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a b s t r a c t

In this paperwe propose a new test procedure for sphericity of the covariancematrixwhen
the dimensionality, p, exceeds that of the sample size, N = n+ 1. Under the assumptions
that (A) 0 < trΣ i/p < ∞ as p → ∞ for i = 1, . . . , 16 and (B) p/n → c < ∞ known as
the concentration, a new statistic is developed utilizing the ratio of the fourth and second
arithmetic means of the eigenvalues of the sample covariance matrix. The newly defined
test has many desirable general asymptotic properties, such as normality and consistency
when (n, p)→∞. Our simulation results show that the new test is comparable to, and in
some cases more powerful than, the tests for sphericity in the current literature.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Many applications of modern multivariate statistics involve a large number of variables, p, and hence a large covariance
matrix. In many situations (e.g. DNA microarray data) the dimensionality exceeds that of the number of observations,
N = n+1. In this article, we discussmuch of the previouswork in developing statistics for testing if the covariancematrix is
proportional to the identity, more commonly called Sphericity. We considerX1, . . . ,XN as a set of independent observations
from a multivariate normal distribution Np(µ,Σ), where both the mean vector µ ∈ Rp and covariance matrix Σ > 0 are
unknown. We are interested in testing H0 : Σ = σ 2I vs. HA : Σ 6= σ 2I , where σ 2 is the unknown scalar proportion.
The classical hypothesis testing techniques are based on the likelihood ratio and are degenerate when p > n. Motivated
by the previous work in the literature, we define a new test statistic under the framework known as general asymptotics or
(n, p)-asymptotics.
Much of the current work rests on the large body of literature regarding asymptotics for eigenvalues of the sample

covariance matrix, such as Arharov [2], Bai [3], Narayanaswamy and Raghavarao [12], Serdobolskii [18,17], Silverstein [20],
Yin and Krishnaiah [24] and others. We build on the substantial list of work completed on statistical testing involving large
random matrices, such as Bai et al. [4], Saranadasa [13] and most recently the work completed by Ledoit and Wolf [11],
Srivastava [21–23] and Schott [14–16].
Ledoit andWolf [11] show the locally best invariant test based on John’sU statistic, see [10], to be (n, p)-consistent when

p/n→ c < ∞, where c is a constant known as the concentration. However the distribution of the test statistic under the
alternative hypothesis is not available. Like that in Ledoit and Wolf [11], Srivastava [21] proposes a test based on the first
and second arithmetic means of the eigenvalues of the sample covariance but only requires the more general condition
n = O(pδ), 0 < δ ≤ 1. He shows that the test is (n, p)-consistent and provides the distribution of the test statistic under
both the null and alternative hypotheses. In [22], he proposes a modified version of the Likelihood Ratio Test (LRT) in which
only the first n eigenvalues are used. This test is applicable under the assumptions n/p→ 0 and n fixed.
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Motivated by the previous literature, we propose a test based on the second and fourth arithmetic means of the
eigenvalues of the sample covariance matrix. The asymptotic distribution of the test statistic under both the null
and alternative hypotheses is provided. The proposed the test is consistent under the general asymptotics framework.
Furthermore, we provide a brief simulation study validating our theoretical work, demonstrating an improvement over
the previous literature under certain alternative hypotheses and apply our test statistic to real microarray data. Lastly, we
provide concluding remarks.

2. Description of the new test

Suppose X1, . . . ,XN ∼ Np(µ,Σ),N = n+ 1, and we are interested in testing,

H0 : Σ = σ 2I vs. HA : Σ 6= σ 2I.

Like that of the Likelihood Ratio Test in classical multivariate statistics, testing remains invariant under the transformation
x → Gx, where G is an orthogonal matrix. The test is also invariant under the scalar transformation x → cx; thus we may
assume without loss of generalityΣ = diag(λ1, . . . , λp). From the Cauchy–Schwarz inequality, it follows that(

p∑
i=1

λri

)2
≤ p

(
p∑
i=1

λ2ri

)
,

with equality holding if and only if λ1 = · · · = λp = λ, for all i = 1, . . . , p and some constant λ. Thus, we may consider
testing H0 : ψr = 1 vs. HA : ψr > 1 with

ψr =

( p∑
i=1
λ2ri /p

)
( p∑
i=1
λri /p

)2 . (1)

We note this test is based on the ratio of arithmetic means of the sample eigenvalues. Srivastava [21] considers the case
where r = 1, we look at the case of r = 2.
We make the following assumptions

(A) As p→∞, ai → a0i , 0 < a0i <∞, i = 1, . . . , 16,

(B) As (n, p)→∞,
p
n
→ c where 0 < c <∞,

where

ai =
1
p
trΣ i =

1
p

p∑
j=1

λij

and the λjs are the eigenvalues of the covariancematrix, i.e. ai is the ith arithmeticmean of the eigenvalues of the covariance
matrix.

Theorem 1. An unbiased and (n, p)-consistent estimator of a4 =
∑p
i=1 λ

4
i /p is given by

â4 =
τ

p
[tr S4 + b · tr S3tr S + c∗ · (tr S2)2 + d · tr S2(tr S)2 + e · (tr S)4] (2)

where

b = −
4
n
, c∗ = −

2n2 + 3n− 6
n(n2 + n+ 2)

, d =
2(5n+ 6)
n(n2 + n+ 2)

, e = −
5n+ 6

n2(n2 + n+ 2)
,

and

τ =
n5(n2 + n+ 2)

(n+ 1)(n+ 2)(n+ 4)(n+ 6)(n− 1)(n− 2)(n− 3)
.

Proof. From Lemma 3 in the Appendix,

E[â4] = τ

(
n(n+ 2)(n+ 4)(n+ 6)(n− 1)(n− 2)(n− 3)(n+ 1)

pn6(n2 + n+ 2)

p∑
i=1

λ4i

)

=
1
p

p∑
i=1

λ4i = a4.
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Using the asymptotic behavior of the variance of â4 from Appendix A.5 and an application of Chebyshev’s inequality
completes the result:

P
[∣∣â4 − a4∣∣ > ε

]
≤

1
ε2
Var[â4]

'
1
ε2

(
32
np
a8 +

32
n2
(
a6a2 + a24

)
+
16
n2
(a24)+

64
n2
(ca4a22/2+ ca

2
3a2)+

8
n2
(c2a42)+ 2

32
n2
(a5a3)

)
→ 0 as (n, p)→∞. �

Srivastava [21] provides an unbiased and consistent estimator for a2 which is

â2 =
n2

(n− 1)(n+ 2)
1
p

[
tr S2 −

1
n
(tr S)2

]
. (3)

Thus an (n, p)-consistent estimator for ψ2 is provided by

ψ̂2 =
â4
â22
.

