int f^{+} d \mu-\int f^{-} d \mu
$$

if at least one of the terms in RHS is finite. If both are finite we call f integrable.

Remark. Finiteness of the integrals $\int f^{+} d \mu$ and $\int f^{-} d \mu$ is equivalent to the finitenes of the integral

$$
\int|f| d \mu
$$

If it is the case we write $f \in L^{1}(X, \mu)$ or simply $f \in L^{1}$ if there is no ambiguity.

The following properties of the Lebesgue integral are simple consequences of the definition. The proofs are left to the reader.

- If f is measurable and bounded on A and $\mu(A)<\infty$ then f is integrable on A.
- If $a \leq f(x) \leq b(x \in A)), \mu(A)<\infty$ then

$$
a \mu(A) \leq \int_{A} f d \mu \leq b \mu(a)
$$

- If $f(x) \leq g(x)$ for all $x \in A$ then

$$
\int_{A} f d \mu \leq \int_{A} g d \mu
$$

- Prove that if $\mu(A)=0$ and f is measurable then

$$
\int_{A} f d \mu=0
$$

The next theorem expresses an important property of the Lebesgue integral. As a consequence we obtain convergence theorems which give the main advantage of the Lebesgue approach to integration in comparison with Riemann integration.

Theorem 7.5 Let f be measurable on X. For $A \in \mathfrak{A}$ define

$$
\phi(A)=\int_{A} f d \mu
$$

Then ϕ is countably additive on \mathfrak{A}.
Proof. It is enough to consider the case $f \geq 0$. The general case follows from the decomposition $f=f^{+}-f^{-}$.

If $f=\chi_{E}$ for some $E \in \mathfrak{A}$ then

$$
\mu(A \cap E)=\int_{A} \chi_{E} d \mu
$$

and σ-additivity of ϕ is the same as this property of μ.
Let $f(x)=\sum_{k=1}^{n} c_{k} \chi_{E_{k}}(x), \bigsqcup_{k=1}^{n} E_{k}=X$. Then for $A=\bigsqcup_{i=1}^{\infty} A_{i}, A_{i} \in \mathfrak{A}$ we have

$$
\begin{array}{r}
\phi(A)=\int_{A} f d \mu=\int f \chi_{A} d \mu=\sum_{k=1}^{n} c_{k} \mu\left(E_{k} \cap A\right) \\
=\sum_{k=1}^{n} c_{k} \mu\left(E_{k} \cap\left(\bigsqcup_{i=1}^{\infty} A_{i}\right)\right)=\sum_{k=1}^{n} c_{k} \mu\left(\bigsqcup_{i=1}^{\infty}\left(E_{k} \cap A_{i}\right)\right) \\
=\sum_{k=1}^{n} c_{k} \sum_{i=1}^{\infty} \mu\left(E_{k} \cap A_{i}\right)=\sum_{i=1}^{\infty} \sum_{k=1}^{n} c_{k} \mu\left(E_{k} \cap A_{i}\right) \\
\text { (the series of positive numbers) } \\
=\sum_{i=1}^{\infty} \int_{A_{i}} f d \mu=\sum_{i=1}^{\infty} \phi\left(A_{i}\right) .
\end{array}
$$

Now consider general positive f 's. Let φ be a simple measurable function and $\varphi \leq f$. Then

$$
\int_{A} \varphi d \mu=\sum_{i=1}^{\infty} \int_{A_{i}} \varphi d \mu \leq \sum_{i=1}^{\infty} \phi\left(A_{i}\right) .
$$

Therefore the same inequality holds for sup, hence

$$
\phi(A) \leq \sum_{i=1}^{\infty} \phi\left(A_{i}\right)
$$

Now if for some $i \phi\left(A_{i}\right)=+\infty$ then $\phi(A)=+\infty$ since $\phi(A) \geq \phi\left(A_{n}\right)$. So assume that $\phi\left(A_{i}\right)<\infty \forall i$. Given $\varepsilon>0$ choose a measurable simple function φ such that $\varphi \leq f$ and

$$
\int_{A_{1}} \varphi d \mu \geq \int_{A_{1}} f d \mu-\varepsilon, \quad \int_{A_{2}} \varphi d \mu \geq \int_{A_{2}} f-\varepsilon
$$

