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We develop a new kernel-based local polynomial methodology for nonparametric regression based on
optimising a linear combination of several loss functions. Optimal weights for least squares and quantile
loss functions can be chosen to provide maximum efficiency and these optimal weights can be estimated
from data. The resulting estimators are at least as efficient as those provided by existing procedures, but
can be much more efficient for many distributions. The data-based weights adapt to the tails of the error
distribution resulting in a procedure which is both robust and resistant. Furthermore, the assumption of
homogeneous error variance is not required. To illustrate its practical use, we apply the proposed method
to model the motorcycle data.

Keywords: nonparametric regression; composite quantile; efficiency

1. Introduction

Consider a general nonparametric model

Y = m(X) + σ(X)ε, (1)

where Y is the response variable, X is the explanatory variable, m(·) is a smooth nonparametric
regression function, σ(X) is a smooth function and ε is random error with a probability density
function symmetric about 0. Without loss of generality, we assume E[ε2

i ] = 1, if E[ε2
i ] < ∞.

Various methods have been developed to fit this type of model (Watson 1964; Wahba 1990; Fan
and Gijbels 1996). It is fairly common to fit the model using weighted least squares (LS) with local
polynomial approximation (Fan and Gijbels 1992). However, LS fitting can be very sensitive to
heavy-tailed errors and severe outliers. Consequently, LS-based local polynomial regression could
fail to produce reliable estimates in some cases. As a result, a lot of literature (Fan, Hu, and Truong
1994; Welsh 1996; Yu and Jones 1998; Jiang and Mack 2001; Chan and Zhang 2004) has been
devoted to study robust local polynomial regression. Among those robust regression estimators,
quantile regression (Koenker and Bassett 1978) is particularly attractive, since it can provide a
more complete model of the relationship between predictors and response variables (Koenker
2005), owns excellent computational properties (Portnoy and Koenker 1997) and has widespread
applications (Yu, Liu, and Stander 2003; Chernozhukov 2005). For some error structures, local
polynomial quantile regression can be more efficient than the local LS polynomial regression.
For example, if the error follows a Laplace distribution, the local median polynomial regression
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2 Q. Zheng et al.

has been demonstrated to be the most efficient (Fan et al. 1994; Welsh 1996). In other cases, the
local quantile regression could be arbitrarily less efficient than the local LS polynomial regression
(e.g. for normal data), resulting from the fact that loss functions of quantile regressions penalise
residuals of small magnitude too strongly.

To improve the performance of quantile regression, Koenker and Portnoy (1987) considered
L-estimation for linear models.An L-estimator is a weighted average of quantile estimators, which
can achieve high efficiency for non-normal data. Bickel (1973) and Koenker (1984) demonstrate
that as the number of quantiles used increases, the optimally weighted L-estimator is as efficient as
the maximum likelihood estimator. However, it is difficult to find the optimal weights (Portnoy and
Koenker 1989), and the computational cost increases dramatically with the number of quantiles.
Instead, Zou and Yuan (2008) introduced composite quantile regression (CQR), which equally
weights quantile loss functions. Kai, Li, and Zou (2010) adapted composite quantiles to the local
polynomial framework. They showed that the local polynomial CQR can significantly improve the
estimation efficiency of its local LS counterpart for common non-normal errors. However, the loss
in efficiency compared to the LS polynomial regression still exists in many scenarios. In addition
to that, it is unclear how many quantiles should be used in the local polynomial CQR. Even for
a huge data set, increasing the number of quantiles does not necessarily improve the efficiency
of estimates (Kai et al. 2010). Sun, Gai, and Lin (2013) recently proposed the local polynomial-
weighted CQR (WCQR), which extends CQR to asymmetric error distributions. Since neither
L-estimators nor CQR type estimators incorporate the LS loss, these estimators can require a large
number of quantiles to achieve the efficiency especially when the magnitude of errors is small.

In this paper, we attempt to embed the usage of a convex combination of different loss functions
into nonparametric kernel regression to obtain a robust estimator with significant improvement in
efficiency. This idea is motivated by Bradic, Fan, and Wang (2011), which attempted to produce
a robust and efficient estimator for high-dimensional linear regression by minimising compos-
ite loss functions simultaneously. However, different from a direct extension of Bradic et al.
(2011) to nonparametric regression, we drop the finite second-moment assumption and combine
the squared loss with multiple quantile loss functions for symmetric errors and pick weights
to optimise the asymptotic efficiency. This results in a method which inherits strengths from
both LS and quantile regression methods. We establish the asymptotic properties of the result-
ing estimator and show that it performs at least as well as the local LS polynomial estimator
or the local polynomial CQR type estimators for any error distribution, and can improve the
estimation efficiency for many distributions. Furthermore, it achieves the same efficiency as the
optimally weighted L-estimator and can achieve higher efficiency than the equally WCQR of
Kai et al. (2010). We propose a simple data-driven procedure to select weights for the convex
combination and show that the aforementioned asymptotic properties can be achieved by this
adaptively weighted local polynomial regression estimator. The adaptively weighted local poly-
nomial estimator is quite robust and works well even if the error distribution does not have a
finite variance.

2. The adaptively weighted local polynomial regression

We start by setting up notations. Let ρτ (t) = τ1(t > 0)t − (1 − τ)1(t ≤ 0)t be the check func-
tion with quantile index τ . Let τk = k/(q + 1), k = 1, . . . , q be equally spaced quantile indices
between 0 and 1. We denote the τkth quantile by qτk , k = 1, . . . , q. In particular, let τ0 = 0, qτ0 = 0
and ρτ0(t) = t2. We use F(·) and f (·) to denote the cumulative distribution function and probabil-
ity density function of εi, respectively. gX(·) is the marginal density of X. K(·) is a classical kernel
function. We also use the following notations τk,k′ = τk∧k′ − τkτk′ , where k ∧ k′ = min{k, k′}, and
τ0,k = E[εi1(εi ≤ qτk )], for k = 1, . . . , q.
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Journal of Nonparametric Statistics 3

In order to define the adaptively weighted local polynomial regression, let us briefly review
the local LS polynomial regression, the local quantile polynomial regression and the local
polynomial CQR.

Let (xi, yi) be n independently and identically distribution observations. Of interest is to estimate
the value of m(X) at x0. Suppose m(X) is smooth enough to be approximated by a pth-order
polynomial in a neighbourhood of x0, that is, m(x) ≈ ∑p

j=0(1/j!)m(j)(x0)(x − x0)
j. The local LS

polynomial regression estimator of (m(x0), m(1)(x0), . . . , m(p)(x0)) is defined as the minimiser of
the following objective function

min
a0,a1,...,ap

n∑
i=1

ρτ0

⎛
⎝yi −

p∑
j=0

1

j!aj(xi − x0)
j

⎞
⎠ K

(
xi − x0

h

)
, (2)

where h is a smoothing parameter. Fan and Gijbels (1992) demonstrated that the local LS polyno-
mial regression owns several desirable properties: it adapts to a wide variety of design densities,
significantly reduces bias at boundary points, and attains high minimax efficiency.

