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ABSTRACT

Climate time series often have artificial shifts induced by instrumentation changes, station relocations,

observer changes, etc. Climate time series also often exhibit long-term trends. Much of the recent literature

has focused on identifying the structural breakpoint time(s) of climate time series—the so-called changepoint

problem. Unfortunately, application of rudimentary mean-shift changepoint tests to scenarios with trends

often leads to the erroneous conclusion that amean shift occurred near the series’ center. This paper examines

this problem in detail, constructing some simple homogeneity tests for series with trends. The asymptotic

distribution of the proposed statistic is derived; en route, an attempt ismade to unify the asymptotic properties

of the changepoint methods used in today’s climate literature. The tests presented here are linked to the

ubiquitous t test. Application is made to two temperature records: 1) the continental United States record

and 2) a local record from Jacksonville, Illinois.

1. Introduction

Changepoint features can drastically alter inferences

made from a climatic time series. For example, Fig. 1

shows how trend estimates change when changepoint

information is incorporated or neglected. This example

considers annually averaged temperatures recorded at

New Bedford, Massachusetts, from 1812 to 1999. The

figure reports two statistical regression fits: 1) a line,

which has a positive slope of 1.3668C century21, and

2) a ‘‘piecewise line’’ that allows for four mean shifts at

times of known gauge changes and station relocations

(these times are taken from the station’s metadata and

occur in 1888, 1906, 1951, and 1985). The slope in each

segment of the piecewise line is constrained to be the

same and is estimated at 20.2348C century21. Obvi-

ously, trend inferences are affected by changepoints.

The above data are typical of climate time series in that

they have a time trend and multiple mean-shift change-

points that act to influence overall trend inferences.

The four changepoints here are viewed as artificial as

they are induced by changes in data collection (gauge

and location changes). Methods that adjust data for

artificial shifts of this type are called homogenization

techniques. The homogenization changepoint problem

is well known in the climate literature; numerous au-

thors have presented changepoint tests for the case of

a single mean shift when the series has no trends. A

partial list of references for this task includes Page

(1955), Hawkins (1977), Potter (1981), Alexandersson

(1986), Easterling and Peterson (1995), Vincent (1998),

Ducr!e-Robitaille et al. (2003), and Beaulieu et al. (2012).

Some of this literature is reviewed in Reeves et al. (2007).

Homogenizing series with long-term trends is harder.

Some methods use information from one or more nearby

data collection stations. A station used in this manner is

commonly referred to as a reference station. The most

common way of using a temperature series reference

differences the record with corresponding values from

the reference. In many cases, the resulting time series

still has a trend. In addition to the data homogenization

problem, some climatologists have considered detect-

ing abrupt naturally caused changes in a climate time

series. References include Tom!e and Miranda (2004),

Rodionov (2004), Seidel and Lanzante (2004), and
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Gallagher et al. (2012). The methods here cannot dis-

tinguish between natural and artificial changepoints—

such attribution is best done with a metadata record

(when available). Whether one is interested in detecting

artificial or natural changepoints, it is often prudent to

allow for the potential of a trend.

Unfortunately, mean-shift tests may not work well

when the series has a trend. If in truth a series has a

trend but no mean shift, then a changepoint test designed

for zero-trend data often tries to compensate for the

mean misspecification by erroneously flagging a change-

point near the record’s midpoint. If the series length is

subsegmented about found changepoint times and the

subsegments are analyzed, additional changepoints are

often erroneously declared. It is therefore desirable to

develop homogenization methods that are applicable

to data with trends.

At most one changepoint (AMOC) tests that allow

for trends were considered in Lund and Reeves (2002),

Wang (2003, 2008), Wang et al. (2007), and Beaulieu

et al. (2012). None of these references identifies an as-

ymptotic statistical distribution for the crucial change-

point existence test. In fact, the current climate literature

seems fractured and is often based on case-by-case simu-

lation, despite the fact (which will become apparent here)

that tractable asymptotic distributions can be derived.

Of the above papers, Wang et al. (2007) is the most

relevant to the current exposition. These authors use

empirical methods to improve testing procedures for

changepoints in the presence of trends by imposing a

‘‘penalization term’’ that increases as the changepoint

time moves away from the series’ midpoint. Their pen-

alty for a changepoint occurring at time c, denoted by

P(c), is derived through trial and error simulations with

normal (Gaussian) distributions. This results in an ad

hoc improvement for the specific models and sample

sizes employed, but no general justification is given.

The mathematical derivations in this paper explain the

necessity for, and provide a specific form for, the penalty

term P(c), which is appropriate for all sample sizes.

Justification under minimal assumptions is given—we

require independent model errors, but no distributional

assumptions (such as normality).

This paper seeks to provide a more unified and

mathematically justified procedure for changepoint tests

for climate time series with possible trends. The good

news is that justifiable test statistics are explicit and can

be calculated from regression t tests, which are provided

by standard statistical software. Furthermore, hypothe-

sis testing decision rules can be based on an asymptotic

theory that holds in great generality. Correct quantifi-

cation of the asymptotic distribution of the AMOC

test statistic is needed, which is provided in this paper.

For purposes of exposition, attention is restricted to

models whose trend slope is constrained to be the same

before and after the changepoint time. We provide all

technical details so that an interested reader can modify

our methods to more complicated models such as those

considered in Beaulieu et al. (2012) (that considers a

variety of regression structures, moving beyond linear

trend paradigms). While several of our asymptotic dis-

tributions have appeared in the technical statistics lit-

erature, they seem unknown (unappreciated) in climate

settings. For example, the asymptotic properties of the

classical standard normal homogeneity test (SNHT) of

Alexandersson (1986) are presented here for the first

time in a climate venue. Also, even in the statistical lit-

erature, the connection between AMOC changepoint

tests and standard regression t tests has not been made

clear.

