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Changepoints in the North Atlantic
Tropical Cyclone Record

Michael W. ROBBINS, Robert B. LUND, Colin M. GALLAGHER, and QiQi LU

This article examines the North Atlantic tropical cyclone record for statistical discontinuities (changepoints). This is a controversial area
and indeed, our end conclusions are opposite of those made in Dr. Kelvin Droegemeier’s July 28, 2009 Senate testimonial. The methods
developed here should help rigorize the debate. Elaborating, we develop a level-α test for a changepoint in a categorical data sequence
sampled from a multinomial distribution. The proposed test statistic is the maximum of correlated Pearson chi-square statistics. This test
statistic is linked to cumulative sum statistics and its null hypothesis asymptotic distribution is derived in terms of the supremum of squared
Brownian bridges. The methods are used to identify changes in the tropical cyclone record in the North Atlantic Basin over the period
1851–2008. We find changepoints in both the storm frequencies and their strengths (wind speeds). The changepoint in wind speed is not
found with standard cumulative sum mean shift changepoint methods, hence providing a dataset where categorical probabilities shift but
means do not. While some of the identified shifts can be attributed to changes in data collection techniques, the hotly debated changepoint
in cyclone frequency circa 1995 also appears to be significant.

KEY WORDS: Atlantic hurricanes; Brownian bridge; Chi-square statistics; Climate change; CUSUM.

1. INTRODUCTION

Climate change is a contentious and active area of research.
Anthropogenic increases in global air temperature are now
widely recognized (Houghton et al. 2001; Karl and Trenberth
2003). Higher sea surface temperatures (SSTs) have also been
reported (Cane et al. 1997). Although tropical cyclones are
powered by warm waters, climatologists do not uniformly
agree that rising SSTs are increasing tropical cyclone counts
and strengths, with some arguing that there have been recent
increases (Anthes et al. 2006; Emanuell, Sundararajan, and
Williams 2008; Saunders and Lea 2008) and others arguing
that no firm conclusions can yet be made (Pielke et al. 2005;
Landsea 2007). Those acknowledging recent changes have dif-
fering opinions about the nature of the change. Saunders and
Lea (2008) purport an increase in cyclone frequency, while
Emanuell (1987, 2005) claims that any change would mani-
fest itself as an increase in the strength of storms. Vecchi and
Knutson (2008) and Landsea et al. (2010) believe that recent
increases in storm counts are attributable to an increased num-
ber of weak cyclones included in the record (these storms are
typically of short duration and are difficult to detect without
modern sensing techniques). Regarding the effects of a warm-
ing climate on hurricanes, Dr. Kelvin Droegemeier stated in a
July 28, 2009 testimony to the United States Senate, “. . . we’re
seeing a shift not in the total number of storms, but a larger
number of more intense hurricanes and a smaller number of less
intense hurricanes.” The full video can be found from the link
http://commerce.senate.gov/public/ index.cfm?p=Hearings.

Rigorous statistical studies on cyclone changes are rela-
tively sparse. Some notable articles include the Markov Chain
Monte Carlo methods of Elsner, Niu, and Jaeger (2004) and
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the Bayesian-based changepoint approach of Jewson and Pen-
zer (2008). While the methods employed by these authors dif-
fer from our asymptotic results, these authors agree with our
end conclusions of storm frequency changepoints circa 1900,
1935, and 1995. The circa 1995 changepoint is controversial.
Landsea et al. (1999), Jarrell, Hebert, and Mayfield (1992), and
Neumann et al. (1999) provide convincing explanations for the
circa 1900 and 1935 changepoints in terms of data collection
technique changes.

The literature on changepoint problems is vast. Page (1954,
1955) is widely credited with introducing undocumented
changepoint problems. MacNeill (1974) studied a cumulative
sum (CUSUM)-type changepoint statistic and established con-
vergence of this statistic to a Brownian bridge in the null hy-
pothesis cases of independent and identically distributed (IID)
model errors. The monograph by Csörgő and Horváth (1997)
provides asymptotic results for likelihood ratio (LR) statistics
under general IID settings.

After Hinkley and Hinkley (1970) examined changepoints
in binomial data, changepoint detection in categorical data has
been an active research area. The most popular techniques
include Bayesian methods (Smith 1975; Chib 1988; Carlin,
Gelfand, and Smith 1992; Qian, Pan, and King 2004; Girón,
Ginebra, and Riba 2005), CUSUM-type methods (Pettitt 1980;
Wolfe and Chen 1990) and maximum likelihood methods (Fu
and Curnow 1990). Most of these authors analyze detection
power; reliable discussions on null hypothesis distributions of
the test statistics studied are comparatively sparse. Two authors
(Horváth and Serbinowska 1995; Hirotsu 1997) also study max-
imums of chi-square statistics and discuss their approximate
equivalence to LR tests. Horváth and Serbinowska (1995), the
article most methodologically related to ours, provide asymp-
totic distributions of maximums of chi-square statistics that dif-
fer slightly from ours. Other authors introduce a nonparamet-
ric method for testing for changes in the marginal distribution
via empirical distribution functions (Csörgő and Horváth 1987;
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Carlstein 1988). By partitioning such data into categories, our
categorical changepoint test can also be viewed as a marginal
distribution changepoint test.

