Journal of Multivariate Analysis 101 (2010) 2554-2570

Contents lists available at ScienceDirect

Multivariate
Analysis

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

A new test for sphericity of the covariance matrix for high
dimensional data

Thomas J. Fisher **, Xiaogian Sun®, Colin M. Gallagher®

2 Department of Mathematics and Statistics, University of Missouri-Kansas City, Kansas City, MO 64110, USA
b Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA

ARTICLE INFO ABSTRACT
Artidf—’ history: In this paper we propose a new test procedure for sphericity of the covariance matrix when
Received 12 November 2009 the dimensionality, p, exceeds that of the sample size, N = n + 1. Under the assumptions

Available online 3 August 2010 that (A)0 < trX/p < coasp — oofori=1,...,16and (B) p/n — c < oo known as

the concentration, a new statistic is developed utilizing the ratio of the fourth and second
arithmetic means of the eigenvalues of the sample covariance matrix. The newly defined

AMS subject classifications:

ggg:g test has many desirable general_asymptotic properties, such as r101_'mality and consistenc_y
when (n, p) — oo. Our simulation results show that the new test is comparable to, and in

Keywords: some cases more powerful than, the tests for sphericity in the current literature.

Covariance matrix © 2010 Elsevier Inc. All rights reserved.

Hypothesis testing
High-dimensional data analysis

1. Introduction

Many applications of modern multivariate statistics involve a large number of variables, p, and hence a large covariance
matrix. In many situations (e.g. DNA microarray data) the dimensionality exceeds that of the number of observations,
N = n+ 1.In this article, we discuss much of the previous work in developing statistics for testing if the covariance matrix is
proportional to the identity, more commonly called Sphericity. We consider X1, . .., Xy as a set of independent observations
from a multivariate normal distribution N,(w, ), where both the mean vector p € RP and covariance matrix X > 0 are
unknown. We are interested in testing Hy : ¥ = o2l vs. Hy : ¥ # oI, where o2 is the unknown scalar proportion.
The classical hypothesis testing techniques are based on the likelihood ratio and are degenerate when p > n. Motivated
by the previous work in the literature, we define a new test statistic under the framework known as general asymptotics or
(n, p)-asymptotics.

Much of the current work rests on the large body of literature regarding asymptotics for eigenvalues of the sample
covariance matrix, such as Arharov [2], Bai [3], Narayanaswamy and Raghavarao [12], Serdobolskii [ 18,17], Silverstein [20],
Yin and Krishnaiah [24] and others. We build on the substantial list of work completed on statistical testing involving large
random matrices, such as Bai et al. [4], Saranadasa [13] and most recently the work completed by Ledoit and Wolf [11],
Srivastava [21-23] and Schott [14-16].

Ledoit and Wolf[11] show the locally best invariant test based on John’s U statistic, see [10], to be (n, p)-consistent when
p/n — ¢ < oo, where c is a constant known as the concentration. However the distribution of the test statistic under the
alternative hypothesis is not available. Like that in Ledoit and Wolf [11], Srivastava [21] proposes a test based on the first
and second arithmetic means of the eigenvalues of the sample covariance but only requires the more general condition
n = 0(p®),0 < § < 1.He shows that the test is (n, p)-consistent and provides the distribution of the test statistic under
both the null and alternative hypotheses. In [22], he proposes a modified version of the Likelihood Ratio Test (LRT) in which
only the first n eigenvalues are used. This test is applicable under the assumptions n/p — 0 and n fixed.
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Motivated by the previous literature, we propose a test based on the second and fourth arithmetic means of the
eigenvalues of the sample covariance matrix. The asymptotic distribution of the test statistic under both the null
and alternative hypotheses is provided. The proposed the test is consistent under the general asymptotics framework.
Furthermore, we provide a brief simulation study validating our theoretical work, demonstrating an improvement over
the previous literature under certain alternative hypotheses and apply our test statistic to real microarray data. Lastly, we
provide concluding remarks.

2. Description of the new test

Suppose X1, ..., Xy ~ Ny(, ), N = n+ 1, and we are interested in testing,
Ho: X =0%lvs.Hy: £ # ol

Like that of the Likelihood Ratio Test in classical multivariate statistics, testing remains invariant under the transformation
x — Gx, where G is an orthogonal matrix. The test is also invariant under the scalar transformation x — cx; thus we may

assume without loss of generality X' = diag(, ..., Ap). From the Cauchy-Schwarz inequality, it follows that
P 2 P
>} <o (3r).
i=1 i=1
with equality holding ifand only if Ay = --- = A, = A, foralli = 1, ..., p and some constant A. Thus, we may consider

testing Hy : ¥, = 1vs.Hy : ¢ > 1 with

p
()

l; .
()

We note this test is based on the ratio of arithmetic means of the sample eigenvalues. Srivastava [21] considers the case
where r = 1, we look at the case of r = 2.
We make the following assumptions

l[/r: (])

(A)Asp—>oo,a,-—>a?, O<a?<oo,i=1,...,16,
(B)As(n,p)—>oo,%—>c where 0 < ¢ < o0,

where

lesi= 1y
a; = —1r = — :
o P&

and the A;s are the eigenvalues of the covariance matrix, i.e. g; is the ith arithmetic mean of the eigenvalues of the covariance
matrix.