The rest of this paper proceeds as follows. The next

section reviews the simple case of a mean shift only (no

trends) and states asymptotic distributions. Section 3

then presents analogous results for regression structures

involving a linear trend. Section 4 presents a simula-

tion study that supports the asymptotic theory presented

and illuminates some of the properties of the methods.

Section 5 shows how the methods can be used to make

inferences on two temperature series. Concluding com-

ments are made in section 6. Comparisons of the dif-

ferent tests are made and some words of caution are

presented. Technical derivations are collected into an

appendix.

2. A mean-shift CUSUM review

First, consider the most basic changepoint problem:

detecting a change in themean of a series at an unknown

FIG. 1. New Bedford annual temperatures from 1812 to 1999 and

two fitted models that ignore (solid) and include (dashed) mean-

shift changepoints.
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time. A regression model describing this scenario for

data (Xt) over t 5 1, . . . , n is

X
t
5m1 d

t
1 !

t
. (2.1)

Here, m is the mean of the series before the unknown

changepoint time c and (!t) is zero-mean independent

random error with unknown variance s2. Themean shift

occurring at time c 1 1 has magnitude D. Hence, the

mean-shift factor (dt) obeys

dt 5

!
0, 1# t# c ,

D , c, t# n .

Perhaps the first statistic used to detect mean shifts

was the cumulative sum (CUSUM) statistic studied in

Page (1955):

CUSUM(c)5
1ffiffiffi
n

p
#
!
c

t51

X
t
2

c

n
!
n

t51

X
t

$
. (2.2)

If in truth a mean shift occurred in the data at time c

(specifically, sometime between times c and c 1 1,

which we call a shift at time c) with magnitude D, then

taking expectations in (2.2) gives E[CUSUM(c)] 5

n23/2c(n 2 c)D. It follows that if jCUSUM(c)j is large,
then there is statistical evidence that D is nonzero and

that a changepoint occurred at time c. CUSUM change-

point statistics estimate the changepoint time as the value

of c that maximizes jCUSUM(c)j. That is, the change-

point statistic used is

C5

max
1#c#n

jCUSUM(c)j
ŝ

,

where the denominator has been normalized by an es-

timate of ŝ to scale up to a quantifiable asymptotic dis-

tribution. The estimate of s2 used is typically computed

under the null hypothesis of no changepoints and is

ŝ2
5 n21!

n

t51(Xt 2X1:n)
2, where X1:n 5 n21!

n

t51Xt.

Our first result is taken fromMacNeill (1974) but does

not appear to be appreciated in climate settings. It says

that under the null hypothesis of no changepoints, C

distributionally converges (as n/ ‘) to the supremum

(largest value) of a Gaussian process known as the

Brownian bridge.

Result 1: As n/ ‘,

C/
D

sup
z2[0,1]

jB(z)j . (2.3)

Here,B(z)5W(z)2 zW(1) for 0# z# 1 and [W(z)]z51
z50

is a standard Brownian motion process. This means that

W(z) has a normal distribution with zero mean and

variance z for each z 2 [0, 1], the increments of [W(z)]

are stationary and independent, andW(0)5 0. Brownian

motion, Brownian bridges, and other Gaussian processes

arise as asymptotic distributions in many limit problems.

The interested reader can consult Ross (1996) and prob-

lems 6.14 and 6.18 of Resnick (1992) for more on their

probabilistic properties. We do not prove this conver-

gence here as it is technical; however, an analogous re-

sult for the more complicated case with a linear trend

will be derived later.

The immediate implication is that critical values of

C can be calculated. Specifically, a known expression

[see Resnick (1992) and Robbins et al. (2011a), among

others] provides exact tail probabilities of the distribu-

tion of supz2[0,1]jB(z)j. Here, the resulting critical values

are provided in Table 1 for various levels of statistical

confidence. Use of these percentiles is generally con-

servative for a finite n. This will be shown in section 4.

Elaborating, should one want 95% confidence and use

the 95th quantile in Table 1, then one is slightly more

than 95% confident of the declaration of a found

changepoint.

A perhaps more intuitive approach for changepoint

detection examines the sample means before and after

the changepoint. For a changepoint time c, set X1:c 5

c21!
c

t51Xt andXc11:n 5 (n2 c)21
!

n

t5c11Xt. If these two

sample means greatly differ, a changepoint is statisti-

cally suggested at time c. Scaling by a denominator that

accounts for the possibly different segment lengths leads

to consideration of a statistic Z(c) of the form

Z(c)5
X1:c2Xc11:n

Var(X1:c 2X
c11:n)

1/2
. (2.4)

An easy calculation provides the variance margin

Var(X1:c 2Xc11:n)5 [c(n2 c)]21ns2. Using this in (2.4)

and reworking the numerator into a CUSUM form

provides

Z(c)5 n21/2 CUSUM(c)

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

n

%
12

c

n

&r . (2.5)

TABLE 1. Critical values of the CUSUM test statistic C. Values

are taken from the known expression for the distribution of

sup0,t,1jB(t)j in Resnick (1992).