The rest of this work is organized as follows. Section 2
overviews the data that we study. Section 3 then summarizes
CUSUM changepoint methods. Section 4 introduces our test
statistic and establishes its asymptotic null hypothesis proper-
ties. Here, the methods are linked to classical CUSUM tests.
Section 5 applies the methods to the historical North Atlantic
Basin cyclone record and justifies the technical assumptions
made in Sections 3 and 4. Several changepoints are found in
storm frequencies and wind speeds. In fact, our findings are es-
sentially opposite of those purported by Dr. Droegemeier in his
Senate testimony. Remarks in Section 6 and an Appendix con-
clude the article.

2. THE HURDAT DATA

The data that we use is the HURDAT dataset, which is avail-
able on the National Oceanic Atmospheric Administration’s
website. These data contain information on 1410 Atlantic basin
cyclones that achieved tropical storm-level intensity or higher
between 1851 and 2008. The data have been reanalyzed several
times (Landsea et al. 2004, 2008) and are believed to contain in-
consistencies due to advances in measurement techniques. For
instance, counts of landfalling cyclones before 1900 are consid-
ered unreliable (Landsea et al. 1999, 2007; and Jarrell, Hebert,
and Mayfield 1992) due to sparse coastline populations. Also,
as Landsea et al. (1999) and Neumann et al. (1999) observe,
aircraft reconnaissance improved detection of nonlandfalling
storms towards the end of World War II. Satellites were fully
implemented for cyclone surveying in the middle 1960s, and
their introduction also likely improved the accuracy of mea-
sured wind speeds. Landsea et al. (2006) state that measure-
ment techniques are continually improving and data on wind
speeds as recently as the 1980s may be misleading. Our aim
is to confirm or deny the existence of such inconsistencies us-
ing the developed changepoint methods. In this pursuit, we also

hope to identify regime shifts caused by other causes such as
climate change.

Many covariates are available in the HURDAT record. For
instance, each cyclone has an estimate of the maximum wind
speed achieved by that storm. Figure 1 provides time series
plots of annual storm counts and maximum storm wind speeds.
Both plots in Figure 1 show discontinuities—this aspect will be
verified later.

The HURDAT record also provides information relating to a
storm’s geographic course, its duration, if (and where) it struck
land and so forth. While we will examine some of these covari-
ates later, we are primarily interested in testing for changes in
the cyclone counts, storm strengths, or both. For example, it is
feasible that cyclone counts and their wind speeds are increas-
ing, that cyclone counts are increasing but their wind speeds
are not, or some other combination. Hence, we would like to
develop a “joint test” that can signal changes in either the Pois-
son rate or the distribution of any particular covariate.

Measuring individual cyclone strengths is also controversial
and many of the documented wind speeds of strong storms may
differ from their true strengths by as much as 20 mph (Neumann
et al. 1999 and Landsea 2007 discuss data quality). Meteorolo-
gists frequently classify tropical cyclone severity via the Saffir–
Simpson scale, which is a categorical (ordinal) scale ranging
from 1 to 5, with 5 representing the strongest storm. Wind
tunnel tests have established what type of damage each cate-
gory storm typically does to buildings (see page 201 of Burt
2004 for this listing); hence, in a general sense, the categori-
cal wind speed may be easier to correctly estimate than the true
wind speed to say 10 mph. A categorical approach to handle
the wind speed covariate seems reasonable and will be adopted
here. While our categories are based on the Saffir–Simpson
scale, one can always rerun the analysis with a finer categorical
partition if desired. Categorization is also helpful in the devel-
opment of the joint test. We will consider a multivariate series

Figure 1. Time series plots of storm counts by year (left) and max windspeed by storm (right).
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Figure 2. The number of tropical cyclones in each decade broken
down by category for the years 1851–2008.

which gives the annual number of storms occurring in each cat-
egory. To help visualize this series, Figure 2 shows the number
storms of each category by decade.

We next introduce and develop level-α changepoint tests that
are appropriate for the HURDAT data. Each series analyzed is
assumed to be IID under the null hypothesis that no change-
points occur. Poissonian arrival dynamics are also assumed for
the annual storm counts. Although we briefly mention tests (and
corresponding results) which generalize these assumptions, we
empirically justify the IID Poisson assumption for the storm
counts series at the end of Section 5.