Theorem 1. An unbiased and (n, p)-consistent estimator of ay = Zle k;‘ /p is given by

s = z[trs4 H+b-trSPtrS+c* - (trS?)% +d - trS?(trS)? +e - (tr$)*] (2)
p
where
po 4 e 2n* +3n—6 g 206n+6) o 5n+6
oo’ T onm®+n+2)’ T nm2+n+2)’ T o2 +n+2)’
and

o (% +n+2)
T+ DM +2)n+Hn+6)(n—1)(n—2)(n—3)

Proof. From Lemma 3 in the Appendix,

p
. (n(n +2)(n+4)(n —|—66)(n — D —-2)n—3)n+1) Z)‘?)
pnb(n? +n+2) —

E[a4]

Il
T =
7=
>
<
Il
Q
S
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Using the asymptotic behavior of the variance of a, from Appendix A.5 and an application of Chebyshev’s inequality
completes the result:

N 1 N
P[las —as| > €] < G—ZVar[a4]
_1(32 32 o 16 , 64 ) , 8 L. 32
=2 %as +3 (asaz + a3) + ﬁ(a4) + n—z(cawz/z + cazaz) + n—2(c a;) + 2n—2(asa3)

— 0 as(n,p) > oco0. O

Srivastava [21] provides an unbiased and consistent estimator for a, which is

. n 1 , 1 5
)= ———— | trS° — —(trS)“ |. (3)
(n—1Dm+2)p n
Thus an (n, p)-consistent estimator for v, is provided by
~ . a4
2 = ?1%'

The derivation and justification for our estimator d4 in (2) is provided in the Appendix. The following theorem and
corollary provide the asymptotic distribution under the alternative and null hypotheses. We remind the reader that c is
the concentration, not to be confused with the constant ¢* in Theorem 1.

Theorem 2. Under assumptions (A) and (B), as (n, p) — o0

n a4 D 2
R — e S (X )
V8(8 + 12¢ + ¢2) \a;
with
2 1 45, 8 ) 3 2 4 2.3 2.6
& = m Ea4 — Ea4a2a6 — 4asa,a5 + Eazag + 4aga; + 8azasas + 4casa; + 8caza; +cay ). (4)
2

Proof. The result follows from Proposition 2 and an application of the delta-method with some additional algebra. O

Corollary 1. Under the null hypothesis, 1, = 1, and under the assumptions (A) and (B), as (n, p) — oo

n a4 D
T = () (5 - 1) = N(, 1). (5)
V8(8 4+ 12c +c2) ) \a;

Proof. Under Hy, each A; = A, fori =1, ..., p and some constant A. Thus 522 = 1, which completes the proof. O

From the asymptotic distribution under the alternative hypothesis we are able to determine the (n, p)-asymptotic
behavior of the power function of our test statistic.

Theorem 3. Under assumptions (A) and (B), as (n, p) — oo the test statistic T in (5) is (n, p)-consistent.

Proof. For large n and p, the power function of T is

”(%_ ) 2z
£/88+12c +c2) &

Under assumptions (A) and (B), we know 522 from (4) is constant. From the properties of @ (-), it is clear that Power, (T) — 1
as(n,p) - oco. O

Power, (T) >~ @

3. Simulation study

A simulation study shows the effectiveness of our test statistic. We first provide a study verifying the normality of our test
statistic by simulating the Attained Significance Level (ASL), or size, of our newly defined test statistic. Draw an independent
sample of size N = n + 1 from a valid p-dimensional normal distribution under the null hypothesis (i.e. each ; = 1).
Replicate this 1000 times. Using T from (5) we calculate

#T > z,)

ASLD) = 000
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Table 1

ASL for T in (5).
p=cn c=1 c=2 c=4 c=5
n=25 0.036* 0.040 0.050 0.056
n=>50 0.050 0.061 0.050 0.058
n = 100 0.060 0.052 0.048 0.054
n =150 0.049 0.048 0.049 0.047
n =200 0.047 0.055 0.057 0.051

Table 2

ASL for T from [21].
p=cn c=1 c=2 c=4 c=5
n=25 0.050 0.067* 0.057 0.057
n=>50 0.055 0.049 0.051 0.053
n = 100 0.057 0.053 0.056 0.060
n =150 0.054 0.046 0.050 0.040
n =200 0.041 0.043 0.052 0.042
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Fig. 1. Normal QQ-Plot for T in (5) under Hp.

denoting the ASL of T where z, is the upper 100«:% critical point of the standard normal distribution. We test with « = 0.05.
Table 1 provides the results for an assortment of ¢ = p/n values for our newly defined test statistic. Table 2 provides
analogous results for the test statistic defined in [22], denoted T;. Ledoit and Wolf [11] provide similar results for their test
statistic based on John’s U statistic, denoted U;. Only in one case in each table do we have a simulated size that is significantly
different (see * in Tables 1 and 2) than the predicted size of 0.05. We also look at QQ-Plots for the test statistic T under both
the null and alternative hypotheses. Begin by sampling N = n + 1 = 201 observations from a p = 400 dimensional normal
distribution with mean zero vector and an identity covariance matrix, hence A; = 1 for all i. Calculate the test statistic, T,
and repeat the process 1000 times. Fig. 1 shows the QQ-Plot of the 1000 observed values of the test statistic under the null
hypothesis. Similarly we repeat the simulation under the alternative hypothesis with ¥ = A = diag (4, ..., A,) witheach
Ai ~ U(0.5, 1.5) and n = 200, p = 400. Fig. 2 shows the results for the 1000 observed values of the test statistic. In both
cases, the normality result appears to be satisfied by the QQ-Plots for large n and p validating the theoretical result.