Hence

$$
\phi\left(A_{1} \cup A_{2}\right) \geq \int_{A_{1} \cup A_{2}} \varphi d \mu=\int_{A_{1}}+\int_{A_{2}} \varphi d \mu \geq \phi\left(A_{1}\right)+\phi\left(A_{2}\right)-2 \varepsilon,
$$

so that $\phi\left(A_{1} \cup A_{2}\right) \geq \phi\left(A_{1}\right)+\phi\left(A_{2}\right)$.
By induction

$$
\phi\left(\bigcup_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} \phi\left(A_{i}\right) .
$$

Since $A \supset \bigcup_{i=1}^{n} A_{i}$ we have that

$$
\phi(A) \geq \sum_{i=1}^{n} \phi\left(A_{i}\right)
$$

Passing to the limit $n \rightarrow \infty$ in the RHS we obtain

$$
\phi(A) \geq \sum_{i=1}^{\infty} \phi\left(A_{i}\right)
$$

This completes the proof.
Corollary. If $A \in \mathfrak{A}, B \subset A$ and $\mu(A \backslash B)=0$ then

$$
\int_{A} f d \mu=\int_{B} f d \mu .
$$

Proof.

$$
\int_{A} f d \mu=\int_{B} f d \mu+\int_{A \backslash B} f d \mu=\int_{B} f d \mu+0 .
$$

Definition $7.5 f$ and g are called equivalent ($f \sim g$ in writing) if $\mu(\{x: f(x) \neq$ $g(x)\})=0$.

It is not hard to see that $f \sim g$ is relation of equivalence.
(i) $f \sim f \quad$, (ii) $f \sim g, g \sim h \Rightarrow f \sim h, \quad$ (iii) $f \sim g \Leftrightarrow g \sim f$.

Theorem 7.6 If $f \in L^{1}$ then $|f| \in L^{1}$ and

$$
\left|\int_{A} f d \mu\right| \leq \int_{A}|f| d \mu
$$

Proof.

$$
-|f| \leq f \leq|f|
$$

Theorem 7.7 (Monotone Convergence Theorem)
Let $\left(f_{n}\right)$ be nondecreasing sequence of nonnegative measurable functions with limit f. Then

$$
\int_{A} f d \mu=\lim _{n \rightarrow \infty} \int_{A} f_{n} d \mu, A \in \mathfrak{A}
$$

Proof. First, note that $f_{n}(x) \leq f(x)$ so that

$$
\lim _{n} \int_{A} f_{n} d \mu \leq \int f d \mu
$$

It is remained to prove the opposite inequality.
For this it is enough to show that for any simple φ such that $0 \leq \varphi \leq f$ the following inequality holds

$$
\int_{A} \varphi d \mu \leq \lim _{n} \int_{A} f_{n} d \mu
$$

Take $0<c<1$. Define

$$
A_{n}=\left\{x \in A: f_{n}(x) \geq c \varphi(x)\right\}
$$

then $A_{n} \subset A_{n+1}$ and $A=\bigcup_{n=1}^{\infty} A_{n}$.
Now observe

$$
c \int_{A} \varphi d \mu=\int_{A} c \varphi d \mu=\lim _{n \rightarrow \infty} \int_{A_{n}} c \varphi d \mu \leq
$$

(this is a consequence of σ-additivity of ϕ proved above)

$$
\leq \lim _{n \rightarrow \infty} \int_{A_{n}} f_{n} d \mu \leq \lim _{n \rightarrow \infty} \int_{A} f_{n} d \mu
$$

Pass to the limit $c \rightarrow 1$.

Theorem 7.8 Let $f=f_{1}+f_{2}, f_{1}, f_{2} \in L^{1}(\mu)$. Then $f \in L^{1}(\mu)$ and

$$
\int f d \mu=\int f_{1} d \mu+\int f_{2} d \mu
$$

Proof. First, let $f_{1}, f_{2} \geq 0$. If they are simple then the result is trivial. Otherwise, choose monotonically increasing sequences $\left(\varphi_{n, 1}\right),\left(\varphi_{n, 2}\right)$ such that $\varphi_{n, 1} \rightarrow f_{1}$ and $\varphi_{n, 2} \rightarrow f_{2}$.