However, the local LS polynomial regression suffers from outliers and heavy-tailed errors.
Motivated by its robustness and other good features, several authors (Fan et al. 1994; Welsh 1996;
Yu and Jones 1998) advocated the local quantile polynomial regression

min
a0,a1,...,ap

n∑
i=1

ρτ

⎛
⎝yi −

p∑
j=0

1

j!aj(xi − x0)
j

⎞
⎠ K

(
xi − x0

h

)
,

for some quantile index τ . Although the local quantile polynomial regression can be applied for
more general error structures, it can be arbitrarily inefficient compared to the local LS polynomial
regression. To improve the efficiency of the local quantile polynomial regression while maintaining
the robustness, Kai et al. (2010) proposed the local polynomial CQR as follows

min
a01,...,a0q ,a1,...,ap

n∑
i=1

q∑
k=1

ρτk

⎛
⎝yi − a0k −

p∑
j=1

1

j!aj(xi − x0)
j

⎞
⎠ K

(
xi − x0

h

)
. (3)

They showed that the local polynomial CQR can significantly improve the efficiency compared to
the local quantile polynomial regression. However, the loss of efficiency of the local polynomial
CQR still exists for some commonly seen distributions.

We consider combining the local LS and CQR from Equations (2) and (3) to produce an efficient
and robust regression estimator. Let θ = (a01, . . . , a0q, a0, a1, . . . , ap) and denote the solution to
the objective function

min
θ

n∑
i=1

⎡
⎣ q∑

k=0

βkρτk

⎛
⎝yi − a0k −

p∑
j=0

1

j!aj(xi − x0)
j

⎞
⎠

⎤
⎦ K

(
xi − x0

h

)
, (4)

by θ̂β = (â01, . . . , â0q, â0, â1, . . . , âp). Here, a00 = 0 and β0, . . . , βq are well-chosen non-negative
weights which adapt to the error structures. The details about how to choose those weights
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4 Q. Zheng et al.

are presented in Section 3.2. Under the regularity conditions presented in Section 3.1, we can
show that

√
nhn

( ∑q
k=1(1/2σ)βkf (qτk )â0k

β0 + ∑q
k=1(1/2σ)βkf (qτk )

+ â0 − m(x0) − 1

2
m(2)(x0)μ2h2

n

)

L→ N

(
0,

ν0

4g(x0)

Vβ

(β0 + ∑q
k=1(1/2σ)βkf (qτk ))

2

)
.

Therefore, we define the adaptively weighted local polynomial regression estimator as

m̂β(x0) = (1/2σ)
∑q

k=1 βkf (qτk )â0k

β0 + (1/2σ)
∑q

k=1 βkf (qτk )
+ â0, m̂(j)

β (x0) = âj, j = 1, . . . , p. (5)

For identification purposes, we set σβ0 + ∑q
k=1 βkf (qτk )/2 = 1. The regression estimator from

Equation (5) becomes

m̂β(x0) = 1

2

q∑
k=1

βkf (qτk )â0k + â0.

This formulation actually provides an advantage. In the following sections, it can be seen that the
variances of m̂β(x0) and m̂(j)

β (x0), 1 ≤ j ≤ p are of similar forms. Consequently, minimising them
separately still produces the same optimal weights vector β.

3. Asymptotic properties

In this section, we state primitive regularity conditions and then establish the asymptotic properties
of the adaptively weighted local polynomial regression estimator.

3.1. Regularity Conditions

To study the asymptotic properties of the adaptively weighted local polynomial regression
estimator, the following regularity conditions are assumed throughout the rest of this paper.

(A) m(·) has continuous (p + 2)th derivative in the neighbourhood of x0.
(B) f is symmetric about 0 and belongs to the domain of attraction of some stable distribu-

tion S; this includes all distributions for which normalised sums converge to a weak limit
(Feller 1971).

(C) f is continuous and positive.
(D) gX(·) is positive and differentiable in the neighbourhood of x0.
(E) K(·) is a symmetric kernel function with a compact support [−M, M], and satisfies

(a) |K(u)| < Ck ,
(b)

∫ M
−M K(u) du = 1,

(c)
∫ M
−M ujK(u) du = μj,

∫ M
−M ujK2(u) du = νj, j ≥ 0. In particular, μj = νj = 0 for odd j.

Regularity conditions A, C, D and E are commonly assumed in the literature (Fan 1992; Yu and
Jones 1998; Kai et al. 2010). As is pointed out elsewhere, the assumption that K(·) has a compact
support can be relaxed at the cost of more complicated technical proofs. In simulation studies,
we exhibit the excellent performance of the proposed estimator with the classical normal kernel.
The assumption that f is symmetric about 0 is required in Kai et al. (2010). Although WCQR for
asymmetric errors was considered recently in Sun et al. (2013), we still maintain the symmetry
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Journal of Nonparametric Statistics 5

assumption to simplify the complicated proof that the impact of the LS part is negligible when
E[ε2

i ] does not exist. However, our estimator can be generalised to asymmetric distributions
following Sun et al. (2013).

Up front, under the assumption that E[ε2
i ] < ∞, we establish the asymptotic properties of the

adaptively weighted local polynomial regression estimator to demonstrate that it is more efficient
and hence is favourable to other polynomial regression estimators. Next, we consider E[ε2

i ] = ∞
and show that the impact of the LS part in the adaptively weighted local polynomial regression
estimator is asymptotically negligible, while the efficiency is preserved under this infinite variance
scenario. Therefore, the proposed estimator is a robust and efficient alternative to other polynomial
regression estimators.

To avoid complicated statements, we first illustrate our ideas via the i.i.d error models:

Y = m(X) + σε,

and then generalise it to heterogeneous error models.

3.2. Asymptotic properties when E[εi]2 exists

Throughout this subsection, we assume E[εi]2 < ∞. To state the asymptotic properties of the
adaptively weighted local polynomial regression estimator, we need to introduce the following
notations:

Define

S(β) =
(

S11(β) S12(β)

S21(β) S22(β)

)
,

where S11(β) is a q × q diagonal matrix with diagonal elements βkf (qτk )/(2σ), for k =
1, . . . , q, S22 is a (p + 1) × (p + 1) matrix with (j, j′)-entry μ(j+j′−2), for j, j′ = 1, . . . , p + 1, and
S12(β) = S21(β)T is a q × (p + 1) matrix with (k, j)-entry βkf (qτk )/(2σ)μj−1, for k = 1, . . . , q;
j = 1, . . . , p + 1.