Quantile Critical value

90.0 1.224

95.0 1.358

97.5 1.480

99.0 1.628

99.9 1.949
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Since c is not known a priori and n is constant, our

changepoint statistic is taken as a maximum of the

squared values multiplied by n:

C*5 max
1#c#n

CUSUM2(c)

ŝ2c

n

%
12

c

n

& . (2.6)

The statistic C* is also a Gaussian likelihood ratio

statistic. This means that if one assumes a Gaussian

distribution for (!t) and performs a statistical likelihood

analysis, then C* arises. In general, likelihood ratio

statistics can be difficult to compute, but are very pow-

erful (i.e., they detect changepoints with a relatively

high probability).

The asymptotic properties of C* are harder to quan-

tify than those of C. In fact, it can be shown that C*

diverges to infinity as n / ‘. Hence, C* needs to be

scaled in some way. A common scaling practice is to

‘‘crop boundaries.’’ One should not expect to accurately

detect a changepoint that occurs near the data bound-

aries as there are too few observations before or after

the changepoint to make reliable conclusions. Cropping

the first and last h 3 100% percent of the observations

gives a test statistic Ch* defined by

Ch
*5 max

h#(c/n)#12h

CUSUM2(c)

ŝ2c

n

%
12

c

n

& .

The asymptotic distribution of Ch* is known (Cs€org}o

and Horv!ath 1997) and again involves the Brownian

bridge.

Result 2: As n/ ‘,

C
h
*/

D
sup

h#z#12h

B2(z)

z(12 z)
. (2.7)

Tail probabilities of the above limit distribution can

be approximated using an expression that is provided by

Cs€org}o and Horv!ath (1997) and Robbins et al. (2011a);

simulation is required to obtain more precise values.

Thereby, Table 2 lists simulated critical values of Ch* for

various values of h and statistical confidence levels.

Up to boundary cropping issues, this result provides the

asymptotic distribution of the classical standard normal

homogeneity test of Alexandersson (1986). An alter-

native to using the percentiles in Table 2 would be to

simulate critical values for every sample size n.

The similarities and differences between the asymp-

totic distributions in (2.3) and (2.7) are worth discussing.

First, Ch*’s limit distribution involves the supremum of

the square of B(z) rather than jB(z)j. This is of little

concern: taking the largest absolute value or the largest

squared value produces the same changepoint time es-

timator. The Ch* statistic also has a z(1 2 z) factor in

the denominator that the C statistic lacks (one views z

as c/n). This factor serves to place greater weight on c

values near unity or n. As a result,Ch* should have higher

power than C when a changepoint occurs near the re-

cord’s endpoints. Wang et al. (2007) attempt to reduce

this emphasis by imposing a penalization term that in-

creases as the changepoint time moves away from the

series midpoint. Specifically, they propose maximizing

jP(c)Z(c)j, where P(c) is a penalty term derived through

trial and error simulation. In the end, their form is un-

wieldy and statistically inconsistent (does not necessarily

get the right answer as n/ ‘), but is markedly similar to

the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(c/n)(12 c/n)

p
structure in the denominator in the

right-hand side of (2.5).

For practical recommendations, one should prefer

Ch* if only one test can be considered. It turns out, how-

ever, that should the changepoint time lie near the cen-

ter of the data record (around n/2), then the CUSUM

statistic C is slightly more powerful at detecting the

changepoint than the Ch* statistic [Robbins et al. (2011a)

discuss this issue in detail]. Should the changepoint

occur closer to the data boundaries (e.g., around 15%

or 85% into the record), then the Ch* statistic is vastly

more powerful. In short, it makes sense to compute

both statistics but to rely on the likelihood ratio Ch*

statistic should conclusions conflict. As to what value

of h one should use, this is not usually important. Au-

thors have truncated 1% and 5% of the data record on

both sides with meaningful conclusions; we have yet to

see a case where this truncation level greatly matters

but do not doubt that such cases exist; especially should

a changepoint lie very close to the data boundaries. Fi-

nally, one does not need Gaussian data for good perfor-

mance. Indeed, many Gaussian-based statistics perform

well (say consistently as n/‘) in non-Gaussian settings.

In the end, one only requires zero-mean independent

errors (!t) for all of our results. Unfortunately, when

the errors are not zero-mean, the performance of the

changepoint tests above can be bad (for the reasons

TABLE 2. Critical values of the likelihood ratio statistic Ch*.

Values are found by simulating one million samples of a Brownian

bridge process.

h

Quantile 0.010 0.025 0.050 0.100

90.0 9.209 8.752 8.312 7.728

95.0 10.788 10.338 9.885 9.304

97.5 12.331 11.904 11.409 10.827

99.0 14.364 13.925 13.421 12.827

99.9 19.278 18.890 18.377 17.741
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discussed in the introduction). This brings us to our next

section.

3. Changepoint statistics in data with trends

Now suppose that a linear trend is allowed; that is,

(2.1) is modified to

Xt 5m1bt1 dt 1 !t , (3.1)

where b is a linear trend parameter. In order for the

ensuing theory to hold as stated, one should restrict t

to the discrete set 1, . . . , n (and not let t denote the

raw year, for example). Under a null hypothesis of no

changepoints, the ordinary least squares estimators of

the mean and trend parameters are the values of m and b

that minimize the sum of squares !
n

t51[Xt 2 (m1bt)]2.

A calculus minimization shows these estimators to be

b̂5

12 !
n

t51

Xt(t2 t)

n(n1 1)(n2 1)
, m̂5X1:n 2 b̂t , (3.2)

where t5 (n1 1)/2 is the average observation time.

