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Abstract

We illustrate how Basu’s theorem can be used to derive the spatial version of the Wiener–
Hopf factorization for a specific class of piecewise-deterministic Markov processes.
The classical factorization results for both random walks and Lévy processes follow
immediately from our result. The approach is particularly elegant when used to establish
the factorization for spectrally one-sided Lévy processes.
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1. Introduction

Lévy processes are widely used for modeling purposes in many areas of applied probability,
such as queueing theory, insurance risk theory, and mathematical finance. One result that
has proven to be useful in such settings is known as the Wiener–Hopf factorization; here we
state the spatial version only. Suppose that X := {X(t); t ≥ 0} represents a Lévy process,
with X(0) = 0, and let eq be an exponential random variable with rate q > 0, where eq is
independent of X.

Theorem 1. (Wiener–Hopf factorization.) For a Lévy process X := {X(t); t ≥ 0}, the random
variables inf0≤s≤eq X(s) and X(eq)−inf0≤s≤eq X(s) are independent. Hence, for each ω ∈ R,

E[eiωX(eq)] = E[eiω inf0≤s≤eq X(s)]E[eiω(X(eq)−inf0≤s≤eq X(s))].
We see that the distribution of X at time eq can be expressed as an independent sum of

two random variables. Note that one of these random variables is equal in distribution to the
reflected Lévy process at time eq , which has a tractable characteristic function if inf0≤s≤eq X(s)

has one as well.
Two relatively simple proofs of the factorization have recently appeared in the literature:

see [13] and [15]. Both of these papers make use of arguments from martingale theory. In [13]
the Kella–Whitt martingale [10] is used to derive the factorization for a spectrally one-sided
Lévy process, and the authors of [15] showed how a more elaborate martingale approach can
be used to establish the factorization for an arbitrary Lévy process.

We take a different approach. Here we illustrate how Basu’s theorem can be used to
establish the factorization for a particular subclass of piecewise-deterministic Markov processes
(PDMPs). This argument does not make use of any concepts from stochastic calculus: only
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Basu’s theorem and Wiener’s Tauberian theorem are needed. A well-known approximation
approach can then be used to derive the factorization for both random walks and Lévy processes.
Readers will also find that in some cases such an approximation argument is not needed: we
will show how Basu’s theorem gives a very quick proof of the Wiener–Hopf factorization for
spectrally one-sided Lévy processes, without the need of an approximation step.

This paper is organized as follows. Section 2 contains a brief review of the necessary
concepts needed from mathematical statistics. In Section 3 we present the proof of the main
result, and we follow in Section 4 by considering the special setting of spectrally one-sided
Lévy processes.

2. Preliminaries

We will make use of the following standard concepts from mathematical statistics: a simple
introduction can be found in [2].

Suppose that we have a random sample {Qi}ni=1, and let U and V be statistics with respect
to the sample, i.e. both U and V are measurable functions of the sample. We are interested in
estimating an unknown parameter θ ∈ � (the parameter space), which appears in the distribution
of the random sample. We use the measure Pθ to emphasize that, under Pθ , the unknown
parameter of the data is θ .

Definition 1. We say that U is a sufficient statistic with respect to θ if the conditional joint
distribution of the data {Qi}ni=1, given U , is independent of θ .

Definition 2. We say that V is an ancillary statistic if its distribution does not depend on θ .

Definition 3. We say that U is a boundedly complete statistic if it satisfies the following
criterion: if g is a bounded measurable function which satisfies Eθ [g(U)] = 0 for all θ ∈ �

then Pθ (g(U) = 0) = 1 for each θ ∈ �.

We are now ready to state Basu’s theorem.

Theorem 2. (Basu’s theorem.) Suppose that U is a boundedly complete, sufficient statistic
with respect to θ ∈ �, and suppose that V is an ancillary statistic with respect to θ ∈ �. Then
U and V are independent under Pθ for each θ ∈ �.

The proof of Basu’s theorem is simple, and can be found in many textbooks on mathematical
statistics: see, for example, [2]. Basu’s theorem is also featured in the recent survey articles of
Boos and Hughes-Oliver [1] and Ghosh [6], where classical and new applications are discussed
in both papers.

The applications of Basu’s theorem in our study will always involve a given stochastic
process {X(t); t ≥ 0} and an independent exponential random variable eq with rate q > 0.
Our data will always be (inf0≤s≤eq X(s), X(eq) − inf0≤s≤eq X(s)), with the two statistics of
interest being the two coordinates of the data. The unknown parameter is always the initial
condition X(0) = θ , and the measure Pθ will always represent conditioning on X(0) = θ , as
is typically done in the theory of Markov processes.