The derivation and justification for our estimator â4 in (2) is provided in the Appendix. The following theorem and
corollary provide the asymptotic distribution under the alternative and null hypotheses. We remind the reader that c is
the concentration, not to be confused with the constant c∗ in Theorem 1.

Theorem 2. Under assumptions (A) and (B), as (n, p)→∞

n√
8(8+ 12c + c2)

(
â4
â22
− ψ2

)
D
→ N(0, ξ 22 ),

with

ξ 22 =
1

(8+ 12c + c2)a62

(
4
c
a34 −

8
c
a4a2a6 − 4a4a2a23 +

4
c
a22a8 + 4a6a

3
2 + 8a

2
2a5a3 + 4ca4a

4
2 + 8ca

2
3a
3
2 + c

2a62

)
. (4)

Proof. The result follows from Proposition 2 and an application of the delta-method with some additional algebra. �

Corollary 1. Under the null hypothesis, ψ2 = 1, and under the assumptions (A) and (B), as (n, p)→∞

T =

(
n√

8(8+ 12c + c2)

)(
â4
â22
− 1

)
D
→ N(0, 1). (5)

Proof. Under H0, each λi = λ, for i = 1, . . . , p and some constant λ. Thus ξ 22 = 1, which completes the proof. �

From the asymptotic distribution under the alternative hypothesis we are able to determine the (n, p)-asymptotic
behavior of the power function of our test statistic.

Theorem 3. Under assumptions (A) and (B), as (n, p)→∞ the test statistic T in (5) is (n, p)-consistent.

Proof. For large n and p, the power function of T is

Powerα(T ) ' Φ

 n
(
a4
a22
− 1

)
ξ2
√
8(8+ 12c + c2)

−
zα
ξ2

 .
Under assumptions (A) and (B), we know ξ 22 from (4) is constant. From the properties ofΦ(·), it is clear that Powerα(T )→ 1
as (n, p)→∞. �

3. Simulation study

A simulation study shows the effectiveness of our test statistic.We first provide a study verifying the normality of our test
statistic by simulating the Attained Significance Level (ASL), or size, of our newly defined test statistic. Draw an independent
sample of size N = n + 1 from a valid p-dimensional normal distribution under the null hypothesis (i.e. each λi = 1).
Replicate this 1000 times. Using T from (5) we calculate

ASL(T ) =
(#T > zα)
1000

,
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Table 1
ASL for T in (5).

p = cn c = 1 c = 2 c = 4 c = 5

n = 25 0.036* 0.040 0.050 0.056
n = 50 0.050 0.061 0.050 0.058
n = 100 0.060 0.052 0.048 0.054
n = 150 0.049 0.048 0.049 0.047
n = 200 0.047 0.055 0.057 0.051

Table 2
ASL for Ts from [21].

p = cn c = 1 c = 2 c = 4 c = 5

n = 25 0.050 0.067* 0.057 0.057
n = 50 0.055 0.049 0.051 0.053
n = 100 0.057 0.053 0.056 0.060
n = 150 0.054 0.046 0.050 0.040
n = 200 0.041 0.043 0.052 0.042
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Fig. 1. Normal QQ-Plot for T in (5) under H0 .

denoting the ASL of T where zα is the upper 100α% critical point of the standard normal distribution.We test with α = 0.05.
Table 1 provides the results for an assortment of c = p/n values for our newly defined test statistic. Table 2 provides
analogous results for the test statistic defined in [22], denoted Ts. Ledoit and Wolf [11] provide similar results for their test
statistic based on John’sU statistic, denotedUJ . Only in one case in each table dowe have a simulated size that is significantly
different (see * in Tables 1 and 2) than the predicted size of 0.05. We also look at QQ-Plots for the test statistic T under both
the null and alternative hypotheses. Begin by sampling N = n+ 1 = 201 observations from a p = 400 dimensional normal
distribution with mean zero vector and an identity covariance matrix, hence λi = 1 for all i. Calculate the test statistic, T ,
and repeat the process 1000 times. Fig. 1 shows the QQ-Plot of the 1000 observed values of the test statistic under the null
hypothesis. Similarly we repeat the simulation under the alternative hypothesis withΣ = Λ = diag (λ1, . . . , λp)with each
λi ∼ U(0.5, 1.5) and n = 200, p = 400. Fig. 2 shows the results for the 1000 observed values of the test statistic. In both
cases, the normality result appears to be satisfied by the QQ-Plots for large n and p validating the theoretical result.
Lastly a series of power simulations to confirm the consistency of our test and to demonstrate its improved performance

under certain alternative hypotheses is performed. From our simulation studies it appears the newly proposed test statistic
performs well when only a few elements of the covariance matrix are different. Define near spherical matrices to be of the
form,

Σ =

(
Θ 0T
0 I

)
where Θ is a k × k diagonal matrix, k < p, with all elements θi 6= 1. I is a (p − k) × (p − k) identity matrix and 0 is a
(p− k)-vector of zeros. k is chosen to be small, so the near spherical matrix will be the identity with the exception of a few
elements.
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Fig. 2. Normal QQ-Plot for T in (5) under HA .

Table 3
Simulated power under near spherical covariance matrix with k = 1.

p = cn c = 1, θ = 3 c = 2, θ = 4
Our T Ts UJ Our T Ts UJ

n = 25 0.505 0.427 0.436 0.580 0.463 0.521
n = 50 0.647 0.489 0.633 0.750 0.599 0.773
n = 100 0.794 0.529 0.794 0.901 0.641 0.904
n = 150 0.858 0.565 0.845 0.938 0.680 0.940
n = 200 0.903 0.624 0.912 0.969 0.710 0.975

Table 4
Simulated power with k = 6,Θ = diag (0.75, 1.25, 1.75, 2.25, 2.75, 3.25).

p = cn c = 1 c = 2
Our T Ts UJ Our T Ts UJ

n = 25 0.609 0.722 0.548 0.416 0.495 0.384
n = 50 0.908 0.895 0.895 0.692 0.630 0.695
n = 100 0.991 0.974 0.992 0.849 0.722 0.846
n = 150 0.999 0.988 0.999 0.899 0.749 0.907
n = 200 1.000 0.999 1.000 0.938 0.770 0.938

To make comparisons with the test statistics defined in [21,11], we perform a similar test to that described in [22]. A
simulation is used to obtain the critical point of our test statistic (and that from [21,11]). Letting N = n+ 1 and p increase
such that p/n → c , we compute, under H0 : Σ = I , 1000 simulated observed values our test statistic T and find Tα such
that

P(T > Tα) = α.