3. CUSUM REVIEW

Suppose we wish to determine whether or not there is a mean
shift in the data X1, . . . ,Xn at some unknown time c. Our null
hypothesis is that {Xt}n

t=1 is IID and our alternative is that E[Xt]
shifts at time c. If c were known a priori, one would simply
compare c−1 ∑c

t=1 Xt and (n − c)−1 ∑n
t=c+1 Xt with a standard

t- or z-test. If Tc denotes the statistic from such a procedure,
then the null is rejected when |Tc| is large. When the time of the
change is unknown, a natural test statistic is Tmax = maxk∈K Tk,
where K is the set of all (admissible) changepoint times that
will be considered. The estimated changepoint time ĉ is an ar-
gument of k ∈ K that maximizes Tk. The null hypothesis is re-
jected when Tmax is too large to be explained by chance varia-
tion.

To make inferences, the null hypothesis distribution of Tmax
is needed. While this distribution is generally intractable for
finite n, MacNeill (1974) quantified the asymptotics of a scaled
version of Tmax via CUSUM statistics. The CUSUM statistic at
index k is

CUSUMk = 1√
n

(
k∑

j=1

Xj − k

n

n∑
j=1

Xj

)
. (3.1)

One views CUSUMk as a scaled difference between k−1 ×∑k
t=1 Xt and (n − k)−1 ∑n

t=k+1 Xt, weighting for differences
in the sample sizes of these two segments. Should there be no
mean shift, E[CUSUMk] = 0 for all k. A simple calculation
gives var(CUSUMk) = σ 2(k/n)(1 − k/n), where σ 2 is the vari-
ance of all Xt. As many authors show, this nonuniform variance
means that changepoints occurring near the data boundaries are
more difficult to detect; hence, the CUSUM test has trouble

(comparatively) in detecting mean shifts occurring away from
the middle of the data.

If the data are Gaussian with known variance σ 2, then the LR
test statistic for a change in mean at index k, denoted by �k, is
related to CUSUMk (Csörgő and Horváth 1997) via

−2 log�k = CUSUM2
k

/(
σ 2 k

n

(
1 − k

n

))
. (3.2)

The essential difference between the LR and CUSUM statistics
at index k is the denominator factor of (k/n)(1 − k/n) in the LR
statistic. This should be viewed as follows: the LR test incor-
porates more information about the changepoint location than
the CUSUM statistic. Motivated by (3.2), an adjusted CUSUM
statistic is defined via

T2
k = CUSUM2

k

/(
k

n

(
1 − k

n

))
.

To detect a single mean shift at an unknown time, one can
examine

CUSUMmax = max
1≤k≤n

|CUSUMk |
σ̂

,

where σ̂ is any consistent null hypothesis estimator of σ (e.g.,
the sample standard deviation). For asymptotics, the statis-
tic max1≤k≤n T2

k /σ̂ 2 converges to infinity as n → ∞, the di-
vergence being attributable to the fact that the maximum is
taken over the whole of {1, . . . ,n}. Whereas one can scale
max1≤k≤n T2

k /σ̂ 2 to an extreme value Gumbel law after appro-
priate standardization (see Darling and Erdős 1956 and Csörgő
and Horváth 1997), power from such extreme value tests is
comparatively poor. An alternative approach truncates the set
of times allowed as changepoints (we call this the admissible
set K) at its boundaries. Specifically, one examines

T2
max = max�≤k/n≤h T2

k

σ̂ 2
(3.3)

for some fixed � and h satisfying 0 < � < h < 1. While it may
not be prudent to truncate data in settings where a changepoint
must be detected quickly after it occurs (e.g., a cancer patient
seeking to diagnose the disease as soon as possible after its on-
set), there is little harm in truncating boundary data in our ap-
plications. Hence, we proceed in this manner.

The asymptotic distributions for the CUSUM and adjusted
LR statistics are quantified next; the result is essentially a con-
sequence of the functional central limit theorem.

Theorem 1. Assume that {X1, . . . ,Xn} is an IID sequence of
with finite nonzero variance σ 2. Then

CUSUMmax
D−→ sup

0≤t≤1
|B(t)|;

(3.4)

T2
max

D−→ sup
�≤t≤h

B2(t)

t(1 − t)
,

where {B(t)} denotes a Brownian bridge process on [0,1].
The multivariate case will become important later. Let

{Xj}n
j=1 be an IID sequence of d-dimensional vectors with

Xj = {X1,j, . . . ,Xd,j}′ and suppose that Xj has uncorrelated
components (independence is not needed). Let var(Xi,j) = σ 2

i
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be the variance of the ith component. Define a CUSUM statis-
tic for component i and time k via

CUSUMi,k = 1√
n

(
k∑

j=1

Xi,j − k

n

n∑
j=1

Xi,j

)
. (3.5)

Joint convergence of quadratic forms of the components in (3.5)
can be obtained from a multi-dimensional version of the func-
tional central limit theorem generally attributed to Donsker. See
Meerschaert and Sepanski (2002) for general statements and
proofs of such results.