Let

Vβ = 4β2
0σ 2 − 4β0

q∑
k=1

βkστ0,k +
q∑

k,k′=1

βkβk′τk,k′ ,

and define

	(β) =
(

	11(β) 	12(β)

	21(β) 	22(β)

)
,

where 	11(β) is a q × q matrix with (k, k′)-entry βkβk′ν0τk,k′ , for k, k′ = 1, . . . , q, 	22(β) is a
(p + 1) × (p + 1) matrix with (j, j′)th element Vβν(j+j′−2), for j, j′ = 1, . . . , p + 1, and 	12(β) =
	T

21(β) is a q × (p + 1) matrix with (k, j)-entry (−2β0βkστ0,k + βk
∑q

k′=1 βk′τk,k′)ν(j−1), for
k = 1, . . . , q; j = 1, . . . , (p + 1).

Let ri,p = m(xi) − ∑p
j=0 m(j)(x0)(xi − x0)

j/j! be the residual of the Taylor expansion of m(xi)

at x0, and ξβ,i = −2β0(σεi + ri,p) + ∑q
k=1 βk[1(εi ≤ (σqτk − ri,p)/σ ) − τk]. We define Wβ,n =

(wβ,01, . . . , wβ,0q, wβ,0, wβ,1, . . . , wβ,p)
T, where

wβ,0k = βk
1√
nhn

n∑
i=1

K

(
xi − x0

hn

) [
1

(
εi ≤ σqτk − ri,p

σ

)
− τk

]
, k = 1, . . . , q;

wβ,j = 1√
nhn

n∑
i=1

K

(
xi − x0

hn

) (
xi − x0

hn

)j

ξβ,i, j = 0, . . . , p.
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6 Q. Zheng et al.

Then, the asymptotic properties of the adaptively weighted local polynomial regression
estimator can be established in the following theorem:

Theorem 3.1 Suppose assumptions A–E are satisfied. Furthermore, we assume E[ε2
i ] < ∞. If

hn → 0 and nhn → ∞, then for any nonnegative weights vector β = (β0, . . . , βq)
T,

√
nhnS(β)Ahn(θ̂β − θ∗) + 1

2g(x0)
E[Wβ,n] L→ N

(
0,

1

4g(x0)
	(β)

)
,

where θ∗ = (qτ1 , . . . , qτq , m(x0), m(1)(x0), . . . , m(p)(x0))
T is a vector of true parameters and Ahn is

a (q + 1 + p) × (q + 1 + p) diagonal matrix with diagonal elements (1, . . . , 1, h0
n/0!, . . . , hp

n/p!).

As special cases, two corollaries follow immediately.

Corollary 3.1 Under the same assumptions as Theorem 3.1, if p = 1, we have

√
nhn

[
m̂β(x0) − m(x0) − m(2)(x0)

2
μ2h2

n

]
L→ N

(
0,

ν0σ
2

4g(x0)
Vβ

)
,

and the mean squared error (MSE) of m̂β(x0) is

MSE(m̂β(x0)) =
(

m(2)(x0)

2
μ2

)2

h4
n + ν0σ

2

4g(x0)

Vβ

nhn
+ op

(
h4

n + 1

nhn

)
. (6)

Corollary 3.2 Under the same assumptions as Theorem 3.1, if p = 1, then

√
nhn

[
m̂(1)

β (x0) − m(1)(x0) −
(

m3(x0)

6
+ m(2)(x0)g(1)(x0)

2g(x0)

)
μ4

μ2
h2

n

]
L→ N

(
0,

ν2σ
2

4g(x0)h2
nμ

2
2

Vβ

)
,

and

MSE(m̂(1)
β (x0)) =

(
m(3)(x0)

6
+ m(2)(x0)g(1)(x0)

2g(x0)

)2
μ2

4

μ2
2

h4
n + ν2σ

2

4g(x0)μ
2
2

Vβ

nh3
n

+ op

(
h4

n + 1

nh3
n

)
.

(7)
If p = 2, then

√
nhn

[
m̂(1)

β (x0) − m(1)(x0) − m(3)(x0)μ4

6μ2
h2

n

]
L→ N

(
0,

ν2σ
2

4g(x0)h2
nμ

2
2

Vβ

)
,

and

MSE(m̂(1)
β (x0)) =

(
m(3)(x0)

6

)2
μ2

4

μ2
2

h4
n + ν2σ

2

4g(x0)μ
2
2

Vβ

nh3
n

+ op

(
h4

n + 1

nh3
n

)
. (8)

Equation (6) indicates that the asymptotic MSE depends on β only through Vβ . Thus, the optimal
weights vector β in the sense of minimising the MSE of m̂(x0) can be chosen by minimising Vβ :

βopt = argmin
β≥0,αTβ=1

Vβ , (9)

where α = (σ , f (qτk )/2, . . . , f (qτq)/2)T.
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Journal of Nonparametric Statistics 7

Remark 3.1 When q → ∞, if we set β0 = 0 and minimise Vβ with respect to β, the resulting
covariance matrix is the same as that of the nonparametric polynomial L-estimation with optimal
weights. Therefore, the proposed method is also as efficient as the maximum likelihood, when
q → ∞.

Noting that the MSE of m̂(1)
β (x0) from Equations (7) and (8) only depends on β by Vβ as well,

then βopt is also optimal for estimating m(1)(x0). For most practical interests, estimating m(x0) is
the main focus. However, it can be shown that βopt is optimal for estimating all m(j)(x0) for j ≤ p.

Since Equation (9) is a constrained quadratic minimisation problem, the closed form solution
for the optimal weights can be difficult to obtain. However, in some cases, optimal weights can
be explicitly found. We provide several examples to show the availability of the optimal weights.

Example 3.1 Let q = 1, τ1 = 1
2 and p ≥ 1. In other words, we consider the combination of LS

and least absolute deviation (LAD), then the optimal weights are

β1,opt = 2(1 − σβ0,opt)

f (0)

and β0,opt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if
1 − 2f (0)E[|εi|]

4f (0)2 − 4f (0)E[|εi|] + 1
< 0,

1 if
1 − 2f (0)E[|εi|]

4f (0)2 − 4f (0)E[|εi|] + 1
> 1,

1

σ

1 − 2f (0)E[|εi|]
4f (0)2 − 4f (0)E[|εi|] + 1

otherwise.

Example 3.2 If εi ∼ N(0, 1), then β0,opt = 1/σ and βk,opt = 0, for all 1 ≤ k ≤ q.