Tα is the estimated critical point at significance level α. The same is repeated for the test statistics described in [21,11]. Then
simulate from a p-dimensional normal distribution with zero mean vector and a near spherical covariance matrix.
We provide examples for two cases of near sphericity. Table 3 shows two results for the case where k = 1, or Θ is a

scalar of element θ . Each element of the covariance matrix is the same, with the exception of one element. Two examples
are provided, θ = 3with c = 1 and θ = 4with c = 2. Table 4 provides two results, c = 1 and c = 2, for the casewhere k = 6
elements differ from the sphericalmodel, i.e.Θ = diag (0.75, 1.25, 1.75, 2.25, 2.75, 3.25). Tables 3 and4 show that all three
test statistics appear to be consistent as (n, p) → ∞ and that, under the simulated near spherical alternative hypothesis,
our newly defined test is more powerful than that described in [21] and is comparable to that described in [11]. Simulation
studies with other covariance matrices under the alternative hypothesis are available in [8]. They show consistency of the
test statistics. The best performing test varies depending on the covariance matrix under the alternative hypothesis.
Lastly we study the effect of θ in the case where k = 1. Table 3 indicates our newly proposed statistic is comparable to

that of Ledoit andWolf [11] and tends to performbetter than Srivastava [21]. In this studywe let n = 50, c = 3 and the value
of θ increases. Fig. 3 provides the simulated power after 1000 runs for our newly proposed test and that of Srivastava [21].
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Fig. 3. Simulated power of T and Ts as θ increases.

We see from the plot that neither test performs particularly well when θ is small. As θ increases the newly proposed test
appears to dominate that of Srivastava. Both appear to become consistent as θ grows.

4. Data examples

In this section, for a further comparison we test the hypothesis of sphericity against two classic data sets. We follow
the preprocessing protocol attributed to Dudoit et al. [6] and Dettling and Bühlmann [5] by thresholding, filtering, and a
logarithmic transformation but do not follow standardization so as to compare to the results in [22]. Preprocessed data are
available at thewebsite of Prof. Tatsuya Kubokawa: http://www.e.u-tokyo.ac.jp/~tatsuya/index.html (last accessed: 27 April
2010).

4.1. Colon dataset

In this dataset, expression levels of 6500 human genes are measured using Affymetrix microarray technology on 40
tumors and 22 normal colon tissues. A selection of 2000 genes with the highest minimal intensity across the samples has
beenmade by Alon et al. [1]. Our dimensionality is p = 2000 and the degrees of freedom available to estimate the covariance
matrix is only 60. Thedata is further described and is available at the PrincetonOncologywebsite. Calculate an estimate of the
covariance matrix using a pooled covariance matrix with 60 degrees of freedom. We compute test values of T = 185.8071
from (5), Ts = 2771.6538, and UJ = 2816.2916where Ts is the sphericity test from Srivastava [21] and UJ is that from Ledoit
and Wolf [11], respectively. In each case we get a p-value ≈ 0 indicating any assumption of sphericity in the case of these
data to be false.

4.2. Leukemia dataset

This dataset contains gene expression levels of 72 patients either suffering from acute lymphoblastic leukemia or acute
myeloid leukemia. There are 47 and 25 patients for each respective case and they are obtained on Affymetric oligonucleotide
microarrays. The data is attributed to Golub et al. [9]. The data is comprised of p = 3571 genes and the degrees of freedom
available are only 70. The data is available and described further at the Broad Institute’s website. The leukemia data is
preprocessed in the same way and we get the observed test statistic values of T = 242.4386, Ts = 2294.9184, and
UJ = 2326.7520 for T in (5), Ts from Srivastava [21] and UJ from Ledoit and Wolf [11], respectively. In each case we get
a p-value≈ 0 indicating any assumption of sphericity in the case of these data being false.

5. Concluding remarks

We have proposed a new test for sphericity of the covariance matrix. Like that of Srivastava [21], our test is based on the
Cauchy–Schwarz inequality. Unlike Johns U-statistic and Srivastava’s Ts test, we look at the second and fourth arithmetic
means of the sample eigenvalues. Simulations indicate that the newly defined test statistic, T in (5), appears to perform
better in some near spherical cases and is comparable to tests in the previous literature.

5.1. Notes on assumptions and limitations

The two underlying assumptions, (A) and (B), are comparable to that of Ledoit andWolf [11], with the exception that the
sixteenth arithmetic mean of the covariance matrix is assumed to be convergent as p→∞. Both our test and that of Ledoit
and Wolf [11] require p/n → c as (n, p) → ∞. This assumption is more restrictive than that in [21] but does not appear

http://www.e.u-tokyo.ac.jp/~tatsuya/index.html
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to hinder the application of the test statistic in practice, since c is easily approximated with the ratio of p to n. We further
note that the requirement of convergence of the sixteenth arithmetic mean is higher than the eighth in [21] and the fourth
in [11].
There is an increase in the variability of our test statistic compared to that of Srivastava [21]. As you look at higher

arithmetic means, the variance increases. Although the two tests are asymptotically comparable and the newly defined test
appears to be more powerful in near spherical cases ofΣ , the larger variance of T may be a problem in certain cases.

5.2. Future work and recommendations

Our new test is of the form (1) with r = 2. This builds upon the work of Srivastava [21] who defined a test based on
r = 1. Futureworkmay look at r = 3, 4, . . . . We conjecture that, althoughmore powerful in certain alternative hypotheses,
these test will make more restrictive assumptions and the variance of the corresponding test statistic will grow to the point
where it may be infeasible to use the statistic. In the case of r being a fraction (e.g. r = 0.5) we suspect the test may show
an improvement in some cases of Σ and in general will not be hindered by infeasible assumptions and a large variance.
However, we suspect the distribution of terms like â1/2 to be difficult to determine and we leave this question open.
Although each of the tests described is asymptotically comparable, each test seems to perform better under certain

alternative hypotheses. We recommend our newly defined test, T in (5), when a near spherical covariance matrix is
suspected.
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Appendix

A.1. Expression of estimator for a4

Obtain expressions for tr S, tr S2, (tr S)2, tr S2(tr S)2, tr S3tr S, tr S4 and (tr S)4 in terms of chi-squared random variables.
We make use of the following well-known result from [17].