To quantify the multivariate version of (3.4), let {B1(t)},
{B2(t)}, . . . , {Bd(t)} be d independent Brownian bridge pro-
cesses and set B(d)(t) = ∑d

j=1 Bj(t)2. Using the multidimen-
sional functional central limit theorem, under the null hypoth-
esis that {Xj}n

j=1 is IID with uncorrelated components and

var(Xi,j) = σ 2
i , one can show that

max
�≤k/n≤h

{
d∑

i=1

σ−2
i CUSUM2

i,k

/(
k

n

(
1 − k

n

))}

D−→ sup
�≤t≤h

B(d)(t)

t(1 − t)
(3.6)

for each 0 < � < h < 1. This result is our major technical tool.
For the null hypothesis percentiles of such statistics, Csörgő and
Horváth (1997) use a result of Vostrikova (1981) to show that

P

{
sup

�≤t≤h

(
B(d)(t)

t(1 − t)

)
≥ x

}

= xd/2e−x/2

2d/2�(d/2)

×
{(

1 − d

x

)
log

(
(1 − �)h

�(1 − h)

)
+ 4

x
+ O

(
1

x2

)}
(3.7)

as x → ∞. Here, O(x−2) denotes a remainder term that goes
to zero no slower than x−2 as x → ∞. When the order term is
disregarded, simulations show that (3.7) provides accurate (and
even conservative) tail probability approximations. For discus-
sion on selection of � and h, see Miller and Siegmund (1982),
Andrews (1993), and Csörgő and Horváth (1997).

4. THE χ2
max TEST

This section introduces a changepoint detection statistic for
multinomial and Poisson data and derives its asymptotic null
hypothesis distribution. Since any variable can be partioned into
categories, the methods are perhaps best viewed as a nonpara-
metric test for changes in distribution.

4.1 Detecting Changes in Multinomial Data

Suppose we wish to assess whether or not changes have oc-
curred in a discrete sequence. One should not expect a CUSUM
mean shift procedure to work well in all cases. For example,
consider a random sequence where each observation can be
1, 2, or 3, with respective probabilities of 1/3, 1/3, and 1/3.
The mean of such data is 2, and this remains so should the
respective categorical probabilities shift to 1/4, 1/2, and 1/4.
A more powerful procedure would partition the outcomes into

categories and then consider categorical frequencies, say with
Pearson’s χ2 test. Specifically, our methods will construct a χ2

variate for each admissible changepoint time. The maximum
of these statistics over all admissible changepoint times is then
used to make conclusions. In general, χ2

k will be correlated in k.
Maximums of χ2 random variables have been previously

used in the literature, primarily in biostatistics (Halpern 1982;
Koziol 1991; Betensky and Rabinowitz 1999) where they are
called maximally selected chi-square statistics and are used to
compare the sampling distributions of two or more independent
samples.

Our analysis is similar to a goodness-of-fit test. Partition
the real number line into m classes (or categories) labeled
I1, . . . , Im. Let Ni,t = 1Ii(Xt) be an indicator variable that is
unity when Xt falls into category Ii. Then for each t = 1, . . . ,n,
Nt = {N1,t, . . . ,Nm,t}′ is a multinomial observation with one
trial and probability vector p(t) = {p1(t), . . . ,pm(t)}′, where
pi(t) = E(Ni,t). We will test the null hypothesis that p(t) is con-
stant in t against the alternative that one or more (and hence at
least two) of the pi(t)’s change at an unknown time c.

If k is an admissible changepoint time, let Oi,k = ∑k
t=1 Ni,t

be the frequency of category i over the first k observations and
O∗

i,k = ∑n
t=k+1 Ni,t be the frequency of category i over the last

n − k observations. Let Oi = Oi,n = ∑n
t=1 Ni,t be the category i

frequency over the entire data record. Under the null hypoth-
esis that the categorical probabilities are constant in time, an
estimator of pi ≡ pi(t) is p̂i = Oi/n. When the alternative is
true with a changepoint at time k, an estimator of the cate-
gory i probability before the changepoint time is p̂i,k = Oi,k/k;
an estimator of the category i probability after the changepoint
time is p̂∗

i,k = O∗
i,k/(n − k). Letting ̂E[Oi,k] = kp̂i = kOi/n and

̂E[O∗
i,k] = (n − k)p̂i = (n − k)Oi/n, the χ2 statistic for a change

at time k is thus

χ2
k =

m∑
i=1

(Oi,k − ̂E[Oi,k])2

̂E[Oi,k]
+

m∑
i=1

(O∗
i,k − ̂E[O∗

i,k])2

̂E[O∗
i,k]

. (4.1)

Our major result is the following. The result is proven in the
Appendix.