Then for $\varphi_{n}=\varphi_{n, 1}+\varphi_{n, 2}$

$$
\int \varphi_{n} d \mu=\int \varphi_{n, 1} d \mu+\int \varphi_{n, 2} d \mu
$$

and the result follows from the previous theorem.
If $f_{1} \geq 0$ and $f_{2} \leq 0$ put

$$
A=\{x: f(x) \geq 0\}, B=\{x: f(x)<0\}
$$

Then f, f_{1} and $-f_{2}$ are non-negative on A.
Hence $\quad \int_{A} f_{1}=\int_{A} f d \mu+\int_{A}\left(-f_{2}\right) d \mu$
Similarly

$$
\int_{B}\left(-f_{2}\right) d \mu=\int_{B} f_{1} d \mu+\int_{B}(-f) d \mu
$$

The result follows from the additivity of integral.

Theorem 7.9 Let $A \in \mathfrak{A},\left(f_{n}\right)$ be a sequence of non-negative measurable functions and

$$
f(x)=\sum_{n=1}^{\infty} f_{n}(x), x \in A
$$

Then

$$
\int_{A} f d \mu=\sum_{n=1}^{\infty} \int_{A} f_{n} d \mu
$$

Exercise. Prove the theorem.

Theorem 7.10 (Fatou's lemma)

If $\left(f_{n}\right)$ is a sequence of non-negative measurable functions defined a.e. and

$$
f(x)=\varliminf_{n \rightarrow \infty} f_{n}(x)
$$

then

$$
\begin{gathered}
\int_{A} f d \mu \leq \underline{\lim }_{n \rightarrow \infty} \int_{A} f_{n} d \mu \\
A \in \mathfrak{A}
\end{gathered}
$$

Proof. Put $\quad g_{n}(x)=\inf _{i \geq n} f_{i}(x)$
Then by definition of the lower limit $\lim _{n \rightarrow \infty} g_{n}(x)=f(x)$.
Moreover, $g_{n} \leq g_{n+1}, g_{n} \leq f_{n}$. By the monotone convergence theorem

$$
\int_{A} f d \mu=\lim _{n} \int_{A} g_{n} d \mu=\underline{\lim }_{n} \int_{A} g_{n} d \mu \leq \underline{\lim }_{n} \int_{A} f_{n} d \mu .
$$

Theorem 7.11 (Lebesgue's dominated convergence theorem)
Let $A \in \mathfrak{A},\left(f_{n}\right)$ be a sequence of measurable functions such that $f_{n}(x) \rightarrow f(x)(x \in A$.) Suppose there exists a function $g \in L^{1}(\mu)$ on A such that

$$
\left|f_{n}(x)\right| \leq g(x)
$$

Then

$$
\lim _{n} \int_{A} f_{n} d \mu=\int_{A} f d \mu
$$

Proof. From $\left|f_{n}(x)\right| \leq g(x)$ it follows that $f_{n} \in L^{1}(\mu)$. Sinnce $f_{n}+g \geq 0$ and $f+g \geq 0$, by Fatou's lemma it follows

$$
\int_{A}(f+g) d \mu \leq \underline{\lim }_{n} \int_{A}\left(f_{n}+g\right)
$$

or

$$
\int_{A} f d \mu \leq \underline{\lim }_{n} \int_{A} f_{n} d \mu
$$

Since $g-f_{n} \geq 0$ we have similarly

$$
\int_{A}(g-f) d \mu \leq \underline{\lim }_{n} \int_{A}\left(g-f_{n}\right) d \mu
$$

so that

$$
-\int_{A} f d \mu \leq-\underline{\lim }_{n} \int_{A} f_{n} d \mu
$$

which is the same as

$$
\int_{A} f d \mu \geq \varlimsup_{n} \int_{A} f_{n} d \mu
$$

This proves that

$$
\underline{\lim }_{n} \int_{A} f_{n} d \mu=\varlimsup_{n} \int_{A} f_{n} d \mu=\int_{A} f d \mu
$$

8 Comparison of the Riemann and the Lebesgue integral

To distinguish we denote the Riemann integral by $(R) \int_{a}^{b} f(x) d x$ and the Lebesgue integral by $(L) \int_{a}^{b} f(x) d x$.