Lastly a series of power simulations to confirm the consistency of our test and to demonstrate its improved performance
under certain alternative hypotheses is performed. From our simulation studies it appears the newly proposed test statistic
performs well when only a few elements of the covariance matrix are different. Define near spherical matrices to be of the

form,
(e 0
== )

where © is a k x k diagonal matrix, k < p, with all elements 6; # 1.lisa (p — k) x (p — k) identity matrix and 0 is a
(p — k)-vector of zeros. k is chosen to be small, so the near spherical matrix will be the identity with the exception of a few
elements.
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Fig. 2. Normal QQ-Plot for T in (5) under Hp.
Table 3
Simulated power under near spherical covariance matrix with k = 1.
p=cn c=1,0=3 c=2,0=4
Our T Ts U Our T T Uy
n=25 0.505 0.427 0.436 0.580 0.463 0.521
n =50 0.647 0.489 0.633 0.750 0.599 0.773
n = 100 0.794 0.529 0.794 0.901 0.641 0.904
n = 150 0.858 0.565 0.845 0.938 0.680 0.940
n =200 0.903 0.624 0.912 0.969 0.710 0.975
Table 4
Simulated power with k = 6, ® = diag (0.75, 1.25, 1.75, 2.25, 2.75, 3.25).
p=cn c=1 c=2
Our T Ts U OurT Ts U
n=25 0.609 0.722 0.548 0.416 0.495 0.384
n =50 0.908 0.895 0.895 0.692 0.630 0.695
n = 100 0.991 0.974 0.992 0.849 0.722 0.846
n =150 0.999 0.988 0.999 0.899 0.749 0.907
n =200 1.000 0.999 1.000 0.938 0.770 0.938

To make comparisons with the test statistics defined in [21,11], we perform a similar test to that described in [22]. A
simulation is used to obtain the critical point of our test statistic (and that from [21,11]). Letting N = n + 1 and p increase
such that p/n — ¢, we compute, under Hy : X = I, 1000 simulated observed values our test statistic T and find T, such
that

P(T>T,) =«.

T, is the estimated critical point at significance level «. The same is repeated for the test statistics described in [21,11]. Then
simulate from a p-dimensional normal distribution with zero mean vector and a near spherical covariance matrix.

We provide examples for two cases of near sphericity. Table 3 shows two results for the case where k = 1, or ® is a
scalar of element 6. Each element of the covariance matrix is the same, with the exception of one element. Two examples
are provided,# = 3withc = 1and 6 = 4withc = 2.Table 4 provides two results,c = 1and ¢ = 2, for the case wherek = 6
elements differ from the spherical model, i.e. ® = diag (0.75, 1.25, 1.75, 2.25, 2.75, 3.25).Tables 3 and 4 show that all three
test statistics appear to be consistent as (n, p) — oo and that, under the simulated near spherical alternative hypothesis,
our newly defined test is more powerful than that described in [21] and is comparable to that described in [11]. Simulation
studies with other covariance matrices under the alternative hypothesis are available in [8]. They show consistency of the
test statistics. The best performing test varies depending on the covariance matrix under the alternative hypothesis.

Lastly we study the effect of 6 in the case where k = 1. Table 3 indicates our newly proposed statistic is comparable to
that of Ledoit and Wolf [ 11] and tends to perform better than Srivastava [21]. In this study we letn = 50, ¢ = 3 and the value
of 6 increases. Fig. 3 provides the simulated power after 1000 runs for our newly proposed test and that of Srivastava [21].
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Fig. 3. Simulated power of T and T; as 6 increases.

We see from the plot that neither test performs particularly well when 6 is small. As 0 increases the newly proposed test
appears to dominate that of Srivastava. Both appear to become consistent as 6 grows.

4. Data examples

In this section, for a further comparison we test the hypothesis of sphericity against two classic data sets. We follow
the preprocessing protocol attributed to Dudoit et al. [6] and Dettling and Biihlmann [5] by thresholding, filtering, and a
logarithmic transformation but do not follow standardization so as to compare to the results in [22]. Preprocessed data are
available at the website of Prof. Tatsuya Kubokawa: http://www.e.u-tokyo.ac.jp/~tatsuya/index.html (last accessed: 27 April
2010).