Theorem 2. Let χ2
k be as in (4.1) and χ2

max = max�≤k/n≤h χ2
k .

Then under a null hypothesis that p(t) does not change in t,

χ2
max

D−→ sup
�≤t≤h

B(m−1)(t)

t(1 − t)
.

p-values for this test are approximated using (3.7) with d =
m − 1.

Two remarks regarding Theorem 2 should be made. First, the
asymptotic approximation is applicable whether the sample size
is deterministic or Poisson. For example, if one multinomial ob-
servation is sampled at each epoch, then the theorem applies.
Also, if the total number of observations, say N, has a Poisson
distribution, then conditional on N = n where n is large, the the-
orem still applies. Later, our use of Theorem 2 is set in the latter
circumstances; here, n = 1410 is the total number of observed
cyclones.

Second, the χ2
max test reinforces why the admissible set

should be truncated away from the boundaries. Elaborating,
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the standard conventions needed to apply Pearson’s test (i.e.,
to have χ2

k approximately chi-squared distributed) require that
E[Oi,k] and E[O∗

i,k] exceed unity for all i and k and at least 80%
of the E[Oi,k]’s and E[O∗

i,k]’s are 5 or greater for each k. These
conditions are clearly violated when k is sufficiently close to
unity or n.

4.2 Tests for Poisson Data

Tropical cyclone counts are frequently modeled with Pois-
sonian dynamics (Mooley 1981; Thompson and Guttorp 1986;
Solow 1989; Lund 1994). While one can add batch arrivals, pe-
riodic features, and meteorological covariates such as El-Nino
and The North Atlantic Oscillation activity indices to station-
ary Poisson process models to help explain the slight overdis-
persion seen in the actual year-to-year counts, Poisson models
are fundamental in a rudimentary sense and will later be seen
to describe the annual counts well. Let Xt denote the number of
cyclones that occur in year t. Under general Poisson arrival as-
sumptions (the arrival rate can vary in time but is periodic with
a period of one year), {Xt} is IID with a marginal Poisson distri-
bution. To test a null hypothesis of a constant mean λ ≡ E[Xt]
against an alternative consisting of a shift in the mean at an un-
known time, we simply examine a version of (3.3):

Dmax = max
�≤k/n≤h

Dk, where Dk = CUSUM2
k

/(
λ̂

k

n

(
1 − k

n

))
.

Some similarities to the chi-square test statistic of the last
section are evident. Specifically, let Ck = ∑k

t=1 Xt be the num-
ber of cyclones in the first k years and let C∗

k = ∑n
t=k+1 Xt be

the number of cyclones in the last n − k years. Then λ̂ = Cn/n
estimates λ when there are no changes and λ̂k = Ck/k and
λ̂∗

k = C∗
k /(n − k) estimate the Poisson mean before and after a

changepoint at time k, respectively. With ̂E[Ck] = kλ̂ = kCn/n

and ̂E[C∗
k ] = (n − k)λ̂ = (n − k)Cn/n, one can algebraically

show that

Dk =
(

Ck − k

n
Cn

)2/(
nλ̂

k

n

(
1 − k

n

))

= (Ck − ̂E[Ck])2

̂E[Ck]
+ (C∗

k − ̂E[C∗
k ])2

̂E[C∗
k ]

.

Note that Dk itself has the classic chi-square form in the sum-
mands: observed minus expected squared over expected. Theo-
rem 1 now gives the following result.

Theorem 3. If X1, . . . ,Xn is IID and Poisson, then

Dmax
D−→ sup

�≤t≤h

B2(t)

t(1 − t)
, (4.2)

and therefore (3.7) with d = 1 can be used to find p-values of
this test.

Since we are assuming Poisson marginals, a likelihood ratio
test also merits exploration. It can be shown that such a likeli-
hood ratio statistic, when cropped to the same admissibility set
as the χ2

max statistic, has the same limiting distribution as that
in (4.2).

Suppose that Yj is a covariate (we work with wind speed, but
the methods could apply to other covariates) for the jth storm

(the storms are time ordered) and that Yj lies in one of m disjoint
categories. We assume that Yj does not depend on the Poisson
arrival times of the storms. Consider the m-dimensional vec-
tor Xt = {X1,t,X2,t, . . . ,Xm,t}′. Here, Xi,t is the total number of
category i storms during the tth year and

∑m
i=1 Xi,t is the to-

tal number of cyclones reported in year t, which is assumed
to follow a Poisson distribution with parameter λ(t). Also, pi(t)
denotes the probability that any year t storm has a covariate that
falls into category i. From the assumed independence of arrivals
and wind speeds, E(Xi,t) = λ(t)pi(t). Under a null hypothesis of
no changes in arrival rate or covariates, λ(t)pi(t) = λpi for all
i = 1,2, . . . ,m and t = 1,2, . . . ,n.