Theorem 8.1 If a finction f is Riemann integrable on $[a, b]$ then it is also Lebesgue integrable on $[a, b]$ and

$$
(L) \int_{a}^{b} f(x) d x=(R) \int_{a}^{b} f(x) d x
$$

Proof. Boundedness of a function is a necessary condition of being Riemann integrable. On the other hand, every bounded measurable function is Lebesgue integarble. So it is enough to prove that if a function f is Riemann integrable then it is measurable.

Consider a partition π_{m} of $[a, b]$ on $n=2^{m}$ equal parts by points $a=x_{0}<x_{1}<\ldots<$ $x_{n-1}<x_{n}=b$ and set

$$
\underline{f}_{m}(x)=\sum_{k=0}^{2^{m}-1} m_{k} \chi_{k}(x), \bar{f}_{m}(x)=\sum_{k=0}^{2^{m}-1} M_{k} \chi_{k}(x)
$$

where χ_{k} is a charactersitic function of $\left[x_{k}, x_{k+1}\right)$ clearly,

$$
\begin{aligned}
& \underline{f}_{1}(x) \leq \underline{f}_{2}(x) \leq \ldots \leq f(x) \\
& \bar{f}_{1}(x) \geq \bar{f}_{2}(x) \geq \ldots \geq f(x)
\end{aligned}
$$

Therefore the limits

$$
\underline{f}(x)=\lim _{m \rightarrow \infty} \underline{f}_{m}(x), \quad \bar{f}(x)=\lim _{m \rightarrow \infty} \bar{f}_{m}(x)
$$

exist and are measurable. Note that $\underline{f}(x) \leq f(x) \leq \bar{f}(x)$. Since \underline{f}_{m} and \bar{f}_{m} are simple measurable functions, we have

$$
(L) \int_{a}^{b} \underline{f}_{m}(x) d x \leq(L) \int_{a}^{b} \underline{f}(x) d x \leq(L) \int_{a}^{b} \bar{f}(x) d x \leq(L) \int_{a}^{b} \bar{f}_{m}(x) d x \text {. }
$$

Moreover,

$$
(L) \int_{a}^{b} \underline{f}_{m}(x) d x=\sum_{k=0}^{2^{m}-1} m_{k} \Delta x_{k}=\underline{s}\left(f, \pi_{m}\right)
$$

and similarly

$$
(L) \int_{a}^{b} \bar{f}_{m}(x)=\bar{s}\left(f, \pi_{m}\right) .
$$

So

$$
\underline{s}\left(f, \pi_{m}\right) \leq(L) \int_{a}^{b} \underline{f}(x) d x \leq(L) \int_{a}^{b} \bar{f}(x) d x \leq \bar{s}\left(f, \pi_{m}\right) .
$$

Since f is Riemann integrable,

$$
\lim _{m \rightarrow \infty} \underline{s}\left(f, \pi_{m}\right)=\lim _{m \rightarrow \infty} \bar{s}\left(f, \pi_{m}\right)=(R) \int_{a}^{b} f(x) d x .
$$

Therefore

$$
(L) \int_{a}^{b}(\bar{f}(x)-\underline{f}(x)) d x=0
$$

and since $\bar{f} \geq \underline{f}$ we conclude that

$$
f=\bar{f}=\underline{f} \quad \text { almost everywhere. }
$$

From this measurability of f follows.

$9 \quad L^{p}$-spaces

Let (X, \mathfrak{A}, μ) be a measure space. In this section we study $L^{p}(X, \mathfrak{A}, \mu)$-spaces which occur frequently in analysis.