Example 3.3 If εi ∼ Laplace(0, 1/
√

2) and q is odd, then βl,opt = 2f (0) for l = (q + 1)/2, and
β0,opt = βk,opt = 0, for all k �= l.

Both the local polynomial LS and the local polynomial CQR estimators are special cases of the
weighted local polynomial regression. Regardless of the error distribution, the efficiency achieved
by choosing the theoretically optimal weights can be no less than that gained by either of those
methods. Moreover, the proposed estimator with true optimal weights can be more efficient than
the local LS polynomial regression estimator and the local polynomial CQR for some distributions,
as Examples 3.1 and 3.2 demonstrate. Theorem 2 in Kai et al. (2010) indicates that as the number
of quantiles increases, the asymptotic relative efficiency between CQR and LS converges to 1.
For the proposed weighted estimator, increasing the number of quantiles does not impact the
efficiency in this way, but can in fact improve the asymptotic efficiency of the estimator.

Although Vβ is typically unobservable, we can replace it with a consistent estimator. Let ζ̃i be
residuals of a

√
nhn-consistent preliminary estimation, i = 1, . . . , n. For example, we could use

the residuals from the local polynomial median regression, or residuals from the local polynomial
CQR, or the residuals from the local LS polynomial regression, if the error terms {εi} have a finite
second moment. We note here that both CQR and WCQR require preliminary estimation as well.

We use the notation T̃ to denote the empirical estimate of T using ζ̃i, for some statistic T . Then,
Ṽβ = 4β2

0 σ̃ 2 − 4β0
∑q

k=1 βk σ̃ τ̃0,k + ∑q
k,k′=1 βkβk′τk,k′ , and we can obtain the practically optimal

weights vector

β̂ = argmax
β≥0,α̃Tβ=1

Ṽβ , (10)

where α̃ = (σ̃ , 1
2 f̃ (q̃τ1), . . . , 1

2 f̃ (q̃τq))
T. The consistency of β̂ can easily be verified. We have the

following corollary:
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8 Q. Zheng et al.

Corollary 3.3 Under the same assumptions as Theorem 3.1,

√
nhnS(βopt)Ahn(θ̂β̂ − θ∗) + 1

2g(x0)
E[Wβopt ,n] L→ N

(
0,

1

4g(x0)
	(βopt)

)
,

The proposed estimator, using β̂ obtained from Equation (10) does not suffer from any loss of
asymptotic efficiency.

Notice that in Ṽβ , qτk , τ0,k and f (qτk ) need to be estimated. Therefore, the number of quantiles
should depend on the sample size. When the sample size is small we recommend using only a few
quantiles to avoid the impact of introducing too many parameters. On the other hand, if the sample
size is large, more quantiles should be adopted. In practice, cross-validation, akaike information
criterion (AIC), Bayesian information criterion (BIC) type criteria can be applied to choose the
number of quantiles.

3.3. Asymptotic properties when E[ε2
i ] does not exist

Since LS may not provide reliable estimates when heavy-tailed errors or outliers appear, in this
case, one might use a weight of zero (β0 = 0) for the LS part of objective function (4). In practice,
we do not know if the variance is finite and we propose picking weights using a numerical solution
to the constrained quadratic minimisation problem (10). Therefore, β̂0 is not necessarily 0. We
would like to find out if the proposed estimator can still be applied. The following theorem answers
the aforementioned question.

Theorem 3.2 Suppose assumptions A–E are satisfied. Furthermore, we assume E[ε2
i ] does not

exist. If hn → 0 and nhn → ∞, then

√
nhnS(βopt)Ahn(θ̂β̂ − θ∗) + 1

2g(x0)
E[Wβopt ,n] L→ N

(
0,

1

4g(x0)
	(βopt)

)
.

This theorem indicates that β̂0 converges to 0 fast enough to make the instability caused by
LS negligible. Theorem 3.2 coupled with Theorem 3.1 imply that the adaptively weighted local
polynomial regression can be applied universally. In addition, because β̂ is chosen to adapt to
different error distributions, the resulting local polynomial regression estimator is asymptotically
more efficient than the local polynomial CQR. Those features make the proposed estimator very
appealing in practice.

3.4. Heterogeneous errors

In the foregoing sections, we exhibit the desirable theoretical properties of the adaptively weighted
local polynomial regression estimator under the homogeneous model. An interesting question
naturally arises: ‘Can this method be applied to regression problems of which the error sequences
are heterogeneous?’

The essential idea of the proposed procedure is to use the residuals from some preliminary
method to select approximately optimal weights for the different loss functions. If the error
sequences are homogeneous, then all residuals can be employed to establish the error structure.
On the other hand, if the errors are heterogeneous, residuals of observations with covariate values
closer to x0, the point of interest, should contribute more to the local error structure estimation.
Hence, we can use weighted squares of residuals to estimate σ(·) at x0, where weights are assigned
by a kernel function. Take the uniform kernel as an illustration, as n → ∞, the number of obser-
vations falling into [x0 − hn, x0 + hn] is of order nhn. Therefore, the asymptotic efficiency should
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Journal of Nonparametric Statistics 9

not be impacted by doing the local error structure estimation. In practice, the pilot fit also provides
initial bandwidths so that we can manipulate observations falling into the smoothing window to
approximate σ(·) locally.

Theorem 3.3 Under model (1), suppose assumptions A–E are satisfied. Furthermore, if hn → 0
and nhn → ∞, then

√
nhnS(βopt)Ahn(θ̂β̂ − θ∗) + 1

2g(x0)
E[Wβopt ,n] L→ N

(
0,

1

4g(x0)
	(βopt)

)
,

where β̂ is obtained from Equation (10) using weighted local residuals.

In heterogeneous cases, we use the following procedure to get the practical optimal weights.

Step 1 Obtain a
√

nhn-consistent pilot estimator m̃(·) for m(·) with bandwidth h(·).
Step 2 Implement the procedure proposed by Ruppert, Wand, Holst, and Hössjer (1997) to

construct σ̃ 2(·) using weighted squares of residuals from the initial fit.
Step 3 Compute ε̃i = (yi − m̃(xi))/σ̃ (xi).
Step 4 Estimate the sample quantiles q̃τk , k = 1, . . . , q. Then estimate f (·) at quantiles q̃τk , and

empirically estimate τ0,k .
Step 5 Construct and minimise Ṽβ with respect to β at different x.