Set Ci,k = ∑k
t=1 Xi,t and C∗

i,k = ∑n
t=k+1 Xi,t for any ad-

missible changepoint time k. Observe that λ̂pi = Ci,n/n esti-
mates λpi under the null hypothesis and that λ̂pi,k = Ci,k/k and
λ̂p

∗
i,k = C∗

i,k/(n − k) estimate λpi before and after a changepoint
at time k, respectively. The estimator of pi under the null hy-
pothesis is p̂i = Ci,n/

∑m
i=1 Ci,n. Also, ̂E[Ci,k] = kλ̂pi = kCi,n/n

and ̂E[C∗
i,k] = (n − k)λ̂pi = (n − k)Ci,n/n. The χ2 statistic for

testing for a changepoint at time k becomes

χ2
k =

m∑
i=1

(Ci,k − ̂E[Ci,k])2

̂E[Ci,k]
+

m∑
i=1

(C∗
i,k − ̂E[C∗

i,k])2

̂E[C∗
i,k]

. (4.3)

Computations as before show that

χ2
k = n

k(n − k)

m∑
i=1

1

λ̂pi

(
Ci,k − k

n
Ci,n

)2

= 1
/(

k

n

(
1 − k

n

)) m∑
i=1

1

λ̂pi
(CUSUMi,k)

2, (4.4)

where CUSUMi,k is as in (3.5). Under a null hypothesis of
no changes in the Poisson arrival rate or the covariate cate-
gorical probabilities, the following hold. By thinning proper-
ties of Poisson processes, Xi,t has a Poisson distribution with
mean λpi. Hence, λ̂pi = n−1 ∑n

t=1 Xi,t consistently estimates
λpi. Since cov(Xi,t,Xi′,t) = 0 when i �= i′, Xi,t and Xi′,t are un-
correlated. Applying (3.6) gives the following theorem.

Theorem 4. Under the above setup, if λ(t)pi(t) is constant
in t,

χ2
max = max

�≤ k
n ≤h

χ2
k

D−→ sup
�≤t≤h

B(m)(t)

t(1 − t)
, (4.5)

and therefore (3.7) with d = m can be used to find p-values of
this test.

In comparing Theorems 2 and 4, note the additional degree
of freedom, d = m, in the asymptotic distribution in Theorem 4.
The Theorem 4 statistic signals changes in the Poisson rate
and/or the categorical probabilities. In our applications, the as-
ymptotics are in terms of the number of years of data.

Before proceeding, we make several comments. First, our
work resides in the at most one changepoint (AMOC) do-
main. While multiple changepoints are frequently encountered
in practice and expected here, we will be able to make conclu-
sions by subsegmenting the data once changepoints are found.
By subsegmenting, we mean that once a first changepoint is
found, the series is subdivided into two segments about the
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flagged changepoint time. These two segments are then exam-
ined for additional changepoints. The procedure is repeated un-
til no subsegment is judged to contain additional changepoints.
While subsegmenting typically works well for series when the
mean shifts are all in the same direction (either increasing or de-
creasing), the procedure can also be fooled. On the other hand,
multiple changepoint methods are by no means unflawed. For
instance, Jewson and Penzer (2008) find the optimal change-
point times conditional on the number of changepoints, and
then concede difficulty with estimating the number of change-
points. Frequently, multiple changepoint methods do not read-
ily provide p-values for simple tests. For treatments of this is-
sue, see Albert and Chib (1993), Giron, Moreno, and Casella
(2007), and Fearnhead and Vasileiou (2009) for Bayesian ap-
proaches and Lu, Lund, and Lee (2010) for a time series per-
spective.

We also mention techniques that relax the IID Poisson as-
sumption. Theorem 1 is still applicable to independent non-
Poisson data. Also, a short-memory stationary dependence
structure in the model errors can be accommodated in CUSUM
tests as long as a correlation-adjusted variance estimate is used
in place of σ 2 (see Berkes, Gombay, and Horváth 2009 and
Robbins et al. 2011 for the technical spirit of the details). One
can also fit an autoregressive moving-average (ARMA) model
to the data and then apply CUSUM tests to the ARMA residu-
als (Bai 1993; Robbins et al. 2011); however, one must proceed
with caution when fitting ARMA models to count data as it is
not always clear that stationary ARMA models with prescribed
marginal distributions exist.