Lemma 1. Consider the sample covariance matrix and recalling N = n+ 1,

S =
1
n

N∑
i=1

(xi − x̄)(xi − x̄)′.

There exists an orthogonal transformation of vectors

yk =
N∑
i=1

Ωkixi,

such that the vectors yN =
√
Nx̄ and yk ∼ N(0,Σ), k = 1, . . . , n, are independent, and the sample covariance matrix is equal

to

S =
1
n

n∑
i=1

yiy′i.

Let nS = YY ′ ∼ Wp(Σ, n), where Y = (y1, y2, . . . , yn) and each yi ∼ Np(0,Σ) and independent. By orthogonal
decomposition,Σ = Γ ′ΛΓ , whereΛ = diag (λ1, λ2, . . . , λp)with λi being the ith eigenvalue ofΣ and Γ is an orthogonal
matrix. Define U = (u1, u2, . . . , un), where ui are i.i.d. Np(0, I) and we can write Y = Σ1/2U whereΣ1/2Σ1/2 = Σ . Define
W ′ = (w1, w2, . . . , wp) = U ′Γ ′ and eachwi are i.i.d. Nn(0, I).
Define vii = w′iwi and it is easy to see that each vii is an i.i.d. chi-squared random variable with n degrees of freedom.

Thus, ntr S = trW ′ΛW .
From [21] we get the following important results

ntr S =
p∑
i=1

λivii,

n2(tr S)2 =
p∑
i=1

λ2i v
2
ii + 2

p∑
i<j

λiλjviivjj,
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and

n2tr S2 =
p∑
i=1

λ2i v
2
ii + 2

p∑
i<j

λiλjv
2
ij .

Using the same approach and the commutative property of the trace operation (i.e. tr (ABC) = tr (CAB)), we derive,

n4tr S4 = tr (W ′ΛW )(W ′ΛW )(W ′ΛW )(W ′ΛW )

= tr

( p∑
i=1

λiwiw
′

i

)4
=

p∑
i=1

λ4i v
4
ii + 4

p∑
i6=j

λ3i λjv
2
iiv
2
ij +

p∑
i<j

λ2i λ
2
j (4viivjjv

2
ij + 2v

4
ij)+

p∑
i6=j<k

λ2i λjλk(8viivijvjkvik + 4v
2
ijv
2
ik)

+

p∑
i<j<k<l

λiλjλkλl(8vijvjkvklvil + 8vijvjlvklvik + 8vikvjkvjlvil).

Likewise we find analogous results for n4tr S3tr S, n4(tr S2)2, n4tr S2(tr S)2, and n4(tr S)4. Consider the constants b, c∗, d, e
defined in Theorem 1, then rewrite

tr S4 + btr S3tr S + c∗(tr S2)2 + dtr S2(tr S)2 + e(tr S)4

p
= η1 + η2 + η3 + η4 + η5,

where

η1 =
n4 − 5n3 + 5n2 + 5n− 6

n2(n2 + n+ 2)
1
n4p

p∑
i=1

λ4i v
4
ii, (6)

η2 =
4
n4p

p∑
i6=j

λ3i λj

(
v2iiv

2
ij(n

4
− 4n3 + n2 + 6n)+ v3iivjj(−n

3
+ 4n2 − n− 6)

n2(n2 + n+ 2)

)
, (7)

η3 =
2
n4p

p∑
i<j

λ2i λ
2
j

(
viiv

2
ijvjj(2n

4
− 10n3 + 12n2)

n2(n2 + n+ 2)

+
v4ij(n

4
− 3n3 − 4n2 + 12n)+ v2iiv

2
jj(−2n

3
+ 7n2 + 3n− 18)

n2(n2 + n+ 2)

)
, (8)

η4 =
4
n4p

p∑
i6=j<k

λ2i λjλk

(
v2iiv

2
jk(−2n

3
+ 2n2 + 12n)

n2(n2 + n+ 2)

+
(viiv

2
ijvkk + viiv

2
ikvjj)(−3n

3
+ 7n2 + 6n)+ v2iivjjvkk(5n

2
− 9n− 18)

n2(n2 + n+ 2)

+
viivijvikvjk(2n4 − 4n3 − 2n2 − 12n)+ v2ijv

2
ik(n

4
− 3n3 − 4n2 + 12n)

n2(n2 + n+ 2)

)
, (9)

with the index read as i 6= j, i 6= k and j < k, and

η5 =
8
n4p

p∑
i<j<k<l

λiλjλkλl

(
n2(n2 + n+ 2)
n2(n2 + n+ 2)

(vijvjkvklvil + vijvjlvklvik + vikvjkvjlvil)

−
3n(n2 + n+ 2)
n2(n2 + n+ 2)

(viivjkvjlvkl + vjjvikvilvkl + vkkvijvilvjl + vllvijvikvjk)−
n(2n2 + 3n− 6)
n2(n2 + n+ 2)

(v2ijv
2
kl + v

2
ikv
2
jl + v

2
ilv
2
jk)

+
n(5n+ 6)

n2(n2 + n+ 2)
(v2ijvkkvll + v

2
ikvjjvll + v

2
ilvjjvkk + v

2
jkviivll + v

2
jlviivkk + v

2
klviivjj)−

3(5n+ 6)viivjjvkkvll
n2(n2 + n+ 2)

)
. (10)

A.2. Calculation of E[â4]

We begin by summarizing some results about the random components of our estimator.
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Lemma 2. For vii = (w′iwi) and vij = (w
′

iwj) for any i 6= j,

E[viiv2ij] = n(n+ 2), E[v2iiv
2
ij] = n(n+ 2)(n+ 4),

E[v4ij] = 3n(n+ 2), E[v2ij] = n,
E[viiv2ijvjj] = n(n+ 2)

2, E[v2ijv
2
ik] = n(n+ 2),

E[vijvikvjk] = n, E[vijvilvjkvkl] = n,
E[viivijvikvjk] = n(n+ 2).

Using Lemma 2 we can easily calculate the expected value of â4.

Lemma 3. For η1, η2, η3, η4, η5 in (6)–(10) respectively,

E[η1] =
n(n+ 2)(n+ 4)(n+ 6)(n− 1)(n− 2)(n− 3)(n+ 1)

pn6(n2 + n+ 2)

p∑
i=1

λ4i

and

E[η2] = E[η3] = E[η4] = E[η5] = 0.