When data are not independent and/or identically

distributed, a common approach to changepoint detec-

tion is to apply the CUSUM methods of the previous

section to a residuals sequence, (!̂t)
n
t51; here, the re-

siduals under the null hypothesis are calculated as !̂t 5

Xt 2 (m̂1 b̂t) for t5 1, 2, . . . , n. For example, Gallagher

et al. (2012) develop a residuals-based statistic for de-

tection of a change in daily precipitation series that

incorporates periodicity and that was illustrated to

observe the same convergence as the C statistic seen

in the previous section. Unfortunately, when a linear

trend is involved, the results of the last section will no

longer apply. This issue, in fact, confused many early

statistics authors (MacNeill 1978; Sen 1982; Kim and

Siegmund 1989). Nonetheless (and similar to what was

seen in the last section), examining the CUSUM sta-

tistic of (!̂t) will illuminate better methods.

a. CUSUM-type statistics

To quantify the asymptotic properties of the CUSUM

of the residual sequence (!̂t)
n
t51, a separate analysis is

needed. For this, set

D5

max
1#c#n

jD(c)j
ŝ

, (3.3)

where

D(c)5
1ffiffiffi
n

p
ŝ

#
!
c

t51

!̂t 2
c

n
!
n

t51

!̂t

$
5

1

ŝ
ffiffiffi
n

p !
c

t51

!̂t . (3.4)

Here, ŝ2
5!

n

t51!̂
2
t /(n2 2) is the null hypothesis estimate

of s2 and the second equality in (3.4) follows from the

fact that ordinary least squares residuals sum to zero:

!
n

t51!̂t 5 0. What can be shown (following MacNeill

1978) is that the asymptotic distribution of the trend

adjusted CUSUM statistic in (3.3) has the following

limit law. Our argument for this is presented in the

appendix.

Result 3: In the linear trend case, as n/ ‘,

D/
D

sup
z2[0,1]

j ~B(z)j . (3.5)

Here, [ ~B(z)]1z50 is a process related to theBrownian bridge

[B(z)]1z50 via

~B(z)5B(z)2 6z(12 z)

ð1

0
B(x) dx . (3.6)

From Gaussian process theory [see Ross (2010)

for more on Gaussian processes], it is known that

[ ~B(z)] is another Gaussian process with ~B(0)5 0 and

variance

Var[ ~B(t)]5 t(12 t)[12 3t(12 t)], 0# t# 1. (3.7)

The variance in (3.7) is the key nuance between no-

trend and trend cases—the analogous variance for the

no-trend model is Var[B(t)] 5 t(1 2 t).

Table 3 provides asymptotic percentiles for D. The

percentiles are again conservative when applied to sce-

narios with a finite n.

b. Relationship to t statistics

Here, we connect the D(c) statistic, regression t

tests, and likelihood ratio statistics for series with

linear trends. Suppose that a changepoint is known

to occur at time c. An involved calculation shows

that the estimates that minimize the sum of squares

!
n

t51fXt 2 [m1bt1D1(t.c)]g2 are

TABLE 3. Critical values of the CUSUM test statisticD. Values are

found by simulating one million samples of [ ~B(t)].

Quantile Critical value

90.0 0.836

95.0 0.906

97.5 0.970

99.0 1.047

99.9 1.222
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b̂(c)5

!
c

t51

X
t

*
t2

c(c1 1)

2

+
1 !

n

t5c11

X
t

*
t2

n(n1 1)2 c(c1 1)

2(n2 c)

+

c(c1 1)(c2 1)

12
1

(n2 c)(n2 c1 1)(n2 c2 1)

12

,

m̂(c)5
1

c
!
c

t51

[X
t
2 b̂(c)t], and

D̂(c)5
1

n2 c
!
n

t5c11

[X
t
2 b̂(c)t]2 m̂(c) . (3.8)

Here, the notation b̂(c), for example, signifies that the

trend is estimated assuming a changepoint at time c. A

changepoint is suggested at time c when D̂(c) is signifi-

cantly nonzero. A t statistic for such a test is simply

T(c)5
D̂(c)

dVar[D̂(c)]1/2
. (3.9)

To explicitly identify the numerator and denominator

in (3.9), the appendix derives the two identities

D̂(c)5

2 !
c

t51

!̂t

c
%
12

c

n

&*
12 3

c(n2 c)

n2 2 1

+ (3.10)

and

dVar[D̂(c)]5
ŝ2

n
c

n

%
12

c

n

&*
12 3

c(n2 c)

n22 1

+ . (3.11)

Using (3.10) and (3.11) in (3.9) gives the following. Let

r5 c/n. When n is large, division by n2 is approximately

division by n22 1, c(n2 c)/(n22 1)’ (c/n)(12 c/n), and

under the null hypothesis, the approximation

T(c)’

2n21/2 !
c

t51

!̂t

ŝ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(12 r)[12 3r(12 r)]

p (3.12)

emerges. To link T(c) and D(c) statistics, we show in

the appendix that

D(c)5
1

ŝ
ffiffiffi
n

p
#
!
c

t51

!̂
t

$

5
1

ŝ
ffiffiffi
n

p
*
!
c

t51

!t 2
c

n
!
n

t51

!t 2 (b̂2b)
c

2
(n2 c)

+
,

(3.13)

where b̂ is the slope estimate under the null hypothesis.