4.1. Colon dataset

In this dataset, expression levels of 6500 human genes are measured using Affymetrix microarray technology on 40
tumors and 22 normal colon tissues. A selection of 2000 genes with the highest minimal intensity across the samples has
been made by Alon et al. [1]. Our dimensionality is p = 2000 and the degrees of freedom available to estimate the covariance
matrix is only 60. The data s further described and is available at the Princeton Oncology website. Calculate an estimate of the
covariance matrix using a pooled covariance matrix with 60 degrees of freedom. We compute test values of T = 185.8071
from (5), Ty = 2771.6538, and U; = 2816.2916 where T is the sphericity test from Srivastava [21] and U is that from Ledoit
and Wolf [11], respectively. In each case we get a p-value ~ 0 indicating any assumption of sphericity in the case of these
data to be false.

4.2. Leukemia dataset

This dataset contains gene expression levels of 72 patients either suffering from acute lymphoblastic leukemia or acute
myeloid leukemia. There are 47 and 25 patients for each respective case and they are obtained on Affymetric oligonucleotide
microarrays. The data is attributed to Golub et al. [9]. The data is comprised of p = 3571 genes and the degrees of freedom
available are only 70. The data is available and described further at the Broad Institute’s website. The leukemia data is
preprocessed in the same way and we get the observed test statistic values of T = 242.4386, T, = 2294.9184, and
Uy = 2326.7520 for T in (5), T; from Srivastava [21] and U; from Ledoit and Wolf [11], respectively. In each case we get
a p-value ~ 0 indicating any assumption of sphericity in the case of these data being false.

5. Concluding remarks

We have proposed a new test for sphericity of the covariance matrix. Like that of Srivastava [21], our test is based on the
Cauchy-Schwarz inequality. Unlike Johns U-statistic and Srivastava’s T; test, we look at the second and fourth arithmetic
means of the sample eigenvalues. Simulations indicate that the newly defined test statistic, T in (5), appears to perform
better in some near spherical cases and is comparable to tests in the previous literature.

5.1. Notes on assumptions and limitations

The two underlying assumptions, (A) and (B), are comparable to that of Ledoit and Wolf [11], with the exception that the
sixteenth arithmetic mean of the covariance matrix is assumed to be convergent as p — o0. Both our test and that of Ledoit
and Wolf [11] require p/n — c as (n, p) — oo. This assumption is more restrictive than that in [21] but does not appear
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to hinder the application of the test statistic in practice, since c is easily approximated with the ratio of p to n. We further
note that the requirement of convergence of the sixteenth arithmetic mean is higher than the eighth in [21] and the fourth
in[11].

There is an increase in the variability of our test statistic compared to that of Srivastava [21]. As you look at higher
arithmetic means, the variance increases. Although the two tests are asymptotically comparable and the newly defined test
appears to be more powerful in near spherical cases of X, the larger variance of T may be a problem in certain cases.

5.2. Future work and recommendations

Our new test is of the form (1) with r = 2. This builds upon the work of Srivastava [21] who defined a test based on
r = 1. Future work may look atr = 3, 4, .... We conjecture that, although more powerful in certain alternative hypotheses,
these test will make more restrictive assumptions and the variance of the corresponding test statistic will grow to the point
where it may be infeasible to use the statistic. In the case of r being a fraction (e.g. r = 0.5) we suspect the test may show
an improvement in some cases of X' and in general will not be hindered by infeasible assumptions and a large variance.
However, we suspect the distribution of terms like @y, to be difficult to determine and we leave this question open.

Although each of the tests described is asymptotically comparable, each test seems to perform better under certain
alternative hypotheses. We recommend our newly defined test, T in (5), when a near spherical covariance matrix is
suspected.
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Appendix

A.1. Expression of estimator for a,

Obtain expressions for trS, tr S, (trS)?, trS2(trS)?, trS3tr S, tr S# and (tr $)* in terms of chi-squared random variables.
We make use of the following well-known result from [17].

Lemma 1. Consider the sample covariance matrix and recalling N = n + 1,
1 N
S=- Z(x,» — X)X —X).
i—
There exists an orthogonal transformation of vectors
N
Yk = Z $21iXi,
i=1

such that the vectors yy = ~/Nxand y; ~ N(0, ),k = 1, ..., n, are independent, and the sample covariance matrix is equal
to

-l n
S=-> y
n i=1

Let nS = YY' ~ W,(X,n), whereY = (¥1,¥2,...,¥yn) and each y; ~ N,(0, X) and independent. By orthogonal
decomposition, ¥ = I'"ATI", where A = diag (A1, A5, ..., Ap) with A; being the ith eigenvalue of X and I" is an orthogonal

matrix. Define U = (uy, U, . . ., Uy), where u; are i.i.d. Ny(0, ) and we can write Y = X/2U where ¥'/2X1/2 = ¥. Define
W' = (wq, wy, ..., wp) = U'T" and each wj are i.i.d. N, (O, I).
Define v; = wjw; and it is easy to see that each v; is an i.i.d. chi-squared random variable with n degrees of freedom.