Proof. Using the fourth moment of a χ2 r.v. it is easy to see the first result. Using the results in Lemma 2 it is easy to find

E[η2] =
4
n4p

p∑
i6=j

λ3i λj

(
n(n+ 2)(n+ 4)(n4 − 4n3 + n2 + 6n)

n2(n2 + n+ 2)
+
n2(n+ 2)(n+ 4)(−n3 + 4n2 − n− 6)

n2(n2 + n+ 2)

)
= 0.

An analogous derivation provides the result for η3, η4 and η5. �

A.3. Calculation of V [â4]

To calculate the variance of the estimator in (2) we recall the moments of χ2 and standard normal random variables
when needed. We also need the following lemma.

Lemma 4. Let Q be an orthogonal matrix such that Aj = wjw′j = Q
′DQ with D = QAjQ ′ and D = diag (w′jwj, 0, . . . , 0). Given

Aj, we can find xi = Qwi ∼ Nn(0, I) and it follows that xi is independently distributed of Aj. Now xi = (xi1, . . . , xin) = Qwi ∼
Nn(0, I) and thus xi1 is independent of w′jwj and also xik for k = 2, . . . , n, hence

E[v2ij] = E[w
′

iwjw
′

jwi] = E[w
′

iAjwi] = E[x
2
i1w
′

jwj],

and

E[v4ij] = E[(w
′

iwjw
′

jwi)
2
] = E[(w′iAjwi)

2
] = E[x4i1(w

′

jwj)
2
].

Proof. Aj is a function of the random variable wj and xi is a function of the random variable wi. wi and wj are independent
by definition, hence xi and Aj are independent. Furthermore an orthogonal transformation does not alter the distribution of
a normal random variable. Matrix algebra provides the remainder of the derivation. �

A.3.1. Variance of η1

Lemma 5. The variance of η1 is given by

V [η1] =
32(n+ 2)(n+ 4)(n+ 6)(n+ 7)(n2 + 14n+ 60)

n11(n2 + n+ 2)2p
(n4 − 5n3 + 5n2 + 5n− 6)2a8.

Proof. Find the variance of v4ii by utilizing the expected values of the eighth and fourth moments of a χ
2 random variable,

and the remainder of the algebra is as follows.

V [η1] = V

[
n4 − 5n3 + 5n2 + 5n− 6

n2(n2 + n+ 2)
1
n4p

p∑
i=1

λ4i v
4
ii

]

=

(
n4 − 5n3 + 5n2 + 5n− 6

n6(n2 + n+ 2)p

)2 p∑
i=1

λ8i V [v
4
ii]

=
32(n+ 2)(n+ 4)(n+ 6)(n+ 7)(n2 + 14n+ 60)

n11(n2 + n+ 2)2p
(n4 − 5n3 + 5n2 + 5n− 6)2a8. �
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A.3.2. Variance of η2
We provide details on the derivation of the variance of η2 in (7). From Lemma 3, we know E[η2] = 0 and hence

V [η2] = E[η22]. Rewrite η2 in the form

η2 =
C2
p

p∑
i6=j

λ3i λjVij,

where

C2 =
4

n6(n2 + n+ 2)
,

and

Vij = v2iiv
2
ijn1 + v

3
iivjjn2, (11)

where n1 = n4 − 4n3 + n2 + 6n and n2 = −n3 + 4n2 − n− 6. Then η22 can be expressed as,

p2

C22
η22 =

p∑
i6=j

λ6i λ
2
j V
2
ij + 2

p∑
i6=j<k

λ6i λjλkVijVik + 2
p∑
i<j

λ4i λ
4
j VijVji

+ 2
p∑

i6=j6=k

λ4i λ
3
j λkVikVji +

p∑
i<j6=k

λ3i λ
3
j λ
2
kVikVjk + 2

p∑
i<j6=k<l

λ3i λ
3
j λkλl(VikVjl + VilVjk).

To compute the variance of η2we simply calculate the expectation of each component above.Much of this derivation follows
from the moments of χ2 and standard normal random variables and by application of Lemma 4. The results for each Vij type
component are provided.

Lemma 6. For Vij defined in (11),

E[V 2ij ] = 2n
2(n− 1)(n− 2)2(n− 3)2(n+ 1)2(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10),

E[VijVji] = 2n2(n+ 1)2(n+ 2)(n+ 4)2(n+ 6)2(n− 1)(n− 2)2(n− 3)2,
E[VijVik] = E[VikVji] = E[VikVjk] = 0,
E[VikVjl] = E[Vik]E[Vjl] = 0.

This leads to the result.

Lemma 7. The variance of η2 is provided by

V (η2) =
32(n− 1)(n− 2)2(n− 3)2(n+ 1)2(n+ 2)(n+ 4)(n+ 6)

n10(n2 + n+ 2)2

×

(
(n2 + 18n+ 80)a6a2 + (n2 + 10n+ 24)a24 −

2(n2 + 14n+ 52)
p

a8

)
.

Proof. Using the expected values from Lemma 6 and the following derivations provides the result:
p∑
i6=j

λ6i λ
2
j =

(
p∑
i=1

λ6i

)(
p∑
j=1

λ2j

)
−

(
p∑
i=1

λ8i

)
= p2a6a2 − pa8 = p(pa6a2 − a8),

and

2
p∑
i<j

λ4i λ
4
j =

(
p∑
i=1

λ4i

)(
p∑
j=1

λ4j

)
−

(
p∑
i=1

λ8i

)
= p2a24 − pa8 = p(pa

2
4 − a8). �

A.3.3. Variance of η3, η4 and η5
Following the same derivation in the calculation for the variance of the η2 term in Appendix A.3.2we can find the variance

of η3, η4 and η5. We leave out the tedious algebraic details, available in [8], and provide the results.
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Lemma 8. The variances of η3, η4 and η5 are

V [η3] =
16(n− 1)(n− 2)2(n− 3)2(n+ 1)(n+ 2)(n+ 4)(n+ 6)

n10(n2 + n+ 2)2
(n3 + 15n2 + 69n+ 54)

(
a24 −

a8
p

)
,

V [η4] =
64(n+ 2)

n10(n2 + n+ 2)2

[
pa4a22 − a

2
4 − 2a6a2 +

2
pa8

2
(n10 + 12n9 − 138n7 − 81n6 + 3102n5 + 200n4

− 5316n3 − 912n2 − 144n+ 3456)+ (n+ 4)
(
pa23a2 − a6a2 − 2a5a3 +

2
p
a8

)
× (n9 + 5n8 − 44n7 − 166n6 + 493n5 − 79n4 − 1554n3 + 1380n2 + 792n− 864)

]
,

V [η5] =
8(n− 1)(n+ 2)
n9(n2 + n+ 2)

(n5 + 6n4 + 9n3 − 56n2 + 132n+ 144)
(
p2a42 − 6pa4a

2
2 + 8a6a2 + 3a

2
4 −

6
p
a8

)
.