Substituting (3.13) for the numerator of (3.12) shows

that, for large n,

jT(c)j’ jD(c)jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(12 r)[12 3r(12 r)]

p . (3.14)

Equation (3.14) has important ramifications. This is

because any standard statistical software will calculate

T(c) for each admissible changepoint time c. A t-based

test for an unknown changepoint then simply looks at

themaximumof jT(c)j [orT(c)2] over all possible c. Such a

statistic is also the Gaussian likelihood ratio statistic.

As in the simple mean-shift case, one cannot extract

a meaningful limit law without first cropping. Specifi-

cally, it can be shown that max1#c#njT(c)j/‘ as n/‘

[also, max1# c#nT(c)
2
/‘ as n/ ‘]. This is a conse-

quence of the fact that r(12 r) converges to zero as r/ 1

and/or as r/ 0 and a deeper analysis of the behavior of
~B(z) near z 5 0 and z 5 1.

To quantify a limit law for a cropped statistic, let

Dh*5 max
h#(c/n)#12h

D(c)2

ŝ2r(12 r)[12 3r(12 r)]
and

(3.15)

~Dh
*5 max

h#(c/n)#12h
T(c)2 . (3.16)

Our last result is the following.

Result 4: In the linear trend case, as n/ ‘,

~Dh*/
D

sup
h#z#12h

~B
2
(z)

z(12 z)[12 3z(12 z)]
. (3.17)

The limit law for ~Dh* is the same as that for Dh
*.

Asymptotic percentiles for ~Dh* are given in Table 4.

As the next section shows, percentiles are again con-

servative when applied to scenarios with a finite n (see

also Robbins et al. 2011a).

Notice that Dh* requires less computation than ~Dh
* as

one does not need to compute parameter estimators for

each and every c. However, both have the same limiting

distribution and hence the same asymptotic detection

power. This said, ~Dh
* should be slightly more powerful
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for finite n as it incorporates alternative hypothesis es-

timators.

It is easy to design a changepoint test statistic that

has the advantages of ~Dh
* (when compared to Dh*) but

also has the same asymptotic distribution as D. To do

this, set

~D5 max
1#c#n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(12 r)[12 3r(12 r)]

p
jT(c)j , (3.18)

where r 5 c/n. Then the limit law is

~D/
D

sup
z2[0,1]

j ~B(z)j ,

where ~B(z) is as in (3.6).

Extending the rationale of Wang et al. (2007) to

models with a linear trend, Wang (2008) empirically

adds a penalty term to the above t-type tests. Elaborat-

ing, Wang et al. (2007) suggest maximizing P*(c)T(c)2,

where P*(c) is a penalty term that is ‘‘M-shaped’’ when

graphed as a function of c. The author develops piece-

wise expressions for P*(c) through simulation. The re-

sulting penalty term is unwieldy, but markedly similar to

r(1 2 r)[1 2 3r(1 2 r)] with r 5 c/n, the scaling term in

(3.18) here (which is M-shaped when graphed). In effect,

Wang (2008) is trying to introduce a test statistic with the

behavior of ~D. Unfortunately, Wang’s (2008) statistic

cannot be easily calculated or quantified asymptotically,

whereas the statistics introduced here are easily calcu-

lated and have quantifiable limiting distributions.

For practical recommendations, we suggest using ~Dh
*

in favor of ~D should conclusions conflict for reasons il-

lustrated in the next section.

It remains to derive results 3 and 4, which is done in

the appendix. This task is important since the asymp-

totic distribution depends on the presence/absence of

a trend. One would have to perform yet another deri-

vation for regression structures employing sinusoidal,

quadratic, or exponential terms. Sinusoidal terms, for

example, could arise in the analysis of daily or monthly

series. This said, the derivations are similar in spirit and

we offer the linear case as perhaps useful guidance.

4. A simulation study

This section uses simulation to assess the efficacy of

the methods in section 3. All series are simulated from

(3.1) with m5 1, b5 0.5, and s2
5 1. The performance

of all methods seemed invariant of the regression pa-

rameters chosen; hence, we report results for the above

choices only. The significance level a 5 0.05 is used

throughout.

To begin, the no changepoint null hypothesis per-

formance of the methods is studied. For each series

length n, one million series were generated from (3.1)

with dt 5 0 for all t and Gaussian errors f!tg. Because of
the large number of replications (one million), little

error is attributable to simulation. For each generated

series, the statisticsD andD0:05* , as specified in (3.3) and

(3.16), are computed (tests using ~D and ~D0:05* are too

computationally cumbersome to be evaluated here, but

their asymptotic performance is the same as the cor-

responding statistics considered). For both tests, the

empirical proportion of the one million series that

falsely declare a changepoint is graphed in Fig. 2. The

individual series are changepoint assessed using the

critical values in Tables 3 and 4. Figure 2 reveals two

features: 1) as the sample size n becomes larger, the

probability of erroneously declaring that a changepoint

exists converges to 0.05 (as the asymptotic theory de-

mands), and 2) the tests are conservative in that p

values will not overestimate the probability of change-

point presence. This last property is convenient for those

wishing to avoid overhomogenizing a record for too

many changepoints.

FIG. 2. Simulated type I error probabilities (false detection) of

theD andD0:05* tests as a function of the sample size n. Simulations

are based on one million replications for each n.