Thus, ntrS = tr W AW.
From [21] we get the following important results

p
ntrS = Z Aivii,
i=1

p p
nz(trS)z = Z )\izvizi +2 Z Aidjviivjj,
i=1

i<j
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and

n*trs? = Zkzvz + ZZAA Uu

i=1 i<j

Using the same approach and the commutative property of the trace operation (i.e. tr (ABC) = tr (CAB)), we derive,
n*tr$* = tr (W AW)(W AW) (W AW) (W' AW)

p 4
Z )»,-wiw{
i=1

)4
= Z A 14 Z Aol + Z 207 (Avivgvf + 20 + > AZA A (8vivvvi + 4v5vh)

i=1 i#j i<j i#j<k
p
+ E AidjAk A (Buiv Vv + 8V UkVik + 8V Uk Vjivir) -
i<j<k<l

Likewise we find analogous results for n*tr S3tr S, n*(tr §2)2, n*tr S2(tr $)?, and n*(tr $)*. Consider the constants b, c*, d, e
defined in Theorem 1, then rewrite

trS* + btr $3tr S + c*(tr $?)% + dtr S2(tr $)% + e(tr 5)*

=m+n+n+ns+ns,

p
where
n—5n°+5m°+5n—-6 1 &
= 2 (12 TZ)‘4 i (6)
n’(n°+n+2) ntp ‘=
- 4 iﬂ)\‘ vivg(n* — 4n’ 4+ n? + 6n) 4 viv;(—n’ + 4n*> —n —6) )
Pt Z n2(n? +n+2) ’
2 & vivju(2n* — 100> + 12n%)
7)3:421’2)“1‘2 : sz
nip 4 n*(n> +n+2)
(n —3n® — 4n? +12n)+v” jj( 2n3 +7n* +3n — 18) ®)
n2(n?24+n+2) ’
v2(=2n® +2n? + 12n)
s = Z)”z)‘f k ”]k 2(12
np S n‘(n°+n+42)
(v,,v,]vkk+v,,v1kvﬂ)( 3n3 + 7n? +6n)+v”vﬂvkk(5n — 91— 18)
n?(n®> +n+2)
ViU vk (20 — 4n® — 2n* — 12n) 4 vivg (n* — 3n® — 4n® + 12n) (©)
+ n2(n2+n+2) ’

with the indexread asi # j,i # kandj < k, and
8 n*(n®> +n+2)
ns = % i<j<2k<lxixjx,<kl (nz(nz Thnt2) (VUK VKVl + ViUV Vik + VikVjkVjiVir)
3n(n® +n+2) n(2n® 4+ 3n — 6)

(ViiVjk ViV + VjjVik VitV + VkkViiUinVji + VvvikVix) — ————————
nz(n2+n+2) JK Y] oli y il 1] il nz(n2+n+2)

n(5n + 6) 3(5n + 6)viivjjvikvn
2R+t 2) (vu Vv + VU0 + VUV + v kv,,v” +v ,v,,vkk + vhviv;) — peyrcans el | (10)

(v v + ViU il i+ Uzl )

A.2. Calculation of E[a4]

We begin by summarizing some results about the random components of our estimator.
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Lemma 2. For v; = (wjw;) and vy = (wjwj) for any i # j,

E[viivi?] =n(n+2), E[vivi] = n(n +2)(n + 4),
E[v 1=3n(n+2), E
E[v,,v vl =n(n+ 2)2,
E[vuvlkv]k] =n,

E[vivjvivje] = n(n + 2).

[ 11 Ui
[v é]
[valk] = n(n +2),
E[vjvgvpvn] = n,

Using Lemma 2 we can easily calculate the expected value of .
Lemma 3. For ny, 02, 3, 4, 15 in (6)-(10) respectively,

p
nn+2)n+dHhm+6)(n—-—1HMm—-2)(n—-3)(n+ 1) Z)‘:’l

E =
[m] (£ 1+ 2)

and
E[n2] = E[n3] = E[n4] = E[ns] = 0.

Proof. Using the fourth moment of a x2 r.v. it is easy to see the first result. Using the results in Lemma 2 it is easy to find

E[n:] =

3 nn+2)(n+4)(n* —4n3 +n? +6n)  n*(n+2)(n+4)(—n®+4n’> —n —6)
Z)“ 2(12 + 22 =0.
n“(n*+n+2) n?(n?+n+2)

'#J
An analogous derivation provides the result for 3, n4and ns. O

A.3. Calculation of V[a,)

To calculate the variance of the estimator in (2) we recall the moments of x2 and standard normal random variables
when needed. We also need the following lemma.

Lemma 4. Let Q be an orthogonal matrix such that A; = ij]f = Q'DQ with D = QA;Q’ and D = diag (w]fwj, 0,...,0).Given
Aj, we can find x; = Qw; ~ N, (0, ) and it follows that x; is independently distributed of A;. Now X; = (Xi1, ..., Xin) = Qw; ~
N, (0, I) and thus x;; is independent of wfwj and also xy, for k = 2, ..., n, hence

E[vz] = E[w Wjw; ‘wi] = E[wA w;] = E[x,lw wjl,
and

E[v 1= E[(w; wjw wi)?] = E[(wjAjw;)?] = E[xll(w w;)?].
Proof. A; is a function of the random variable w; and ¥; is a function of the random variable w;. w; and wj; are independent

by definition, hence x; and A; are independent. Furthermore an orthogonal transformation does not alter the distribution of
a normal random variable. Matrix algebra provides the remainder of the derivation. O

A.3.1. Variance of 4

Lemma 5. The variance of n; is given by

32 2 4 6 14 60
Viml = (E2ms nzg'Zn—;—f—)r(ln—i——i_ZQ(n SSLuiis )( —5n° 4 5n° + 5n — 6)%as.