3. Our main result

Our process of interest in this section is a PDMP X := {X(t); t ≥ 0}, which evolves as
follows. The process X has jumps at the random locations {Tk}k≥1, which also form the points
of an ordinary renewal process. The size of the jump at location Tk is Bk, k ≥ 1, and we assume
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that the {Bk}k≥1 sequence is independent and identically distributed (i.i.d.), and independent
of the jump locations. Between jumps, X moves in a deterministic manner according to a
nonnegative function h, defined on the real line.

A more specific description of the evolution of X, starting at a deterministic X(0) = θ ,
is as follows: for 0 ≤ t < T1, X(t) = X(0) + h(t) and X(T1) = X(T1−) + B1 with
X(t−) = lims↑t X(s) for each t ≥ 0. Similarly, for T1 ≤ t < T2, X(t) = X(T1) + h(t − T1),
X(T2) = X(T2−) + B2, and, for an arbitrary n ≥ 1, X(t) = X(Tn) + h(t − Tn) for Tn ≤ t <

Tn+1, with X(Tn+1) = X(T(n+1)−) + Bn+1.
We further assume that there exists a sequence of left-continuous functions {hn}n≥0 such

that (i) hn : [0, ∞) → {k/2n : k ≥ 0}, and (ii) the sequence {hn}n≥1 converges uniformly to h

on compact sets as n → ∞. These functions are used to define a collection of approximating
PDMPs {Xn}n≥0. For each n ≥ 0, Xn is a PDMP that is governed by the renewal process N ,
the function hn, and the set of jump sizes {Bn,k}k≥1, where, for each k ≥ 1,

Bn,k = inf{l ∈ Z : l/2n ≥ Bk}
2n

.

We also assume that the initial value Xn(0) = θn ∈ {k/2n; k ∈ Z} is such that θn → θ as
n → ∞. Note that at each time instant t ≥ 0, Xn(t) takes values in the space {k/2n; k ∈ Z}.

We now establish that inf0≤s≤eq X0(s) is both sufficient and boundedly complete.

Lemma 1. inf0≤s≤eq X0(s) is a sufficient statistic with respect to its unknown initial condition
θ0 ∈ Z.

Proof. Let A and B be two subsets of the integers, and let x be an arbitrary integer. Setting
Pθ0 as a probability measure, under which the law of X0 is as the integer-valued PDMP described
above with initial value X0(0) = θ0, we see that, for x ≤ θ0,

Pθ0

(
X0(eq) − inf

0≤s≤eq

X0(s) ∈ A, inf
0≤s≤eq

X0(s) ∈ B

∣∣∣ inf
0≤s≤eq

X0(s) = x
)

= 1(x ∈ B)
Pθ0(X

0(eq) ∈ A + x, inf0≤s≤eq X0(s) = x)

Pθ0(inf0≤s≤eq X0(s) = x)
. (1)

Set τx = inf{t ≥ 0 : X0(t) ≤ x}. A conditioning argument gives

Pθ0

(
X0(eq) ∈ A + x, inf

0≤s≤eq

X0(s) = x
)

= Pθ0

(
X0(eq) ∈ A + x, inf

0≤s≤eq

X0(s) = x

∣∣∣ X0(eq ∧ τx) = x
)

Pθ0(X
0(eq ∧ τx) = x)

= Px

(
X0(eq) ∈ A + x, inf

0≤s≤eq

X0(s) = x
)

Pθ0(X
0(τx ∧ eq) = x). (2)

Note that we are making use of the fact that the process regenerates at the points of our renewal
process N ; moreover, since h0 ≥ 0, the infimum of X0 over any interval must be attained at a
renewal instant within that interval.

A similar argument shows that

Pθ0

(
inf

0≤s≤eq

X0(s) = x
)

= Px

(
inf

0≤s≤eq

X0(s) = x
)

Pθ0(X
0(τx ∧ eq) = x). (3)



The Wiener–Hopf factorization and Basu’s theorem 879

Substituting both (2) and (3) into (1) yields

Pθ0

(
X0(eq) − inf

0≤s≤eq

X0(s) ∈ A, inf
0≤s≤eq

X0(s) ∈ B

∣∣∣ inf
0≤s≤eq

X0(s) = x
)

= 1(x ∈ B)
Px(X

0(eq) ∈ A + x, inf0≤s≤eq X0(s) = x) Pθ0(X
0(τx ∧ eq) = x)

Px(inf0≤s≤eq X0(s) = x) Pθ0(X
0(τx ∧ eq) = x)

= 1(x ∈ B)
Px(X

0(eq) ∈ A + x, inf0≤s≤eq X0(s) = x)

Px(inf0≤s≤eq X0(s) = x)
,

and this conditional probability does not depend on θ0. Hence, inf0≤s≤eq X0(s) is a sufficient
statistic.