Proof. The expectation of the individual components is straightforward and similar to the methodology in Appendix A.3.2.
Note the following

2
p∑

i6=j<k

λ4i λ
2
j λ
2
k =

(
p∑
i=1

λ4i

)(
p∑
j=1

λ2j

)2
−

(
p∑
i=1

λ4i

)2
− 2

(
p∑
i=1

λ6i

)(
p∑
j=1

λ2j

)
+ 2

(
p∑
i=1

λ8i

)
= p3a4a22 − p

2a24 − 2p
2a6a2 + 2pa8

= p(p2a4a22 − pa
2
4 − 2pa6a8 + 2a8),

2
p∑

i6=j<k

λ2i λ
3
j λ
3
k =

(
p∑
i=1

λ3i

)2 ( p∑
j=1

λ2j

)
−

(
p∑
i=1

λ6i

)(
p∑
i=1

λ2i

)
− 2

(
p∑
i=1

λ5i

)(
p∑
j=1

λ3j

)
+ 2

(
p∑
i=1

λ8i

)
= p3a23a2 − p

2a6a2 − 2p2a5a3 + 2pa8
= p(p2a23a2 − pa6a2 − 2pa5a3 + 2a8),

and

24
p∑

i<j<k<l

λ2i λ
2
j λ
2
kλ
2
l = p

4a42 − 6p
3a4a22 + 8p

2a6a2 + 3p2a24 − 6pa8

= p(p3a42 − 6p
2a4a22 + 8pa6a2 + 3pa

2
4 − 6a8). �

A.3.4. Covariance terms of η1, η2, η3, η4 and η5
To determine the covariance terms of η1, with η2, η3, η4, and η5 we utilize the fact that E[ηi] = 0 for i = 2, 3, 4, 5.

Therefore

Cov(η1, η2) = E[η1η2],

and due to the independence of many of the random terms in the ηi’s, we only have to explore the variables of the form v4iiVij
and v4jjVij (i.e. vii and Vjk are independent). Recall Vij from (11) and see

v4iiVij = v
4
ii

(
v2iiv

2
ijn1 + v

3
iivjjn2

)
= v6iiv

2
ijn1 + v

7
iivjjn2,

where the v4ii component from η1 essentially adds four moments to the random variable. Taking expectations we see,

E
[
v4iiVij

]
= n(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)(n+ 12)(n1 + nn2)
= 0 with n1, n2 defined in (11).

A similar results holds for v4jjVij except fourth moments of the vjjs are included. This concept can easily be seen in the results
of Lemma 2 in Appendix A.2, specifically with the expected values of viiv2ij and v

2
iiv
2
ij . The additional vii will add an additional

moment resulting in the (n + 4) in the expected value. In the case of η1 and η2, we add a fourth moment of vii and vjj in
the respective calculations to both parts of Vij in (11). Since both expectations are zero, and the other terms are zero by
independence, we determine Cov(η1, η2) = 0. Analogous results hold for the covariance terms of η1 with η3, η4 and η5
respectively.
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When exploring Cov(η2, η3) we find that some of random components of η2 and η3 interact. Derivation similar to that
of Appendix A.3.2 leads to the result,

Cov(η2, η3) =
32(n− 1)(n− 2)2(n− 3)2(n+ 1)2

n10(n2 + n+ 2)2
(n+ 2)(n+ 4)(n+ 6)2(n+ 8)

(
a5a3 −

a8
p

)
.

Similar work reveals no other correlated terms, hence Cov(η2, η4) = 0 and Cov(η2, η5) = 0. We also find Cov(η3, η4) =
0, Cov(η3, η5) = 0 and Cov(η4, η5) = 0.

A.4. Covariance terms of â4 and â2

Begin by recalling a result for â2 in (3) from [21], since n2/(n− 1)(n+ 2) ' 1,

â2 '
n− 1
n3p

p∑
i=1

λ2i v
2
ii +

2
n2p

p∑
i<j

λiλj

(
v2ij −

1
n
viivjj

)
= q1 + q2.

The covariance between q1 of â2 and the terms η2, η3, η4, and η5 is analogous to that of η1with the respective terms, resulting
in

Cov(η2, q1) = Cov(η3, q1) = Cov(η4, q1) = Cov(η5, q1) = 0.
The covariance of q1 and η1 is a straightforward calculation resulting in

Cov(q1, η1) =
16(n+ 2)(n+ 4)(n+ 5)(n+ 6)

n3(n2 + n+ 2)p
a6.

Through careful expansion and taking expectations we find there are no correlated terms between q2 and η1, η4 or η5
resulting in

Cov(η1, q2) = Cov(η4, q2) = Cov(η5, q2) = 0.
Expansion of E[η2q2] and E[η3q2] provides the following results,

Cov(η2, q2) =
16n(n− 1)(n− 2)(n− 3)(n+ 1)

n8(n2 + n+ 2)p2
(n+ 2)(n+ 4)(n+ 6)

p∑
i6=j

λ4i λ
2
j

=
16(n− 1)(n− 2)(n− 3)(n+ 1)

n7(n2 + n+ 2)
(n+ 2)(n+ 4)(n+ 6)

(
a4a2 −

a6
p

)
,

and

Cov(η3, q2) =
16n(n− 1)(n− 2)(n− 3)(n+ 1)

n8(n2 + n+ 2)p2
(n+ 2)(n+ 4)(n+ 6)

p∑
i<j

λ3i λ
3
j

=
8(n− 1)(n− 2)(n− 3)(n+ 1)

n7(n2 + n+ 2)
(n+ 2)(n+ 4)(n+ 6)

(
a23 −

a6
p

)
.