Proof. Find the variance of v by utilizing the expected values of the eighth and fourth moments of a x2 random variable,
and the remainder of the algebra is as follows.

=53 +5m+5m—6 1 &
V[m]ZV[ — > v

n2m?+n+2) nip —
n* —5n% +5n% +5n— 6\ &
= o ZA?V[U;}]
nm2+n+2)p .

32(n + 2)(n + 4)(n + 6)(n + 7)(n* + 14n + 60)
= nll(n2+n+2)2 ( —5n° +5n +5n—6) ag. O
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A.3.2. Variance of 1,

We provide details on the derivation of the variance of 7, in (7). From Lemma 3, we know E[n;] = 0 and hence
V[n2] = E[n3]. Rewrite 1 in the form

CZZA AV,

i#j
where
_ 4
T2 +n+2)’
and
Vij = viving + vjujng, (11)
where ny = n* — 4n® + n? + 6nand n, = —n® 4 4n* — n — 6. Then n3 can be expressed as,

P nz Z MAVE +2 Z A MMV Vi + 2 Z P
C i#j i#j<k i<j

p )4
+2 Z AR M VaVii + Z A M ViV + 2 Z AR i (VieVi + VaVi).-
i#j#k i<j#k i<j#k<l

To compute the variance of 1, we simply calculate the expectation of each component above. Much of this derivation follows
from the moments of x? and standard normal random variables and by application of Lemma 4. The results for each Vjj type
component are provided.

Lemma 6. For Vj; defined in (11),

E

E
E
E

=20’ —1)n—27°0n-3°0+1)*n+2)(n+4)(n+6)(n+8)(n + 10),

\%
[ViVil = 2n°(n 4+ 1*(n + 2)(n + 4)*(n + 6)*(n — 1)(n — 2)*(n — 3)*,
[Vl]vlk] - E[‘/lkvjl] - E[Vlk‘/jk] - Oa

[Vik jl] =E[ 1l<]E[le] =0.

This leads to the result.

Lemma 7. The variance of n, is provided by

20— DN —-2)2n—320+1D>*n+2)(n+4)(n+6)
n]O(nz +n+ 2)2

V() =

2(n* + 14n + 52
x ((n2 + 18n + 80)asaz + (n* + 10n + 24)a% — M%) .

Proof. Using the expected values from Lemma 6 and the following derivations provides the result:
p P p
goe-(£4)(£) (£
i i=1 j=1 i=1
= p2a6a2 — pag = p(pagaz — ds),
and
p p p
2 ZA“A“ = (Z x;‘) (Z ;\;‘) - (Z x?)
i<j i=1 j=1 i=1

= p°a; — pag = p(paj — ag). O

A.3.3. Variance of n3, n4 and ns

Following the same derivation in the calculation for the variance of the 5, term in Appendix A.3.2 we can find the variance
of 13, n4 and ns. We leave out the tedious algebraic details, available in [8], and provide the results.
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Lemma 8. The variances of ns, n4 and ns are

_16(n—1)(n—2)’(n—3)*(n+ (n+2)(n+4)(n+6) , ) , O
Vinsl = WOGE £t 27 (n® 4+ 15n° + 69n + 54) <a4—;>,

2 2 2
64(n+ 2 pasa; — ay — 2asa; + $4as
Vna = nlO(nz(+J;r1+)z)2 { 2 5 P (n'® 4 12n° — 138n” — 81n° + 3102n° + 200n*
2
—5316n> — 912n% — 144n + 3456) + (n + 4) (pa§a2 — agay — 2asa; + Ea8>
x (n° + 5n® — 44n” — 166n° 4+ 493n°> — 79n* — 1554n> + 1380n% + 792n — 864):|,
8mn—1n+2) 4 3 2 2 4 2 , 6
v = ——"(n 6n 9n” — 56n 132n + 144 a, — 6pasa 8aga 3a;, — —ag | .
[ns] ng(n2+n+2)( + + + + ) | p°a, pasa; + 8agdx + 3ay ps

Proof. The expectation of the individual components is straightforward and similar to the methodology in Appendix A.3.2.
Note the following

2 Z AAZAL

i#j<k

Il
—_—
g
bl
~
—
g
e
~
—_—
g
R
~

N

N
—
g

=5
~
/—\

M=

=
~

+

N
—_—
T Mw
~

= p’asa’ — p*a’ — 2p’asa; + 2pag
p(p*asa; — paj — 2pagag + 2as),
2 Z A

S (50) (£4)-(5) (54)=(54) () (24

p’aja; — p’aa, — 2p°asas + 2pas
p(p*a3a; — paga, — 2pasas + 2ag),

and

p
24 Z MM = pla — 6p’asa3 + 8p®aga, + 3p°aj — 6pas

i<j<k<l

= p(p3a‘21 — 6p2a4a§ + 8paga, + 3pai —6ag). O

A.3.4. Covariance terms of n1, 12, 03, N4 and ns
To determine the covariance terms of 7y, with 71;, 13, 14, and ns we utilize the fact that E[n;] = 0 fori = 2, 3,4,5.