5. NORTH ATLANTIC BASIN CYCLONES

Our work will partition the storm wind speeds into five
classes based on the common Saffir–Simpson scale. The first
category contains storms whose peak wind speed never reached
hurricane status (40–73 mph), the second corresponds to Saffir–
Simpson category 1 hurricanes (74–95 mph), the third is for
Saffir–Simpson category 2 hurricanes (96–110 mph), the fourth
is for Saffir–Simpson category 3 hurricanes (111–130 mph) and
the fifth contains Saffir–Simpson category 4 or 5 hurricanes
(131 or greater mph). We combine Saffir–Simpson category 4
and 5 storms because there are so few category 5 storms. We
use � = 1 − h = 0.05 and α = 0.05 throughout this study.

5.1 Changes in Storm Frequency and Strengths

We proceed by jointly testing for changes in the yearly cy-
clone counts (which are assumed to have a Poisson distribution)
and/or their categorical wind speeds. Applying Theorem 4 with
m = 5 to the entire data sequence gives χ2

max = 109.182 with a
p-value that is less than 10−5. The estimated changepoint time
is ĉ = 80 (1930). Because the pre-1900 data are somewhat un-
reliable, we reran this analysis with only the 1900–2008 data.
This analysis gives χ2

max = 61.567, ĉ = 95 (1994), and a p-
value that is less than 10−5. Figure 3 plots the year versus its
chi-square statistic for the 1851–2008 and 1900–2008 data seg-
ments along with 95% confidence thresholds (they are approx-
imately the same for both tests). Clearly, the no change null
hypothesis is rejected, indicating potential changepoints circa
1930 and 1995.

As the above tests do not indicate whether the changes are
due to arrival rates, wind speeds, or both we now examine

Figure 3. Chi-square statistics for joint changepoints of yearly
counts and wind speeds. The online version of this figure is in color.

these two variables separately. First, we look at the yearly storm
counts. Lund (1994) examined the annual storm counts from
1871–1990 via least squares methods and found a change in
frequencies circa 1931. To confirm this, we applied Theorem 3
to the annual storm counts from 1871–1990. Here, n = 120,
Dmax = 20.015, and a p-value of approximately 0.00047 was
obtained; the estimated changepoint time is ĉ = 60 (1930). Re-
peating this test for the storm counts in the 1931–2008 segment
gives Dmax = 28.920. Here, n = 78 and a p-value of approxi-
mately 0.00001 was obtained with an estimated changepoint at
ĉ = 64 (1994). Theorem 3 applied to the entire data set (1851–
2008, n = 158) also signals a changepoint in 1994 (ĉ = 144)
with Dmax = 60.593 and a p-value that is less than 10−5. A plot
of year k versus the Dk statistic for 1851–2008, 1931–2008, and
1871–1990 storm counts is presented in Figure 4.

Figure 4. Chi-square statistics for changepoints of yearly counts.
The online version of this figure is in color.
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Figure 5. CUSUM statistics for changepoints of yearly counts. The
online version of this figure is in color.

The CUSUM test in Theorem 1, which does not require any
Poissonian assumptions, can also be used to test for changes in
the yearly storm counts. Figure 5 shows the CUSUM statistics
for the three segments in the above paragraph. For the 1871–
1990 segment, CUSUMmax = 1.930 with a p-value of 0.00116
and ĉ = 60 (1930). For the 1931–2008 segment, CUSUMmax =
1.703 with a p-value of 0.00606 and ĉ = 64 (1994). For the
1851–2008 data, CUSUMmax = 2.719 with a p-value less than
10−5 and ĉ = 80 (1930). The CUSUM tests for the 1871–
1990 and 1931–2008 segments essentially give the same esti-
mated changepoint times as the Theorem 3 tests. Conclusions
about the most significant changepoint differ, however, when
the entire storm count sequence is considered. In particular,
the generic CUSUM test in Theorem 1 identifies 1930 as the
most significant changepoint whereas the Theorem 3 categori-
cal analysis flags 1994 as the most prominent changepoint. As
1994 is somewhat close to the last year of data, we believe that
the example simply illustrates the difficulty that CUSUM meth-
ods have at detecting changepoints that occur near the bound-
aries.

To check on the multiple changepoint aspect and the segmen-
tation procedure, a minimum description length (MDL) proce-
dure was coded with a Poisson likelihood as in Lu, Lund, and
Lee (2010). This procedure estimates two changepoints in to-
tal in the annual storm count record at times 1930 and 1995
again. Hence, the segmentation appears reasonable. We again
caution the reader that segmentation procedures can be fooled
when the mean shifts orient themselves in differing directions.
As another check, we also multiplied the pre-1930 data by a
constant to bring the sample mean of this segment to that of
the 1930–1994 segment. Then we applied the CUSUM test in
Theorem 1 (the data are no longer Poisson) and found the 1995
changepoint again with a p-value of 0.000063.