A.5. Asymptotic variances

We simplify our variance and covariance terms by finding their asymptotic values under assumptions (A) and (B) and as
(n, p)→∞,

V (η1) '
32
np
a8 =

1
np
32a8,

V (η2) '
32
n2

(
a6a2 + a24 −

2
p
a8

)
'
32
n2
(a6a2 + a24) =

1
np
32c(a6a2 + a24),

V (η3) '
16
n2

(
a24 −

a8
p

)
'
16
n2
a24 =

1
np
16ca24,

V (η4) '
64
n3

(
pa4a22 − (a

2
4 + 2a6a2)+

2
pa8

2
+ pa23a2 − (a6a2 + 2a5a3)+

2
p
a8

)
'
64
n2
c(a4a22/2+ a

2
3a2) =

1
np
64c2(a4a22/2+ a

2
3a2),

V (η5) '
8
n4

(
p2a42 − 6pa4a

2
2 + (9a6a2 + 3a

2
4)−

6
p
a8

)
'
8
n2
c2a42 =

1
np
8c3a42,
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and

V (q1) '
8
np
a4 =

1
np
8a4,

V (q2) '
4
n2

(
a22 −

a4
p

)
'
4
n2
a22 =

1
np
4ca22,

are provided in [21]. Likewise,

Cov(q1, η1) '
16
np
a6 =

1
np
16a6,

Cov(η2, η3) '
32
n2

(
a5a3 −

a8
p

)
'
32
n2
a5a3 =

1
np
32ca5a3,

Cov(η2, q2) '
16
n2

(
a4a2 −

a6
p

)
'
16
n2
a4a2 =

1
np
16ca4a2,

Cov(η3, q2) '
8
n2

(
a23 −

a6
p

)
'
8
n2
a23 =

1
np
8ca23,

and we note that for τ from Theorem 1, τ 2 ' 1 as n→∞.

A.6. Asymptotic results

To find the asymptotic distribution of our statistic, we utilize the theory of martingale-differences.

Lemma 9. Let Xn,p be a sequence of random variables with Fn,p the σ -field generated by the random variables (w1, . . . , wp),
then Fn.0 ⊂ Fn,1 ⊂ · · · ⊂ Fn,p. If E

[
Xn,p|Fn,p−1

]
= 0 a.s. then (Xn,p,Fn,p) is known as a martingale-difference array. If

(1)
∑p
j=0 E

[
(Xn,j)2|Fn,j−1

] p
→ σ 2 as (n, p)→∞.

(2)
∑p
j=0 E

[
X2n,jI(Xn,j > ε)|Fn,j−1

] p
→ 0

then Yn,p =
∑p
j=0 Xn,p

D
→ N(0, σ 2).

The second condition is known as the Lindeberg condition. The result can be found in numerous texts, see [7] or [19]. The
second condition can be satisfied with the stronger Lyapounov type condition

p∑
j=0

E[X4n,j|Fn,j−1]
p
→ 0.

Proposition 1. Under assumptions (A) and (B), as (n, p)→∞

√
np



q1 − a2
η1 − a4
q2
η2
η3
η4
η5


D
→ N





0
0
0
0
0
0
0

 ,


σ 2q1 σq1η1 0 0 0 0 0
σq1η1 σ 2η1 0 0 0 0 0
0 0 σ 2q2 σq2η2 σq2η3 0 0
0 0 σq2η2 σ 2η2 ση2η3 0 0
0 0 σq2η3 ση2η3 σ 2η3 0 0
0 0 0 0 0 σ 2η4 0
0 0 0 0 0 0 σ 2η5




,

where σ 2q1 , σ
2
η1
, σ 2q2 , σ

2
η2
, σ 2η3 , σ

2
η4
, and σ 2η5 are the asymptotic variances of q1, η1, q2, η2, η3, η4 and η5 respectively with the

convergence rate of
√
np. σq1η1 , σq2η2 , σq2η3 and ση2η3 are the asymptotic covariance terms of q1 and η1, q2 and η2, and η3

defined in Appendices A.4 and A.5.

Proof. Consider a set of arbitrary non-zero constants kis such that
√
npK =

√
np (k1(q1 − a2)+ k2(η1 − a4)+ k3q2 + k4η2 + k5η3 + k6η4 + k7η5)

and without loss of generality, k1 + · · · + k7 = 1. With respect to the increasing set of σ -fields, Fn,l = σ {w1, . . . , wl} we
note that K will satisfy the conditions of Lemma 9 if each term also satisfies the requirements. Condition (1) is satisfied by
noting

V [K ] = V [k1(q1 − a2)] + · · · + V [k2η5] + Cov[k1(q1 − a2), k2(η1 − a4)] + · · · + Cov[k6, η4, k7η5]
≤ V [k1(q1 − a2)] + · · · + V [k2η5] + V [k1(q1 − a2)]1/2V [k2(η1 − a4)]1/2 + · · · + V [k6η4]1/2V [k7η5]1/2.
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To satisfy condition (2) of Lemma 9 we will use the well known inequality for any random variables Y1, . . . , Yn

E

∣∣∣∣∣ n∑
i=1

Yi

∣∣∣∣∣
p

≤ np−1
n∑
i=1

E[|Yi|p]

and the Lyapounov condition. That is,

E[K 4] ≤ 73
(
k41E[(q1 − a2)

4
] + · · · + k47E[η

4
5]
)

and if each component goes to zero, then the fourthmoment of K will also go to zero resulting in asymptotic joint-normality.
The centralized forms of q1 and η1 have i.i.d. components and satisfy the requirements for the typical central limit

theorem, so they clearly satisfy the requirements for martingale-difference. The other terms require additional work.
Here we provide the details for η2, the remainder of the terms follow the same procedure and details can be found
in [8].
Define the σ -field generated by the random variables Fn,j = σ {w1, w2, . . . , wj}. We then rewrite η2 as

nη2 =
K2
p

p∑
i6=j

λ3i λjVij =
K2
p

p∑
i<j

λ3i λjVij + λiλ
3
j Vji

=
K2
p

p∑
j=2

j−1∑
i=1

λ3i λjVij + λiλ
3
j Vji

using the notation from Appendix A.3.2 and

K2 =
4

n5(n2 + n+ 2)
= nC2.

Define

Xn,j =
j−1∑
i=1

K2
p

(
λ3i λjVij + λiλ

3
j Vji
)
=

j−1∑
i=1

Yij

and note the following conditional expectations

E[v2iiv
2
ij |Fn,j−1] = v

3
ii, E[v3iivjj|Fn,j−1] = nv

3
ii,

E[v2jjv
2
ij |Fn,j−1] = (n+ 2)(n+ 4)vii, E[v3jjvii|Fn,j−1] = n(n+ 2)(n+ 4)vii,

hence E[Vij|Fn,j−1] = 0 and E[Vji|Fn,j−1] = 0, so E[Xn,j|Fn,j−1] = 0. Following the methodology from Appendix A.3.2 we can
calculate and show that condition (1) from Lemma 9 holds. Begin by noting

X2n,j =
j−1∑
i=1

Y 2ij + 2
j−1∑
i<k

YijYkj. (12)

We use the well-known result about expectations

E[E[X2n,j|Fn,j−1]] = E[X
2
n,j]

and

E[X2n,j] = E

( j−1∑
i=1

Yij

)2
=

j−1∑
i=1

E[Y 2ij ] + 2
j−1∑
i<k

E[YijYkj].