Therefore
Cov(n1, n2) = E[n1m2],

and due to the independence of many of the random terms in the 7;’s, we only have to explore the variables of the form vj; V,j
and vj V,, (i.e. v and Vj are independent). Recall Vj; from (11) and see

viVi = vji (vivini + vjvyna)
= u un1 + U”UHTIZ,

where the Uﬁ component from 7 essentially adds four moments to the random variable. Taking expectations we see,

E[viVi] = n(n+2)(n + 4)(n + 6)(n + 8)(n + 10)(n + 12)(n; + nny)

= 0 withnq, n, defined in (11).

A similar results holds for vj; V,] except fourth moments of the vj;s are included. Tl’llS concept can easily be seen in the results
of Lemma 2 in Appendix A. 2 specifically with the expected values of vuv and v}v i 2 The additional v; will add an additional
moment resulting in the (n 4 4) in the expected value. In the case of n; and 7,, we add a fourth moment of v; and vj;; in
the respective calculations to both parts of Vj; in (11). Since both expectations are zero, and the other terms are zero by

independence, we determine Cov(n1, ;) = 0. Analogous results hold for the covariance terms of n; with 73, n4 and ns
respectively.
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When exploring Cov(1,, n3) we find that some of random components of 7, and 73 interact. Derivation similar to that
of Appendix A.3.2 leads to the result,

— — 22(n — 3)2 2
Cov(nz, m3) = 32(n = Din = 2)%n = 37 + 1 (n+2)(n+4)(n+6)*(n+8) <a5a3 — %8) .

n%n2 4+ n 4 2)2
Similar work reveals no other correlated terms, hence Cov(7,, n4) = 0 and Cov(7,, n5) = 0. We also find Cov(ns, n4) =
0, Cov(ns, ns) = 0 and Cov(ng4, n5) = 0.

A.4. Covariance terms of a4 and @,

Begin by recalling a result for @, in (3) from [21], since n?/(n — 1)(n +2) ~ 1,

. n—1& ,, 2 { , 1
a 1’l3p )»ivi,-—{—%Z)\ikj UU_Ev“vjj

i=1 i<j

1

=q1 + Q-

The covariance between q; of a, and the terms 7, 3, 14, and 7s is analogous to that of ; with the respective terms, resulting
in

Cov(nz, 1) = Cov(ns, 1) = Cov(n4, 1) = Cov(ns, q1) = 0.
The covariance of q; and 7, is a straightforward calculation resulting in
16(n+2)(n+4)(n+ 5)(n 4 6)
nBm?+n+2)p

Through careful expansion and taking expectations we find there are no correlated terms between g, and 11, 14 or 75
resulting in

Cov(n1, g2) = Cov(na, g2) = Cov(ns, q2) = 0.
Expansion of E[1,q,] and E[n3q,] provides the following results,

Cov(qi, m) = Q.

16n(n— H(n—2)(n—3)(n+ 1) 2y .
C = 2 4 6 A
ov(ir2. 42) T (n+2)(n+4)(n + ); A
_ 6n—1)Mn-2)n—3)(n+1) G
- n7(n2 +n+ 2) (n+2)(n +4)(n+6) ((14(12 D ) )
and
16n(n—1H(n—2)(n—3 1 P
Cov(ns, q2) = nin ns)(:; +n)$2)p2)(n+ )(n+2)(n+4)(n+6)2)\?)\j3

i<j
_ 8m—1)(n—-2)(n—3)(n+ 1)
- 2 +n+2)

de

(n+2)(n+4)(n+6) <a§ - ;> :

A.5. Asymptotic variances

We simplify our variance and covariance terms by finding their asymptotic values under assumptions (A) and (B) and as
(n, p) — oo,

32 1
V(n) ~ —ag = —32as,
np np
32 5 2 32 5 1 )
V() =~ — | ez + a; — —ag | = —(aaz + a3) = —32c(aeaz + az),
n p n np

16 ag 16 1
V(ns) ~ = (aﬁ - *) ~ —adi= El&:ai,

p n?
64 (Pasd; — (@i +2a5a2) + 20 2
V(ng) =~ e 5 + paza; — (asaz + 2asaz) + Eas

12

%c(a a2/2—|—a2a )= i64 2 272 2
2 ¢4 302) = €*(a4a3/2 + a3a3),

8 6 8 1
V(ns) >~ o (pza‘zl — 6pa4a§ + (9aga; + 3ai) — Ea8> ~ ﬁczag = %863@1,
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and
V(q1) ~ —aq = —8ay,
np np
4 ([, a4 4 , 1 5
V(@) =5 ( 5 — p) 3% %4ca2,
are provided in [21]. Likewise,

1
Cov(qq, m) >~ —as = — 164,
np np
32 ag 32 1
Cov(m, 3) = — | asa3 — — | =~ —asas = —32casas,
n np
16 1
Cov(nz, @2) = — | aat2 — — | = —as0; = —16casa;,
n p n np

8 (, as 8 , 1_ .,
Cov(ns, q2) = ) <a3 - 7) =50 = %8ca3,

and we note that for 7 from Theorem 1, 72 >~ 1asn — oo.
A.6. Asymptotic results

To find the asymptotic distribution of our statistic, we utilize the theory of martingale-differences.