TABLE 4. Critical values of the likelihood ratio statistic ~Dh
*. Values

were found by simulating one million samples of [ ~B(t)].

h

Quantile 0.010 0.025 0.050 0.100

90.0 10.341 10.061 9.790 9.459

95.0 11.956 11.684 11.415 11.077

97.5 13.532 13.271 12.989 12.662

99.0 15.540 15.301 15.011 14.692

99.9 20.600 20.218 20.114 19.758
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The detection power of the methods in the presence

of a changepoint (i.e., dt 6¼ 0 for some t) is also of in-

terest. While it would be instructive to compare to the

climate-realistic benchmarks developed in Venema et al.

(2012), these results were developed for multiple change-

point features. It is important to emphasize that our

methods are single changepoint tests. While one can

turn a single changepoint test into a multiple change-

point procedure via subsegmenting, Li and Lund (2012)

show that some undesirable issues arise in so doing. In

particular, mean shifts that occur closely in time be-

come difficult to distinguish, or mean-shift magnitudes

D that alternate in sign can fool segmentation methods.

Here, the series length n 5 1000 is fixed for conve-

nience (this large value is taken so that the asymptotics

hold, but the scenario is not overly different for shorter

series lengths). Several values of the changepoint time c

and three nonzero values of the mean-shift magnitude D

are studied: 0.2, 0.35, and 0.50. These levels are slightly

less than the mean-shift magnitude variations simulated

in the Venema et al. (2012) benchmarks. One hundred

thousand replicated series are simulated for each c and

D. The detection powers on the vertical axis in Fig. 3

show the proportion of series where the null hypothesis

is correctly rejected, while the horizontal axis indicates

the location of the changepoint time. The detection

powers seem reasonable, with the tests performing rela-

tively poorer when the changepoint time is located near

either endpoint.

Figure 3 shows that the detection power of both tests

increases as the mean-shift magnitude D increases. Both

tests show M-shaped powers as a function of the

changepoint time c—the test using D0:05* is more pow-

erful than D when the changepoint occurs near the

center or endpoints of the dataset, and theD test is more

powerful elsewhere. This said, the power in D is never

drastically greater than that for D0:05* —the greatest

power discrepancy in favor of D is approximately 7%,

which is seen when D 5 0.35 and c 5 220 or 780. How-

ever, D0:05* may have a markedly higher power than D

when the changepoint occurs near the endpoints of the

dataset. For instance, the discrepancy in power is ap-

proximately 25% in favor ofD0:05* when D 5 0.5 and c5

50 or 950. As previously mentioned, a similar phenom-

enon was noted by Robbins et al. (2011a) for the no-trend

case. Hence, we recommend use of Dh* in practice. Of

course, it is not difficult to compute both D and Dh*.

5. Examples

This section uses the results of the previous sections

to study two temperature series. The first series con-

tains annual temperatures for the contiguous United

States (CONUS)—the so-called CONUS data discussed

in Menne et al. (2010). This is a situation in which a

reference series is not available; moreover, since the data

are averaged over many stations, no good metadata

exist. Our second series moves to a more local scenario:

monthly high temperatures at Jacksonville, Illinois. Here,

we construct a reference series to help make conclusions.

All tests calculate the following four statistics: 1)D in

(3.5), 2) Dh* in (3.15), 3) ~D in (3.18), and 4) ~Dh* in (3.16).

Tests 1 and 3 use the critical values from Table 3 and

tests 2 and 4 use critical values from Table 4. All con-

clusions are made at the 95% significance level; h5 0.05

is used in any test requiring cropping. We remind the

reader that the methodology presented in this article is

designed for the AMOC alternative, and climate se-

ries often have multiple changepoints. Here, the pos-

sibility of multiple changepoints is handled through

subsegmenting. Specifically, the whole series is tested

via AMOC methods; if any changepoints are detected,

the methods are subsequently applied to the resulting

subsegments. This process is repeated until all segments

test as homogeneous. While this procedure is simple

and has demonstrated utility in climate settings (Robbins

et al. 2011b), methods that handle multiple changepoint

aspects could be devised with further analyses (see, e.g.,

Li and Lund 2012).

Our first application studies annual temperatures from

the CONUS record from 1895 to 2011 (n5 117). TheD*

and ~Dh* statistics flag a changepoint in 1997, whereas

the D and ~D statistics both flag changepoints in 1985.

As our preferred methods require some truncation,

FIG. 3. Simulated power of detection for theD andD0:05* tests for

three values of D as a function of the changepoint time c with n 5

1000. Simulations are based on 100 000 replications for each com-

bination of c and D.
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we support the 1997 changepoint if forced to choose

one conclusion. This changepoint shifts temperatures

upward. Phrased another way, we conclude that recent

temperatures are increasing at a rate that is faster than

can be explained by a linear trend. All subsegments test

as homogeneous with 95% confidence. The p values for

all tests are reported in Table 5 (definitive conclusions

are made at 95% confidence). Figure 4 plots the T2(c)

values for this and all subsegments; the fit of the re-

sulting changepoint model is plotted in Fig. 5. We com-

ment that there are secondary peaks in the T(c)2 statistics

for the 1895–1997 subsegment in Fig. 4 circa 1920 and

1957. While these times are ‘‘suspect,’’ they are not sig-

nificant at level 95% (the Table 5 p values report them

as significant with approximately 85%–90% confidence).

Note that one cannot take all the times that exceed the

95% quantile in Fig. 4 and declare them as changepoints.