By the methodology from Appendix A.3.2,

E[YijYkj] = 0

and for large n

j−1∑
i=1

E[Y 2ij ] =
j−1∑
i=1

K 22
p2
(
λ6i λ

2
j E[V

2
ij ] + 2λ

4
i λ
4
j E[VijVji] + λ

2
i λ
6
j E[V

2
ji ]
)
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=

j−1∑
i=1

16
O
(
n14
) 1
p2
(
λ6i λ

2
j O
(
n14
)
+ 2λ4i λ

4
j O
(
n14
)
+ λ2i λ

6
j O
(
n14
))

=
16
p

(
λ2j a6 + 2λ

4
j a4 + λ

6
j a2
)
.

Hence

E

[
p∑
j=2

E
[
X2n,j|Fn,j−1

]]
=

p∑
j=2

E[X2n,j]

=

p∑
j=2

16
p

(
λ2j a6 + 2λ

4
j a4 + λ

6
j a2
)

= 32(a6a2 + a24).

If we can show that

V

[
p∑
j=2

E
[
X2n,j|Fn,j−1

]]
→ 0 as (n, p)→∞,

then by the law of large numbers, condition (1) of Lemma 9 will be satisfied.
Using (12) we can find the conditional expectation given the σ -field Fn,j−1. It is fairly straightforward to show

E[YijYkj|Fn,j−1] = 0.

Hence

E[X2n,j|Fn,j−1] =
j−1∑
i=1

E[Y 2ij |Fn,j−1]

and for large n

E[Y 2ij |Fn,j−1] =
K 22
p2
(
λ6i λ

2
j O(n

8)v6ii + 2λ
4
i λ
4
j O(n

10)v4ii + λ
2
i λ
6
j O(n

12)v2ii
)
. (13)

Utilizing the triangular sequencing allows us to compute

V

[
p∑
j=2

E
[
X2n,j|Fn,j−1

]]
=

p−1∑
i=1

V

[
p∑

j=i+1

E[Y 2ij |Fn,j−1]

]
and from (13)

p−1∑
i=1

V

[
p∑

j=i+1

E[Y 2ij |Fn,j−1]

]
≤
K 42
p2

p∑
i=1

(
λ12i a

2
2O(n

16)V [v6ii] + λ
8
i a
2
4O(n

20)V [v4ii]

+ λ4i a
2
6O(n

24)V [v2ii] + λ
10
i a2a4O(n

18)Cov(v6ii, v
4
ii)

+ λ8i a2a6O(n
20)Cov(v6ii, v

2
ii)+ λ

6
i a6a4O(n

22)Cov(v4ii, v
2
ii)
)

and its straightforward to calculate V [v6ii] = O(n
11) and the other variance and covariance terms. When including the

K 42 = O(n
−28) it is easy to see that V

[
E[Y 2ij |Fn,j−1]

]
= O(n−1p−2). From here it is clear that V

[∑p
j=2 E

[
X2n,j|Fn,j−1

]]
=

O((np)−1)→ 0 as (n, p)→∞.
To show the Lyapounov type condition consider

X4n,j =
j−1∑
i=1

Y 4ij + 4
j−1∑
i6=k

Y 3ij Ykj + 6
j−1∑
i<k

Y 2ij Y
2
kj + 12

j−1∑
i6=k<l

Y 2ij YkjYlj + 24
j−1∑

i<k<l<m

YijYkjYljYmj

and only the Y 4ij and Y
2
ij Y
2
kj have non-zero expectation. For large n

j−1∑
i=1

E
[
Y 4ij
]
=
256
p3

(
λ4j a12 + 4λ

6
j a10 + 6λ

8
j a8 + 4λ

10
j a6 + λ

12
j a4

)
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and
j−1∑
i<k

E
[
Y 2ij Y

2
kj

]
=
256
p2

(
λ4j a

2
6 + 4λ

6
j a4a6 + 4λ

8
j a
2
4 + 2λ

8
j a2a6 + 4λ

10
j a2a4 + λ

12
j a

2
2

)
.

Hence
p∑
j=2

E
[
X4n,j
]
=
256
p2
O(1)+

256
p
O(1)→ 0 as (n, p)→∞

and we have satisfied the second condition of Lemma 9. This completes the proof for the asymptotic normality of nη2. We
utilize assumption (B) to rewrite our result with the same convergent rate of

√
np.

As previously stated, we leave out the details for the remaining terms, available in [8], but we do make the following
points of interest about η4 and η5:η4 can be rewritten as

η4 =

p∑
k=3

k−1∑
j=2

j−1∑
i=1

λ2i λjλkVijk + λiλ
2
j λkVjik + λiλjλ

2
kVkij

with Vijk, Vjik and Vkij being the random components. Calculate the conditional expectation based on the σ -field with index
based on k. We note the index is assigned tomatch that of the the η4 term but is the same increasing set of σ -fields as before.
In the Vkij term, the following conditional expectation is tricky and must be found through expansion of summations,

E[v2ikv
2
jk|Fn,k−1] = 2v

2
ij + viivjj.

For η5, the σ -field is defined with an index based on l. In the arguments for η4 and η5, assumption (B) must be utilized to
handle the double and triple summations in the defined Xn,k and Xn,l respectively. �

A simple linear transformation provides the following important result,

Proposition 2.

√
np
(
â2
â4

)
D
→ N2

((
a2
a4

)
,

(
σ 22 σ24
σ24 σ 24

))
,

where σ 22 , σ24 and σ
2
4 are the (n, p)-asymptotic variance and covariance of â2 and â4 with respect to the

√
np convergent rate

defined as

σ 22 ' 8a4 + 4ca
2
2,

σ24 ' 16a6 + 16ca4a2 + 8ca23,

and

σ 24 ' 32a8 +
32
n
(pa6a2 + pa24)+

16
n
pa24 +

64pa5a3
n

+
32pca4a22
n

+
64pca23a2
n

+
8pc2a42
n

= 32a8 + 48ca24 + 32ca6a2 + 64ca5a3 +
3
2
c2a4a22 + 64c

2a23a2 + 8c
3a42.
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