Lemma9. Let X, , be a sequence of random variables with ¥, , the o -field generated by the random variables (w1, . .., wp),
then Fn,0 C Fn1 C - C Fup. If E [Xn,,,|57,,,p,1] = 0as. then (Xp,p, Fn,p) is known as a martingale-difference array. If

(1) Y7 oE [Xn )21 Fnj1] L 62as(n, p) - .
(2) Lo E[Xa X > )1 Fnja] 20

then Yy, = 0o Xup = N(0, 02),

The second condition is known as the Lindeberg condition. The result can be found in numerous texts, see [7] or [19]. The
second condition can be satisfied with the stronger Lyapounov type condition

)4
p
> EX | Fajo1] = 0.
i=0

Proposition 1. Under assumptions (A) and (B), as (n, p) — oo

S 0 o %y 0 0 0 0 0
N — da 0 Oqiny Oy, 02 0 0 0 0
qz D 0 0 0 O¢, O%aum  Oamn 0 0
/np N2 — N 0], 0 0 Ogmy Oy Ongus 0 0 ,
13 0 0 0  Ogn Oppy 0 0 0
1 0 0 0 0 0 0 o} 0
s 0 0 0 0 0 0 0 o>

=

5

2 2 2 2

where oqz], O Ogyr Oys O 0,724, and 0,725 are the asymptotic variances of qi, 01, q2, 02, 13, N4 and ns respectively with the

convergence rate of /np. oq,,,, Ogyny> Ogyns ANd 0yy,, are the asymptotic covariance terms of qq and 01, q; and n,, and ns3
defined in Appendices A.4 and A.5.

Proof. Consider a set of arbitrary non-zero constants k;s such that
K = /np (ki (g1 — a2) + ka(n1 — as) + ks3qa + kanz + ksns + kena + kins)

and without loss of generality, k; 4 - - - 4+ k; = 1. With respect to the increasing set of o-fields, F,; = o{ws, ..., w;} we
note that K will satisfy the conditions of Lemma 9 if each term also satisfies the requirements. Condition (1) is satisfied by
noting

VIK]

VIki(qr — az)]1 + - - - + V[kans] + Cov[ki(q1 — az), ka(71 — as)] + - - - + Covlks, 14, k715]
VIki(g1 — a)] + - + VIkans] + VIki (g1 — a)]"*VIko(p1 — a)]"/> + - - - + V[kenal 2V [kyms] /2.

IA
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To satisfy condition (2) of Lemma 9 we will use the well known inequality for any random variables Y, ..., Y,

n p n
ED vl <o 'Y E[YiP]
i=1 i=1
and the Lyapounov condition. That is,

E[K*] < 7° (KiE[(q1 — a2)*] + - - - + K3E[12])

and if each component goes to zero, then the fourth moment of K will also go to zero resulting in asymptotic joint-normality.

The centralized forms of gq; and n; have i.i.d. components and satisfy the requirements for the typical central limit
theorem, so they clearly satisfy the requirements for martingale-difference. The other terms require additional work.
Here we provide the details for 7,, the remainder of the terms follow the same procedure and details can be found
in [8].

Define the o -field generated by the random variables %, ; = o {w1, w», ..., w;}. We then rewrite 7, as
K: K:
gy = — Z»’*‘A Vj = — ZA% Vi + Aid} Vi
p i#j i<j
2 !
= — Z)H)‘J 11+)"\‘41
p j=2 i=1

using the notation from Appendix A.3.2 and

4
K= ———— =nG.
2T n2+n+2) 2
Define
j—1 —
K>
Xnj = § .5 (W 2Vi + Mk Vi) = § Yy

and note the following conditional expectations
E[vivi|Fajal = vi,  E[vguglFaja] = nvg,
E[vjv|Frjo1] = M4+ 2)(n+4vi,  E[vjval Fojo1] = n(n + 2)(n + 4vy,

hence E[V;j| %, j—1] = 0and E[V}i| %, j—1] = 0, so E[X,, j| #1,j—1] = 0. Following the methodology from Appendix A.3.2 we can
calculate and show that condition (1) from Lemma 9 holds. Begin by noting

Z +ZZYUY,<] (12)

i<k

We use the well-known result about expectations

E[E[X,iﬂ?n,jf]]] = E[Xij]

)

and

j—1 j—1
= Y EIVi14+2 ) ElYYyl.
i=1 i<k

By the methodology from Appendix A.3.2,
E[Y;Yij1=0
and for large n

—1

—.
-

—1 2
K

E[Y;] = 172 (AMAZELVET+ 20 M E[VVil 4+ APAPE[V])

1 i=1

It
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j—1
= 21 5 (1n614) z% (A$1f0 (') +2afaf0 (n') + 27270 (n'?))
=

—_
<))

= — (Aas + 21/ as + 2] ay) .

'G

Hence

E [izs[x,fﬂjwn,jl]] = XP:E[ 2

j=2 j=2
P 16
= Z — (Mas +22}as + A0ay)
p

32(agay + aj).

If we can show that

P
1% |:ZE [Xilen,j—l]:| — 0 as (n7 p) — 00,
j=2

then by the law of