We next examine monthly maximum temperatures from

Jacksonville, Illinois, from January 1928 to December

2010 (n 5 996). A reference series was constructed by

averaging the 40 most correlated neighboring stations

to Jacksonville. (The Jacksonville minus reference se-

ries is plotted in Fig. 7.) Our changepoint methods are

applied to the difference of the two series. Differencing

acts to reduce or remove the effect of many complicat-

ing data characteristics (e.g., autocorrelation, periodicity,

trend, etc.), thereby allowing the analyst to isolate non-

climatic changes (such as a gauge change). Nonetheless,

a differenced series may still exhibit a linear trend,

caused perhaps by external agents (e.g., urbanization)

that influence the series under study. We have chosen

to make a reference by averaging 40 adjacent stations

to illustrate the methods, but avoid some of the compli-

cations of pairwise analyses that arise should one consider

all

#
40
2

$
5 780 differenced series. Menne and Williams

(2005, 2009) admirably discuss pairwise comparison issues.

Table 6 displays the results from all changepoint

tests. All methods flag a changepoint at January 1957.

After subsegmentation, no further changepoints were

detected at the 5% significance level. This declaration is

again somewhat perilous as the T(c)2 statistics for the

subsegments almost exceed the 95th percentile circa

the early 1960s and mid-1980s. The 1957 changepoint

acts to lower temperatures relative to the reference.

TABLE 5. Changepoint tests for the annual continental U.S.

temperature data.

1895–2011

Stat. ĉ (year) p value

D 0.994 91 (1985) 0.0189

D0:05* 13.35 103 (1997) 0.0217
~D 1.047 91 (1985) 0.0102
~D0:05* 14.97 103 (1997) 0.0104

1895–1997

Stat. ĉ (year) p value

D 0.796 26 (1920) 0.1435

D0:05* 8.831 63 (1957) 0.1489
~D 0.824 26 (1920) 0.1115
~D0:05* 9.584 63 (1957) 0.1093

1998–2011

Stat. ĉ (year) p value

D 0.528 10 (2007) 0.7683

D0:05* 3.519 10 (2007) 0.8489
~D 0.604 10 (2007) 0.5534
~D0:05* 4.617 10 (2007) 0.6612

FIG. 4. Changepoint test statistics for the annual CONUS

temperature data.

FIG. 5. Estimated model fit for the CONUS temperature data.
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Notice that the common trend slope in the two segments

is positive, meaning that Jacksonville maximums are

warming more rapidly than its reference. Graphical

support for these conclusions are provided in Fig. 6,

which displays the fitted model (changepoint and linear

trend) and Fig. 7, which plots the T(c)2 values for the

series and all subsegments.

In concluding these examples, we caution the reader

that mean-shift models with a constant slope may not

adequately describe all climate time series. The above

conclusions, while supplying good rudimentary guid-

ance, are not set in stone. Indeed, climatic forcings are

unlikely to be linear in time; moreover, localized con-

siderations, such as moving a station into or out of an

urban heat island zone, may merit consideration of

more complicated regression structures (perhaps vary-

ing slopes for the different segments).

6. Comments

In cases for which it is not clear whether the series has

a linear trend, it is prudent to apply the methods that

allow for a trend. Conclusions will then be conservative

and changepoint conclusions will be more justifiable

than if the trend were ignored. This said, if it is known

concretely that a series does not have a trend, then one

should not apply the methods for trends. In general, de-

tection power is sacrificed when one examines models

with more model parameters than needed.

As eluded to in the last section, another issue involves

whether the trend slope should change at the mean-shift

time. Two-segment models that allow for different slopes

before and after the changepoint time are called two-

phase regressions and are studied in Lund and Reeves

(2002). Although the Fmax statistic examined there has

similarities to our statistics, quantification of the Fmax

limit distribution is too onerous to pursue here. In the

case of multiple segments (more than two) with distinct

trends, multiple changepoint techniques designed to

handle such regression structures will likely be more

reliable than segmentation approaches with AMOC

tests. Our belief is that series mean misspecification is

the primary unresolved issue in multiple changepoint

problems. Li and Lund (2012) discuss multiple change-

point problems in more depth. In general, changepoints

that occur close together in time or act to move the series

in oscillating manners can fool subsegmenting methods.

TABLE 6. Changepoint tests for the monthly Jacksonville, IL,

temperatures.

January 1928–December 2010

Stat. ĉ (month–year) p value

D 1.75 349 (Jan 1957) 0.000

D0:05* 42.26 349 (Jan 1957) 0.000
~D 1.78 349 (Jan 1957) 0.000
~D0:05
* 44.09 349 (Jan 1957) 0.000

January 1928–January 1957

Stat. ĉ (month–year) p value

D 0.846 251 (Nov 1948) 0.092

D0:05
* 10.54 18 (Jun 1929) 0.073

~D 0.856 251 (Nov 1948) 0.083
~D0:05
* 10.84 18 (Jun 1929) 0.064

February 1957–December 2010

Stat. ĉ (month–year) p value

D 0.822 62 (Mar 1962) 0.114

D0:05
* 10.70 331 (Aug 1984) 0.069

~D 0.829 62 (Mar 1962) 0.107
~D0:05
* 10.859 331 (Aug 1984) 0.064

FIG. 6. Jacksonville, IL, changepoint test statistics for the

differenced data.