Remark 1. Note how a discrete state space setting makes proving sufficiency of inf0≤s≤eq X(s)

a simple matter. An analogous proof in a general state space setting appears to be difficult to
produce, although it seems obvious that it must hold.

Our next task is to realize that inf0≤s≤eq X0
0(s) is infinitely divisible, where X0

0 represents
the PDMP X0, with θ0 = 0. Clearly, X0(t) = X0

0(t) + θ0 under Pθ0 for each t ≥ 0.

Lemma 2. inf0≤s≤eq X0
0(s) is an infinitely divisible random variable.

Proof. The proof of this statement can be found in [5].

We now check to see if inf0≤s≤eq X0(s) is boundedly complete. To show this, we make use
of Wiener’s Tauberian theorem. Such an argument has been used before to verify that location
families are boundedly complete; see, for example, Theorem 2.4 of [7]. In fact, the version of
Wiener’s Tauberian theorem used here is also applied in Example 2.6(d) of [14].

Lemma 3. inf0≤s≤eq X0(s) is boundedly complete.

Proof. The proof follows from a discrete version of Wiener’s Tauberian theorem; see
[8, p. 71]. This theorem tells us that, since the characteristic function of inf0≤s≤eq X0

0(s) does
not vanish (because of infinite divisibility), we may conclude that any absolutely summable
sequence x = {x(k)}k∈Z ∈ �1 can be approximated under the �1-norm by elements A ∈ �1 of
the form

A(j) =
m∑

k=1

akp0(j + ck), (4)

where p0 represents the probability mass function of inf0≤s≤eq X0
0(s), m is an arbitrary positive

integer, {ak}mk=1 is a sequence of complex numbers, and {ck}mk=1 is a collection of integers.
Fix a bounded, measurable function g : Z → R satisfying Eθ [g(inf0≤s≤eq X0(s))] = 0 for

all θ ∈ Z, and let F : �1 → R be a function satisfying, for each x ∈ �1,

F(x) =
∑
k∈Z

g(k)x(k).

Continuity of F under the �1-norm yields F(x) = 0 for each x ∈ �1, since we can find a
sequence {xn}n≥1 of linear combinations of the form (4), satisfying F(xn) = 0 for all n, that
converge to x. Thus, g(n) = 0 for each integer n, which completes the proof.

We conclude the proof of the factorization by showing that X0(eq) − inf0≤s≤eq X0(s) is an
ancillary statistic.
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Lemma 4. X0(eq) − inf0≤s≤eq X0(s) is an ancillary statistic.

Proof. The proof of this result is straightforward: note that

X0(eq) − inf
0≤s≤eq

X0(s) = θ0 + X0
0(eq) − inf

0≤s≤eq

(θ0 + X0
0(s)) = X0

0(eq) − inf
0≤s≤eq

X0
0(s),

which does not depend on θ0.

Theorem 3. inf0≤s≤eq X(s) is independent of X(eq) − inf0≤s≤eq X(s), where eq is an
exponential random variable with rate q > 0, independent of X0.

Proof. Combining Basu’s theorem with our previous lemmas shows that inf0≤s≤eq X0(s) is
independent of X0(eq) − inf0≤s≤eq X0(s). From our proof technique, it is clear that, for each
n ≥ 1, 2n inf0≤s≤eq Xn(s) is both sufficient and boundedly complete, and so inf0≤s≤eq Xn(s) is
independent of Xn(eq) − inf0≤s≤eq Xn(s). Finally, since fn converges uniformly on compact
sets to f as n gets large, inf0≤s≤eq X(s) is independent of X(eq) − inf0≤s≤eq X(s), because,
with probability 1, the sample paths of Xn converge uniformly on compact sets to the sample
paths of X.

Remark 2. It was shown in [5] that inf0≤s≤eq X0
0(eq) is infinitely divisible, by making use

of the fact that this random variable can be expressed as a geometric sum of i.i.d. undershoot
variables. Some readers may find this argument unsatisfactory, as the main idea used to verify
that this is an i.i.d. geometric sum seems to be quite close to the decomposition approach used
in the random walk proof of the Wiener–Hopf factorization found in, for example, the proof
of Theorem 1 of [12], which was inspired by the work of Greenwood and Pitman [9]. This
decomposition approach, in the random walk setting, can also be used to establish the required
independence property.