9.1 Auxiliary facts

Lemma 9.1 Let p and q be real numbers such that $p>1, \frac{1}{p}+\frac{1}{q}=1$ (this numbers are called conjugate). Then for any $a>0, b>0$ the inequality

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} .
$$

holds.

Proof. Note that $\varphi(t):=\frac{t^{p}}{p}+\frac{1}{q}-t$ with $t \geq 0$ has the only minimum at $t=1$. It follows that

$$
t \leq \frac{t^{p}}{p}+\frac{1}{q}
$$

Then letting $t=a b^{-\frac{1}{p-1}}$ we obtain

$$
\frac{a^{p} b^{-q}}{p}+\frac{1}{q} \geq a b^{-\frac{1}{p-1}}
$$

and the result follows.

Lemma 9.2 Let $p \geq 1, a, b \in \mathbb{R}$. Then the inequality

$$
|a+b|^{p} \leq 2^{p-1}\left(|a|^{p}+|b|^{p}\right)
$$

holds.

Proof. For $p=1$ the statement is obvious. For $p>1$ the function $y=x^{p}, x \geq 0$ is convex since $y^{\prime \prime} \geq 0$. Therefore

$$
\left(\frac{|a|+|b|}{2}\right)^{p} \leq \frac{|a|^{p}+|b|^{p}}{2}
$$

9.2 The spaces $L^{p}, 1 \leq p<\infty$. Definition

Recall that two measurable functions are said to be equaivalent (with respect to the measure μ) if they are equal μ-a;most everywhere.

The space $L^{p}=L^{p}(X, \mathfrak{A}, \mu)$ consists of all μ-equaivalence classes of \mathfrak{A}-measurable functions f such that $|f|^{p}$ has finite integral over X with respect to μ.

We set

$$
\|f\|_{p}:=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}
$$

9.3 Hölder's inequality

Theorem 9.3 Let $p>1, \frac{1}{p}+\frac{1}{q}=1$. Let f and g be measurable functions, $|f|^{p}$ and $|g|^{q}$ be integrable. Then $f g$ is integrable andthe inequality

$$
\int_{X}|f g| d \mu \leq\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}\left(\int_{X}|g|^{q} d \mu\right)^{1 / q} .
$$

Proof. It suffices to consider the case

$$
\|f\|_{p}>0,\|g\|_{q}>0
$$

Let

$$
a=|f(x)|\|f\|_{p}^{-1}, \quad b=|g(x)|\|g\|_{q}^{-1} .
$$

By Lemma 1

$$
\frac{|f(x) g(x)|}{\|f\|_{p}\|g\|_{q}} \leq \frac{|f(x)|^{p}}{p\|f\|_{p}^{p}}+\frac{|g(x)|^{q}}{q\|g\|_{q}^{q}} .
$$

After integration we obtain

$$
\|f\|_{p}^{-1}\|g\|_{q}^{-1} \int_{X}|f g| d \mu \leq \frac{1}{p}+\frac{1}{q}=1
$$

9.4 Minkowski's inequality

Theorem 9.4 If $f, g \in L^{p}, p \geq 1$, then $f+g \in L^{p}$ and

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p} .
$$

Proof. If $\|f\|_{p}$ and $\|g\|_{p}$ are finite then by Lemma $2|f+g|{ }^{p}$ is integrable and $\|f+g\|_{p}$ is well-defined.
$|f(x)+g(x)|^{p}=|f(x)+g(x)||f(x)+g(x)|^{p-1} \leq|f(x)||f(x)+g(x)|^{p-1}+|g(x)||f(x)+g(x)|^{p-1}$.
Integratin the last inequality and using Hölder's inequality we obtain

$$
\int_{X}|f+g|^{p} d \mu \leq\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}\left(\int_{X}|f+g|^{(p-1) q} d \mu\right)^{1 / q}+\left(\int_{X}|g|^{p} d \mu\right)^{1 / p}\left(\int_{X}|f+g|^{(p-1) q} d \mu\right)^{1 / q}
$$

The result follows.