FIG. 7. Jacksonville, IL, differences with the fitted

changepoint model.
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Two other Medusas of changepoint methods merit

mention. First, even moderate levels of error autocor-

relation are common in climate series and will influence

changepoint conclusions. The analyses here ignore au-

tocorrelation. Naturally caused (Rodionov) mean shifts

can be attributed to autocorrelation in part. Second,

seasonality is often present in nonannualized series. For

example, it is not clear that the Jacksonville minus ref-

erence series of the last section does not have any sea-

sonal features. Both of these issues are discussed in

detail in Lund et al. (2007).
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APPENDIX

Derivation of Relevant Formulas in Section 3

Proof of result 3: We begin by justifying the conver-

gence in result 3. Suppose that the null hypothesis model

with dt 5 0 is in force. Substituting the right-hand side

of (3.1) into (3.2) and simplifying yields

b̂2b5

12 !
n

t51

(t2 t )!t

n32 n
(A1)

and

m̂5m2 (b̂2b)t1 ! .

[Recall that t5 (n1 1)/2 is the average observation

time.]

Using these formulas to calculate the residuals under

the null hypothesis gives

!̂t 5 !t 2 !2 (b̂2b)(t2 t) ,

where !5 n21!
n

t51!t. Using this expression for the resi-

duals, (A1), and !
c

t51(t2 t )5 c(c2 n)/2 proves (3.13):

!
c

t51

!̂t 5

#
!
c

t51

!t 2 c!

$
1

12(c/2)(n2 c)

n32 n
!
n

t51

(t2 t )!t .

(A2)

The advantage of the representation in (A2), which

expresses the sum of the residuals as a sum of the (un-

observable) independent variables f!tg, is twofold. First,
well-known results for weighted sums of independent

variables can be used to justify the Gaussian process limit

(see Billingsley 1999). Second, the independence of the

summands can be used to calculate the covariance of

the Gaussian process. Since the [!t] are independent,

Cov(!t, !‘) 5 0 when t 6¼ ‘. From this and linearity of

covariances, when k $ c, one has

Cov

 
!
c

t51

!t 2 c!, !
k

t51

!t 2 k!

!
5s2(n2 k)c/n,

Cov

*
!
c

t51

!
t
2 c!, k(n2 k)(b̂2b)/2

+

5
23s2c(n2 c)k(n2 k)

n3 2 n

and

Cov[c(n2 c)(b̂2b)/2,k(n2 k)(b̂2b)/2]

5
s23c(n2 c)k(n2 k)

n3 2n
.

Using these in (A1) and properties of covariance gives

our key equation:

n21Cov

 
!
c

t51

!̂
t
, !

k

t51

!̂
t

!
5Cov

 
!
c

t51

!
t
2 c!, !

k

t51

!
t
2 k!

!
1 2Cov

*
!
c

t51

!
t
2 c!, k(n2 k)(b̂2b)/2

+

1Cov[c(n2 c)(b̂2b)/2,k(n2 k)(b̂2b)/2]

5
s2(n2 k)c

n2
[12 3k(n2 c)/(n22 1)]’s2(12 s)r[12 3s(12 r)] ,

where s 5 k/n and r 5 c/n. This equation identifies the

limiting covariance structure of the Gaussian process. In

particular, when s 5 r

Var

#
!
c

t51

!̂
t

ffiffiffi
n

p $
’s2r(12 r)[12 3r(12 r)] .

/

The convergence claimed in result 3 now follows from

process convergence results found in Billingsley (1999).

Proof of result 4: While (3.8) gives the ordinary least

squares estimators of m(c), b(c), and D(c) for each

changepoint time c, the computations simplify if we work

with a linear models orthogonal decomposition on the
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design matrix. Stapleton (2009) gives a comprehensive

discussion of these techniques. For t . c, denote the

predicted values under the alternative model as x̂t 5

m̂1 b̂(c)t1D̂(c). Let v1 be an n3 1 vector whose entries

are all ones, let the vector v2 have tth component t2 t,

and let the vector v3 have tth component satisfying

y3(t)5

8
>><
>>:

c2 n

n3 2n
[n22 11 6c(t2 t )] , t# c

11
c2 n

n32 n
[n22 11 6c(t2 t )] , t. c

. (A3)

The vector of predicted values has representation

X̂5X1:nv11 b̂v21D̂(c)v3

and linear models theory (Stapleton 2009, section 3.7)

provides

D̂(c)5
v03X

kv3k
2

and Var[D̂(c)]5
s2

kv3k
2
,

with X 5 (X1, . . . , Xn)
0. Here, the norm is the sum of

squares kyk2 5!n

t51y
2
t and y 5 (y1, . . . , yn)

0.
A direct calculation with (A3) shows

kv3k
2/n5

n2 c

n

%
12

n2 c

n2 3c2
n2 c

n32 n

&

5
c

n

%
12

c

n

&*
12 3

c(n2 c)

n22 1

+
,

which establishes (3.11), and

v03X5 c(n2 c)(b2 b̂)/22 !
c

t51

!
t
2 c! 52 !

c

t51

!̂
t
,

where !̂
t
is the residual calculated under the null hypo-

thesis. This establishes (3.10).

The squared t statistic becomes

T(c)2 5
D̂(c)2

dVar[D̂(c)]
5

(v03X)2/n

s2kv3k
2/n

,

where, as n/ ‘,

n21kv3k
2
/ r(12 r)[12 3r(12 r)] ,

with r 5 c/n. Under the null hypothesis of no change-

points, as n/ ‘,

T(c)25

#
!
c

t51

!̂
t

$2/
n

ŝ2kv3k
2/n

’

#
!
c

t51

!̂
t

/ ffiffiffi
n

p $2

s2r(12 r)[12 3r(12 r)]
.

The above derivations yield (3.12) and the convergence

in result 4 now follows from (3.5), (3.12), and the con-

tinuous mapping theorem of Billingsley (1999).
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