Nevertheless, we still feel that our approach should be of interest to the applied probability
community, as we can use any proof we like to show that the characteristic function of
inf0≤s≤eq X0

0(s) does not vanish, and, for some models, this may be much easier to do by
other methods; one example will be given in the next section.

We conclude this section with a brief explanation of how this result carries over to the Lévy
setting.

Theorem 4. Suppose that X := {X(t); t ≥ 0} represents a Lévy process with characteristic
triplet (a, σ 2, π), which we assume to be known. Then inf0≤s≤eq X(s) is independent ofX(eq)−
inf0≤s≤eq X(s).

Proof. Any continuous-time Markov chain that is also a Lévy process satisfies the Wiener–
Hopf factorization, as these processes are within our subclass of PDMPs. A two-step scaling
procedure can be used to show how this result extends to all types of Lévy process; details can
be found in Section 4 of [5].

4. Spectrally one-sided Lévy processes

In some instances, it is possible to use Basu’s theorem to establish the factorization without
having to use an approximation argument, undershoot variables, or a Tauberian theorem.

Suppose that X := {X(t); t ≥ 0} is a spectrally positive Lévy process, with characteristic
triplet (a, σ 2, π) and unknown (deterministic) initial condition X(0) = θ : saying that X is
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spectrally positive means that the support of the Lévy jump measure π is contained in [0, ∞),
i.e. the process has no negative jumps. It is well known that in this setting, under Pθ ,

inf
0≤s≤eq

X(s)
d= θ − E,

where E is an exponential random variable with rate �(q), with � being a suitable inverse
function; see Section 3.3 of [11] for details. This leads to the following proposition.

Proposition 1. inf0≤s≤eq X(s) is a boundedly complete, sufficient statistic with respect to θ .

Proof. Proving that inf0≤s≤eq X(s) is a sufficient statistic with respect to θ is relatively
simple, since the process has no negative jumps: here, we can make use of the strong Markov
property and the memoryless property of eq to conclude that, under Pθ , for x < θ ,

Pθ

(
X(eq) − inf

0≤s≤eq

∈ A, inf
0≤s≤eq

X(s) ∈ B

∣∣∣ inf
0≤s≤eq

X(s) = x
)

= 1(x ∈ B) lim
h↓0

Pθ (X(eq) − inf0≤s≤eq X(s) ∈ A, inf0≤s≤eq X(s) ∈ [x, x + h])
Pθ (inf0≤s≤eq X(s) ∈ [x, x + h])

= 1(x ∈ B) lim
h↓0

Px+h(X(eq) − inf0≤s≤eq X(s) ∈ A, inf0≤s≤eq X(s) ∈ [x, x + h])
Px+h(inf0≤s≤eq X(s) ∈ [x, x + h]) ,

and this conditional probability does not depend on θ . Hence, inf0≤s≤eq X(s) is a sufficient
statistic of (X(eq) − inf0≤s≤eq X(s), inf0≤s≤eq X(s)) with respect to θ . Readers wishing to
see a reference on regular conditional distributions that explains the limiting step given above
are referred to [4].

We now show that inf0≤s≤eq X(s) is boundedly complete. Suppose that g is a bounded Borel
measurable function, satisfying Eθ [g(inf0≤s≤eq X(s))] = 0 for all θ ∈ R. Then, for each θ ,

0 = Eθ

[
g

(
inf

0≤s≤eq

X(s)

)]
=

∫ θ

−∞
g(u)�(q)e−�(q)(θ−u) du.

However, e−�(q)θ > 0 for each θ , which gives

0 =
∫ θ

−∞
g(u)�(q)e�(q)u du,

and so we conclude that g(u) = 0 for almost all u, which proves the claim.

Finally, it is now obvious that X(eq) − inf0≤s≤eq X(s) is an ancillary statistic, so we may
conclude that the Wiener–Hopf factorization holds.

5. Final remarks

Recently, DasGupta [3] showed how Basu’s theorem can be used to prove that a fairly
large subclass of random variables is infinitely divisible. Interestingly, he commented that
‘the possible horizon of applications of Basu’s theorem is probably much wider than has been
understood so far.’ Our approach to the Wiener–Hopf factorization seems to further support
this claim, and we believe that a proper understanding of this theorem could possibly lead to a
greater understanding of other concepts in applied probability, both classical and new.
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