A simple fact can facilitate our computation to obtain the optimal weights β̂ in Step 5. We observe
that in heterogeneous cases, Vβ and the identification constraint only depend on x through σ(·)β0.
Denote σ(·)β0 by ω. Then, V(β) = 4ω2 − 4

∑q
k=1 βkωτ0,k + ∑q

k,k′=1 βkβk′τk,k′ , and the constraint
becomesω + ∑q

k=1 βkf (qτk )/2 = 1.This indicates (β1,opt, . . . , βq,opt) andωopt are constant.There-
fore, instead of carrying out multiple minimisation problems for different x in Step 5, we can solve
a single-minimisation problem to get (β̂1, . . . , β̂q) and ω̂, and then obtain β̂0 = ω̂/σ̃ (·) at differ-
ent x. Since σ(·) is a smooth function, then the weights are smooth functions of x, and so are the
resulting estimators.

According to this procedure, we can also see that compared to CQR, the adaptively weighted
kernel regression only needs additional cost for the empirical estimations for τ0,k and one quadratic
minimisation, regardless of the heteroscedasticity of the errors. Therefore, the computation costs
of the proposed method and CQR are of the same order.

3.5. Bandwidth selection

The performance of local polynomial regression estimators depends crucially on the smoothing
parameter h. Obtaining a good bandwidth is very important for the success of the adaptively
weighted local polynomial regression estimator. Given a weights vector β, the optimal bandwidth
in the sense of minimising MSE(m̂β(x0)) is

hβ,opt(x0) =
[

1

(m(2)(x0))2

ν0σ
2(x0)

4g(x0)μ
2
2

Vβ

]1/5

n−1/5,

and the optimal bandwidth for the local linear regression estimator is

hLS(x0) =
[

1

(m(2)(x0))2

ν0σ
2(x0)

g(x0)μ
2
2

]1/5

n−1/5.
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10 Q. Zheng et al.

It follows that

hβ,opt(x0) =
(

Vβ

4

)1/5

hLS(x0) (11)

As suggested in Kai et al. (2010), when E[ε2
i ] exists we can exploit this simple relationship to

select the optimal bandwidth for the proposed estimator using existing bandwidth selectors for
the local linear estimator. When E[ε2

i ] does not exist, we can similarly select the bandwidth via
the relationship between the proposed estimator and the local LAD linear estimator. In both cases,
we can infer Vβ̃ from preliminary estimates. This procedure works well for both homogeneous
and heterogenous errors.

4. Numerical studies and applications

In this section, we conduct a simulation study which evaluates the finite sample performance
of the adaptively weighted local polynomial regression estimator. We then apply the proposed
estimator to a real data set as a demonstration of its practical use.

4.1. Simulations

In our simulation studies, we adopt the settings used in Kai et al. (2010) and Sun et al. (2013).
We consider two simulation models.

(1) Y = sin(2X) + 2 exp(−16X2) + 0.5ε, where X ∼ N(0, 1),
(2) Y = X sin(2πX) + ( 1

5 + cos(2πX)/10)ε, where X ∼ Unif(0, 1).

In each model, we consider various distributions for ε: N(0, 1) and Unif(−1, 1) represent light-
tailed errors; Laplace(0, 1) represents moderate-tailed errors; a t3-distribution and a truncated
Cauchy(0, 1) on [−10, 10] represent heavy-tailed errors; a mixture of two normal distributions
0.95N(0, 1) + 0.05N(0, σ 2) with σ = 3, 10 represent errors with light and severe outliers, respec-
tively. For each combination, we simulated 1000 independent random samples, each consisting
of 200 observations.

In our simulations, we assume that the correct choice of homoscedasticity or heteroscedasticity
has been made for each of the two models. We use the local LS as the pilot fit, since it can
be easily implemented in R. We also use the local LAD as the pilot estimation and observe
similar simulation results. We present those results in the supplemental material. We compare the
proposed method with the classical local linear estimator, the local polynomial CQR and WCQR
via evaluating the integrated mean squared errors (IMSE), which is a summation of MSE at L
equally spaced grid points over the interval at which the regression function is estimated. For
model 1, we estimate m(x) over [−1.5, 1.5] with L = 200 and for model 2, we estimate m(x) over
[0,1] with L = 200.

We consider q = 5, 9, 19 for the local polynomial CQR, WCQR and the adaptively weighted
local polynomial regression estimator. Additional simulations for q = 1 were also conducted and
are reported in the supplemental material. We use the normal kernel and select hLS via a plug-in
bandwidth selector, dpill, proposed by Ruppert, Sheather, and Wand (1995). For the proposed
estimator, we select the bandwidth using Equation (11). The bandwidths for CQR and WCQR are
calculated using their relationship to LS. We summarise our simulation results using the ratio of
the IMSE (RIMSE) of the local linear estimator over the IMSE of the other estimators. The results
are presented in Tables 1 and 2, where CQR5, CQR9, CQR19, WCQR5, WCQR9, WCQR19, AW5,
AW9 and AW19, denote the local polynomial CQR, WCQR and the adaptively weighted local
polynomial regression estimators with q = 5, 9, 19 respectively.
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Journal of Nonparametric Statistics 11

Table 1. The means and standard deviations of RIMSE for model 1.

Mean Standard deviation Mean Standard deviation Mean Standard deviation

N(0, 1) LS – –
CQR5 0.944 0.102 WCQR5 0.928 0.128 AW5 0.984 0.064
CQR9 0.965 0.073 WCQR9 0.943 0.119 AW9 0.969 0.088
CQR19 0.982 0.048 WCQR19 0.931 0.123 AW19 0.945 0.127

Unif(-1,1) LS – –
CQR5 0.854 0.058 WCQR5 0.979 0.140 AW5 1.019 0.063
CQR9 0.924 0.044 WCQR9 1.174 0.196 AW9 1.137 0.165
CQR19 0.971 0.036 WCQR19 1.343 0.265 AW19 1.216 0.269

Laplace(0,1) LS – –
CQR5 1.125 0.217 WCQR5 1.193 0.314 AW5 1.243 0.327
CQR9 1.080 0.143 WCQR9 1.167 0.301 AW9 1.243 0.332
CQR19 1.036 0.086 WCQR19 1.095 0.274 AW19 1.214 0.321

t3 LS – –
CQR5 1.383 0.704 WCQR5 1.342 0.619 AW5 1.427 0.744
CQR9 1.276 0.560 WCQR9 1.284 0.520 AW9 1.393 0.741
CQR19 1.125 0.199 WCQR19 1.137 0.434 AW19 1.329 0.641

Truncated Cauchy on [−10, 10] LS – –
CQR5 1.319 0.326 WCQR5 1.558 0.529 AW5 1.716 0.612
CQR9 1.158 0.207 WCQR9 1.510 0.551 AW9 1.725 0.623
CQR19 1.070 0.107 WCQR19 1.376 0.495 AW19 1.696 0.606

0.95N(0,1)+0.05N(0,9) LS – –
CQR5 1.113 0.226 WCQR5 1.065 0.216 AW5 1.088 0.200
CQR9 1.089 0.168 WCQR9 1.043 0.195 AW9 1.054 0.205
CQR19 1.047 0.095 WCQR19 0.945 0.187 AW19 0.982 0.189

0.95N(0,1)+0.05N(0,100) LS – –
CQR5 2.551 1.502 WCQR5 2.232 1.261 AW5 2.572 1.554
CQR9 2.018 1.016 WCQR9 1.807 1.039 AW9 2.153 1.342
CQR19 1.406 0.459 WCQR19 1.486 0.909 AW19 1.860 1.276

Bold labels the best estimator among CQR, WCQR and AW with the same number of quantiles.