9.5 $L^{p}, 1 \leq p<\infty$, is a Banach space

It is readily seen from the properties of an integral and Theorem 9.3 that $L^{p}, 1 \leq p<\infty$, is a vector space. We introduced the quantity $\|f\|_{p}$. Let us show that it defines a norm on $L^{p}, 1 \leq p<\infty$,. Indeed,

1. By the definition $\|f\|_{p} \geq 0$.
2. $\|f\|_{p}=0 \Longrightarrow f(x)=0$ for μ-almost all $x \in X$. Since L^{p} consists of μ-eqivalence classes, it follows that $f \sim 0$.
3. Obviously, $\|\alpha f\|_{p}=|\alpha|\|f\|_{p}$.
4. From Minkowski's inequality it follows that $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$.

So $L^{p}, 1 \leq p<\infty$, is a normed space.

Theorem 9.5 $L^{p}, 1 \leq p<\infty$, is a Banach space.
Proof. It remains to prove the completeness.
Let $\left(f_{n}\right)$ be a Cauchy sequence in L^{p}. Then there exists a subsequence $\left(f_{n_{k}}\right)(k \in \mathbb{N})$ with n_{k} increasing such that

$$
\left\|f_{m}-f_{n_{k}}\right\|_{p}<\frac{1}{2^{k}} \quad \forall m \geq n_{k}
$$

Then

$$
\sum_{i=1}^{k}\left\|f_{n_{i+1}}-f_{n_{i}}\right\|_{p}<1
$$

Let

$$
g_{k}:=\left|f_{n_{1}}\right|+\left|f_{n_{2}}-f_{n_{1}}\right|+\ldots+\left|f_{n_{k+1}}-f_{n_{k}}\right| .
$$

Then g_{k} is monotonocally increasing. Using Minkowski's inequality we have

$$
\left\|g_{k}^{p}\right\|_{1}=\left\|g_{k}\right\|_{p}^{p} \leq\left(\left\|f_{n_{1}}\right\|_{p}+\sum_{i=1}^{k}\left\|f_{n_{i+1}}-f_{n_{i}}\right\|_{p}\right)^{p}<\left(\left\|f_{n_{1}}\right\|_{p}+1\right)^{p} .
$$

Put

$$
g(x):=\lim _{k} g_{k}(x) .
$$

By the monotone convergence theorem

$$
\lim _{k} \int_{X} g_{k}^{p} d \mu=\int_{A} g^{p} d \mu
$$

Moreover, the limit is finite since $\left\|g_{k}^{p}\right\|_{1} \leq C=\left(\left\|f_{n_{1}}\right\|_{p}+1\right)^{p}$.
Therefore

$$
\left|f_{n_{1}}\right|+\sum_{j=1}^{\infty}\left|f_{n_{j+1}}-f_{n_{j}}\right| \quad \text { converges almost everywhere }
$$

and so does

$$
f_{n_{1}}+\sum_{j=1}^{\infty}\left(f_{n_{j+1}}-f_{n_{j}}\right),
$$

which means that

$$
f_{n_{1}}+\sum_{j=1}^{N}\left(f_{n_{j+1}}-f_{n_{j}}\right)=f_{n_{N+1}} \text { converges almost everywhere as } N \rightarrow \infty .
$$

Define

$$
f(x):=\lim _{k \rightarrow \infty} f_{n_{k}}(x)
$$

where the limit exists and zero on the complement. So f is measurable.
Let $\epsilon>0$ be such that for $n, m>N$

$$
\left\|f_{n}-f_{m}\right\|_{p}^{p}=\int_{X}\left|f_{n}-f_{m}\right|^{p} d \mu<\epsilon / 2 .
$$

Then by Fatou's lemma

$$
\int_{X}\left|f-f_{m}\right|^{p} d \mu=\int_{X} \lim _{k}\left|f_{n_{k}}-f_{m}\right|^{p} d \mu \leq \underline{\lim }_{k} \int_{X}\left|f_{n_{k}}-f_{m}\right|^{p} d \mu
$$

which is less than ϵ for $m>N$. This proves that

$$
\left\|f-f_{m}\right\|_{p} \rightarrow 0 \text { as } m \rightarrow \infty
$$