It appears that the proposed method adapts well to the different error distributions. From Table 1,
we can see that although slight loss in efficiency relative to LS exists for the adaptively weighted
local polynomial regression estimators, when the error distribution is normal, the proposed estima-
tors outperform LS, CQR and WCQR counterparts for most of the distributions considered. The
proposed estimator shows significant improvement over LS, CQR in terms of RIMSE especially
when the errors are heavy-tailed or large outliers appear.

Comparing the simulation results for q = 1 in the supplemental material, we can see that the
proposed estimator with more quantiles has superior performance over those simpler estimators
for most error distributions. However, in Table 1, it seems that the estimators with 19 quantiles can
be less efficient than the estimators with 5 or 9 quantiles for some distributions, this is due to the
fact that introducing too many quantiles into WCQR and the proposed estimators requires more
parameter estimation and hence impacts the efficiency for a fixed sample size. However, with the
incorporation of LS part, the proposed estimator outperforms the WCQR for most cases. Similar
results for model 2 can be observed from Table 2. This indicates that the proposed adaptively
weighted estimator still performs well in the presence of heteroscedasticity.

4.2. A real data analysis

To illustrate its practical use, we apply the adaptively weighted local polynomial regression to
the motorcycle data which also has been studied by Schmidt, Mattern, and Schü (1981), Fan and
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12 Q. Zheng et al.

Table 2. The means and standard deviations of RIMSE for model 2.

Mean Standard deviation Mean Standard deviation Mean Standard deviation

N(0, 1) LS – –
CQR5 0.936 0.171 WCQR5 0.927 0.199 AW5 0.990 0.094
CQR9 0.962 0.142 WCQR9 0.940 0.191 AW9 0.969 0.143
CQR19 0.979 0.099 WCQR19 0.915 0.217 AW19 0.949 0.171

Unif(−1,1) LS – –
CQR5 0.812 0.096 WCQR5 0.998 0.273 AW5 1.032 0.123
CQR9 0.890 0.072 WCQR9 1.245 0.478 AW9 1.147 0.263
CQR19 0.946 0.064 WCQR19 1.328 0.692 AW19 1.190 0.483

Laplace(0,1) LS – –
CQR5 1.214 0.392 WCQR5 1.289 0.530 AW5 1.371 0.578
CQR9 1.146 0.273 WCQR9 1.246 0.501 AW9 1.355 0.588
CQR19 1.086 0.178 WCQR19 1.148 0.442 AW19 1.246 0.510

t3 LS – –
CQR5 1.443 0.822 WCQR5 1.456 0.880 AW5 1.566 1.023
CQR9 1.313 0.741 WCQR9 1.411 0.921 AW9 1.537 0.980
CQR19 1.250 0.499 WCQR19 1.265 0.729 AW19 1.469 0.911

Truncated Cauchy on [−10, 10] LS – –
CQR5 1.549 0.647 WCQR5 1.860 1.138 AW5 2.118 1.130
CQR9 1.306 0.367 WCQR9 1.814 0.992 AW9 2.146 1.274
CQR19 1.179 0.238 WCQR19 1.650 0.866 AW19 1.966 1.233

0.95N(0,1)+0.05N(0,9) LS – –
CQR5 1.142 0.426 WCQR5 1.074 0.381 AW5 1.102 0.346
CQR9 1.101 0.362 WCQR9 1.043 0.330 AW9 1.075 0.352
CQR19 1.083 0.258 WCQR19 0.944 0.344 AW19 0.999 0.338

0.95N(0,1)+0.05N(0,100) LS – –
CQR5 3.480 3.683 WCQR5 2.799 2.909 AW5 3.517 3.317
CQR9 3.014 2.743 WCQR9 2.355 2.236 AW9 3.103 2.818
CQR19 1.785 0.942 WCQR19 1.725 1.648 AW19 2.444 2.575

Bold labels the best estimator among CQR, WCQR and AW.

Gijbels (1996) and many others. The covariate X is the recorded time (in milliseconds) after a
simulated impact on motorcycles, while the response variable Y stands for the head acceleration
(in g) of a test object. We use local the LS, CQR, WCQR and the adaptively weighted kernel
regression to fit the regression model. Since the sample size is 133, we chose q = 5 to avoid
introducing too many parameters. For the local CQR, WCQR and the proposed estimator, we
use the local LS as the pilot estimate. Since we do not know if the errors are homogeneous,
we apply heteroscedastic version of our estimator and implement the procedure described in
Section 3.4 to select the practical weights for the proposed estimator. From Figure 1, we can
see that all four procedures provide similar fits, and the local linear fit and the AW5 fit are
almost identical. This coincidence can be explained by the normal plot of the residuals of the
pilot fit, which is displayed in Figure 2. We can see that the residuals roughly follow a normal
distribution, where LS is more likely to get the best fit. However, the proposed method does as
well as the LS. This indicates that the proposed procedure actually adapts to the unknown error
structure.

Although there is no outlier in the data set, we artificially create 2 to examine robustness
properties, we move the 102th observation from −54.9 to −109.8 and the 112th observation
from −21.5 to −86. In Figure 3, we only depict the LS and AW5, because the CQR and WCQR
are demonstrated to be resistant against outliers. We use the local LS fit from the original data
set as the baseline to see what impact the introduced outliers bring to those fits. We note that
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Journal of Nonparametric Statistics 13

Figure 1. Scatter plot and four fittings.

Figure 2. Normal plot of the residuals.

the AW5 still maintains a similar pattern, while the local linear estimator starts to deviate from
the baseline. This demonstrates that the proposed estimator inherits the resistance property from
quantile regressions, and enjoys the favoured robustness.
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14 Q. Zheng et al.

Figure 3. Estimated regression function with introduced outliers.

5. Conclusion

In this paper, we combine the strength of the LS and quantile regression to propose the adaptively
weighted local polynomial estimator for nonparametric regression. The novelty of the method
is that it adapts to the distribution of the error terms in a regression model. We have explicitly
described how data can be used to select weights as well as the bandwidth parameter. It appears
that even when the weights are selected from the data, the estimators perform nearly as well as the
optimal choice. For example, if the distribution is normal, the method is nearly as efficient as LS,
but the method still works well if the errors follow a t-distribution with three degrees of freedom.
The estimators compete favourably with equally WCQR. The idea of weighting different objective
functions and using the asymptotic efficiency to select the optimal weights can be extended to
other situations.
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Appendix 1

Proof of Theorem 3.1 We sketch the proofs in this section. Detailed proofs are provided in the supplemental material.
Let

Qβ(θ) =
n∑

i=1

⎡
⎣ q∑

k=0

βkρτk

⎛
⎝yi − a0k −

p∑
j=0

1

j! aj(xi − x0)
j

⎞
⎠

⎤
⎦ K

(
xi − x0

h

)
.

We can see that minimising Qβ(θ) with respect to θ is equivalent to minimising Qβ(θ∗ + (nhn)
−1/2u) − Qβ(θ∗) with

respect to u, where u = (u01, . . . , u0q, u0, u1, . . . , up)
T is a q + 1 + p vector.

Let �0,i = ∑p
j=0(1/j!)uj(xi − x0)

j , and �k,i = �0,i + u0k , for k = 1, . . . , q. Applying the identity (Knight 1998),

ρτ (x − y) − ρτ (x) = y[1(x ≤ 0) − τ ] +
∫ y

0
{1(x ≤ z) − 1(x ≤ 0)} dz,

yields

= 1√
nhn

n∑
i=1

K

(
xi − x0

hn

) {
−2β0�0,i(σεi + ri,p) +

q∑
k=1

βk

[
1

(
εi ≤ σqτk − ri,p

σ

)
− τk

]
�k,i

}

+ β0

nhn

n∑
i=1

K

(
xi − x0

hn

)
�2

0,i

+
n∑

i=1

K

(
xi − x0

hn

) q∑
k=1

βk

∫ �k,i/
√

nhn

0

{
1

(
εi ≤ σqτk − ri,p + z

σ

)
− 1

(
εi ≤ σqτk − ri,p

σ

)}
dz

:= I1 + I2 + I3.
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16 Q. Zheng et al.

By some algebra, we can show that Var[I3] → 0. Applying Chebyshev’s inequality yields I3 − E[I3] p→ 0 and

E[I3] = n
q∑

k=1

βkE

[
Zn,k,i(u)1

(∣∣∣∣ �k,i√
nhn

∣∣∣∣ ≤ η

)]
+ n

q∑
k=1

βkE

[
Zn,k,i(u)1

(∣∣∣∣ �k,i√
nhn

∣∣∣∣ > η

)]
. (A1)

where Zn,k,i(u) = K((xi − x0)/hn)
∫ �k,i/

√
nhn

0 {1(εi ≤ (σqτk − ri,p + z)/σ ) − 1(εi ≤ (σqτk − ri,p)/σ )} dz. Using the
same argument as in the proof of E[I2

3 ] → 0, we can show that

n
q∑

k=1

βkE

[
Zn,k,i(u)1

(∣∣∣∣ �k,i√
nhn

∣∣∣∣ ≤ η

)]

= 1

2

q∑
k=1

βk f (qτk )g(x0)

∫ M

−M
K(ti)

⎛
⎝u0k +

p∑
j=0

uj

j! hj
ntj

i

⎞
⎠

2

dti + o(‖Ahn u‖2), (A2)

where ti = (xi − x0)/hn.
Applying the Cauchy–Schwartz inequality, we have

n
p∑

k=1

βkE

[
Zn,k,i(u)1

(∣∣∣∣ �k,i√
nhn

∣∣∣∣ > η

)]
= o(‖Ahn u‖2) = o(1). (A3)

Therefore,

I3
p→ 1

2

p∑
k=1

βk f (qτk )g(x0)

∫ M

−M
K(ti)

⎡
⎣u0k +

p∑
j=0

uj

j! hj
ntj

i

⎤
⎦

2

dti. (A4)

According to the law of large numbers, we know

I2
a.s.→ β0g(x0)

∫ M

−M
K(ti)

⎛
⎝ p∑

j=0

uj

j! hj
ntj

i

⎞
⎠

2

dti. (A5)

Since I1 can be written as WT
β,nAhn u, then

Qβ(θ∗ + (nhn)
−1/2u) − Qβ(θ∗) = g(x0)u

TAhn S(β)Ahn u + WT
β,nAhn u + op(‖Ahn u‖).

Let û denote the minimiser of Q(θ∗ + (nhn)
−1/2u) − Q(θ∗), we have

S(β)Ahn û = − 1

2g(x0)
Wβ,n + op(1).

According to the definition of Wβ,n, applying Central Limit Theorem (CLT) yields

αTWβ,n − E[αTWβ,n]√
Var[αTWβ,n]

L→ N(0, 1),

for any nonzero (1 + q + p) × 1 vector α. Thus, The Cramer–Wald device provides us

[Cov(Wβ,n)]−1/2(Wβ,n − E[Wβ,n]) L→ N(0, I(1+q+p)×(1+q+p)),

where Cov(Wβ,n) is the covariance matrix of Wβ,n. It is easy to check

Cov(Wβ,n)] p→ g(x0)	(β).

Therefore, we have

S(β)Ahn û + 1

2g(x0)
E[Wβ,n] L→ N(0,

1

4g(x0)
	(β)). (A6)

This completes the proof of Theorem 3.1. �

Corollaries 3.1 and 3.2 are special cases of Theorem 3.1. We omit the proofs here. Complete proofs can be seen in the
supplemental material.
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Proof of Corollary 3.3 Consider Q
β̂
(θ∗ + (nhn)

−1/2u) − Q
β̂
(θ∗). We can write it as

Qγ (θ∗ + (nhn)
−1/2u) − Qγ (θ∗) + Qβopt (θ

∗ + (nhn)
−1/2u) − Qβopt (θ

∗),

where γ = β̂ − βopt . Since βopt is a fixed vector given the error structure, then using the same arguments as in Theorem 3.1,
we obtain that

Qβopt (θ
∗ + (nhn)

−1/2u) − Qβopt (θ
∗) = g(x0)u

TAhn S(βopt)Ahn u + WT
βopt ,nAhn u + op(‖Ahn u‖2).

And we have

Qγ (θ∗ + (nhn)
−1/2u) − Qγ (θ∗)

= 1√
nhn

n∑
i=1

K

(
xi − x0

hn

) {
−2γ0(σεi + ri,p)�0,i +

q∑
k=1

γk

[
1

(
εi ≤ σqτk − ri,p

σ

)
− τk

]
�k,i

}

+ γ0

nhn
�2

0,i

n∑
i=1

K

(
xi − x0

hn

)

+
n∑

i=1

K

(
xi − x0

hn

) q∑
k=1

γk

∫ �k,i/
√

nhn

0

{
1

(
εi ≤ σqτk − ri,p + z

σ

)
− 1

(
εi ≤ σqτk − ri,p

σ

)}
dz. (A7)

Since

n∑
i=1

K

(
xi − x0

hn

) ∫ �k,i/
√

nhn

0

{
1

(
εi ≤ σqτk − ri,p + z

σ

)
− 1

(
εi ≤ σqτk − ri,p

σ

)}
dz

p→ 1

2σ
f (qτk )g(x0)

∫ M

−M
K(ti)

⎡
⎣u0k +

p∑
j=0

uj

j! hj
ntj

i

⎤
⎦

2

dti,

and

1

nhn

n∑
i=1

K

(
xi − x0

hn

)
�2

0,i
a.s.→ g(x0)

∫ M

−M
K(ti)

⎡
⎣ p∑

j=0

uj

j! hj
ntj

i

⎤
⎦

2

dti,

then the last two terms of Equation (A7) are o(‖Ahn u‖2). Applying Slutsky’s theorem, we can show that the first term of
Equation (A7) is op(Ahn u). Therefore,

Q
β̂
(θ∗ + (nhn)

−1/2u) − Q
β̂
(θ∗) = g(x0)u

TAhn S(βopt)Ahn u + WT
βopt ,nAhn u + op(‖Ahn u‖2).

This completes the proof of Corollary 3.4. �

In order to prove Theorem 3.2, the following lemmas are needed.

Lemma A.1 If assumptions B–E are satisfied, and E[ε2
i ] does not exist, then

(a) ∑n
i=1 |ε|

an
√

n
→ 0,

(b) ∑n
i=1 ε2

i

a2
n

→ Op(1),

(c) ∑n
i=1(1/

√
hn)K((Xi − x0)/hn)εi

an
≤ Op(1),

where {an} is the norming sequence for εi , such that
∑n

i=1 εi/an
L→ S.
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18 Q. Zheng et al.

Lemma A.2 Let β̂0p = (1/σ̃ )((1 + 4f̃ (0)τ̃0,l)/(4f̃ 2(0) + 8f̃ (0)τ̃0,l + 1)1(((1 + 4f̃ (0)τ̃0,l)/(4f̃ 2(0) + 8f̃ (0)τ̃0,l + 1) ≥ 0),

where τl = 1
2 . Then, β̂0 ≤ β̂0p almost surely.

We omit the proofs here. They can be found in the supplementary material.

Proof of Theorem 3.2 Let ζ̃i = σ ε̃i, i = 1, . . . , n denote the residuals of a
√

nhn-consistent fit. Since σ and εi are
unknown, we use σ̃ 2 = ∑n

i=1 ζ̃ 2
i /n to denote the sample variance of σεi. Then, we have τ̃0,l = − ∑n

i=1 |ζ̃i|/(2nσ̃ ) and
f̃ (0) = (1/2nb)

∑n
i=1 σ̃1(|σ ε̃i| < b), for some b ∼ O(n−1/5).

The key of the proof is to show that the impact from the LS part is negligible. Since β̂0
p→ β0opt = 0, we need to show

σ̃
1√
nhn

n∑
i=1

K

(
xi − x0

hn

)
β̂0σεi = op(1), (A8)

σ̃
1√
nhn

q∑
k=1

β̂k

n∑
i=1

K

(
xi − x0

hn

)
[1(εi < qτk ) − τk] = Op(1). (A9)

According to Lemma A.2, if we can show that σ̃ (1/
√

nhn)
∑n

i=1 K((xi − x0)/hn)β̂0pεi = op(1), then Equation (A8) can
be directly inferred.

σ̃
1√
nhn

n∑
i=1

K

(
xi − x0

hn

)
β̂0pσεi

= 1 + 4f̃ (0)τ̃0,l

4f̃ 2(0) + 8f̃ (0)τ̃0,l + 1
1

(
1 + 4f̃ (0)τ̃0,l

4f̃ 2(0) + 8f̃ (0)τ̃0,l + 1
≥ 0

)
an√

n

1

an
√

hn

n∑
i=1

K

(
xi − x0

hn

)
σεi.

Since E[ε2
i ] does not exist, by Lemma A.2, we have

1

an
√

hn

n∑
i=1

K

(
xi − x0

hn

)
, σεi ≤ Op(1)

and

1 + 4f̃ (0)τ̃0,l

4f̃ 2(0) + 8f̃ (0)τ̃0,l + 1

an√
n

= 1 − (4
∑n

i=1 σ̃1(|σ ε̃i| < b)/2nb)(
∑n

i=1 |σ ε̃i|/2nσ̃ )

4(
∑n

i=1 1(|σ ε̃i| < b)/2nb)2σ̃ 2 − (8
∑n

i=1 σ̃1 (|σ ε̃i| < b)/2nb)(
∑n

i=1 |σ ε̃i|/2nσ̃ ) + 1

an√
n

= 1 − (2
∑n

i=1 1 (|σ ε̃i| < b)/2nb)(
∑n

i=1 |σ ε̃i|/an
√

n)(an/
√

n)

4(
∑n

i=1 1 (|σ ε̃i| < b)/2nb)2(ε̃2
i /a2

n)(a
2
n/n) − (4

∑n
i=1 1 (|σ ε̃i| < b)/2nb)(

∑n
i=1 |σ ε̃i|/an

√
n)(an/

√
n) + 1

an√
n

= (
√

n/an) − (2
∑n

i=1 1 (|σ ε̃i| < b)/2nb)(
∑n

i=1 |σ ε̃i|/an
√

n)

4(
∑n

i=1 1 (|σ ε̃i| < b)/2nb)2(ε̃2
i /a2

n) − (4
∑n

i=1 1 (|σ ε̃i| < b)/2nb)(
∑n

i=1 |σ ε̃i|/an
√

n)(
√

n/an) + (n/a2
n)

p→ 0.

Consequently,

σ̃
1√
nhn

n∑
i=1

K

(
xi − x0

hn

)
β̂0pεi = op(1).

From the above proof, we can see that as n → ∞,

q∑
k=1

f̃ (q̃τk )

σ̃
σ̃ β̂k =

q∑
k=1

f̃ (q̃τk )β̂k = 1 − σ̃ β̂0 → 1.

Since f̃ (q̃τk )/σ̃ is bounded for 1 ≤ k ≤ q, then
∑q

k=1 σ̃ β̂k is bounded away from 0. There, Equation (A9) can be inferred.
This completes the proof of Theorem 3.2. �

The proof of Theorem 3.3 is essentially the same as for Theorem 3.2. Thus, we omit it here.
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