We now consider changes in storm strength as measured by
their peak wind speed during the life of the storm. The peak
wind speeds of all storms (1851–2008, n = 1410) are ordered
via their time of arrival and are plotted in Figure 1. To avoid

Figure 6. |CUSUM |/σ̂ (top) and T2
k /σ̂ 2 (bottom) statistics for

peak wind speed in the 1851–2008 data (n = 1410).

any confusion, we plot both the arrival date and the index of the
storm (from 1 to 1410) on the abscissa scale in future graphs.

The two graphics in Figure 6 plot the storm number k ver-
sus |CUSUMk |/σ̂ and T2

k /σ̂ 2. Here, we are simply applying
CUSUM and likelihood methods to the raw wind speeds in an
effort to identify changepoints. The horizontal lines in Figure 6
depict a 95% confidence thresholds. The vertical lines in the
bottom plot depict the boundary truncations of � = 1 − h =
0.05. The CUSUM test shows that CUSUMmax = 0.960 with
a p-value of 0.3152 at k = 751 (1948). The adjusted CUSUM
method has T2

max = 3.703 with a p-value of 0.6483 at k = 751
(1948). These simple tests do not show significant evidence of
a mean shift in wind speeds.

Next, we apply the χ2
max test to peak wind speeds when the

1410 wind speeds are partitioned into the same five classes
used in the joint test. Using Theorem 2 with m = 5, we find
χ2

max = 81.003 with a p-value that is less than 10−5. Here,
ĉ = 354 (in 1898). This highly significant changepoint is graph-
ically displayed in Figure 7. In short, the categorical test finds a
changepoint that was missed by generic CUSUM techniques.

A changepoint circa 1900 in the wind speeds seems plausi-
ble given the purported unreliability of the pre-1900 data. But
one may ask why the circa 1900 changepoint was undetected by
generic CUSUM methods but flagged with strong significance
by the χ2

max method. Table 1 shows the estimated categorical
probabilities before and after the estimated changepoint time.
Observe that the categorical probabilities of storms with low
(tropical storms) and high (Saffir–Simpson category 4 and 5
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Figure 7. Chi-square statistics for peak wind speeds in Atlantic cy-
clones from 1851–2008 (n = 1410) and 1900–2008 (n = 1040). The
online version of this figure is in color.

hurricanes) wind speeds increase markedly after the change-
point time. Phrased another way, this seems to be a distribu-
tional change that did not cause a change in mean.

Segmenting the data to the 1040 storms arriving in 1900–
2008, a changepoint in 1956 (ĉ = 471) is found; here, χ2

max =
21.038 and has a p-value of 0.01482. Hence, there appears to
be a another mean shift in the wind speeds circa 1956, though
the shift does not appear to be as significant as the circa 1900
shift. Figure 7 provides graphical support.

5.2 Changes in Storm Covariates

Changes in tropical cyclone data are commonly thought to
be due to advances in storm data collection techniques, and it
seems reasonable that any changes in surveying methods may
also cause changes in several of the covariate series. Such co-
variates include each storm’s latitude and longitude (at the time
it first achieved its maximum windspeed), duration (in days),
and occurrence of landfall within the continental United States.
Landsea (2007) posits that cyclone activity occurring over the
open Atlantic Ocean often went undetected prior to the advent
of aircraft and satellite reconnaissance. If this theory is correct,
then changepoints in the covariates seem plausible.

The adjusted CUSUM test of Theorem 1 test was applied
to latitude, longitude, duration, and landfall probability for the
years 1900–2008. Mean shifts are detected in each of the series
with respective p-values of 0.00585, 2.01×10−11, 0.00033, and
0.00431. Figure 8 displays values of T2

k /σ̂ 2 for each covariate.

Figure 8. Plots of T2
k /σ̂ 2 for each covariate for 1900–2008 (top)

and 1965–2008 (bottom). The online version of this figure is in color.

The average latitude shifts up (northward), the average longi-
tude shifts down (eastward), the average duration shifts up, and
the landfall rate shifts down. Note that the most drastic change
occurs in the longitude series. Each of these observations is in
agreement with the theories in Landsea (2007). The estimated
changepoint for each of these covariate series is circa 1960,
which coincides in the introduction of satellite technology (this
perhaps also explains the circa 1956 change in storm strengths).

Table 1. Categorical probabilities before and after the changepoint for the χ2
max test

Tropical Category 1 Category 2 Category 3 Category 4 & 5
Location storm hurricane hurricane hurricane hurricane

Before 1900 0.280 0.302 0.260 0.130 0.028
After 1900 0.437 0.214 0.120 0.112 0.116
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Figure 9. Chi-square statistics for Atlantic cyclone counts from
1965–2008 (n = 44).

The reliability of the satellite era data (1965–2008) is also of
interest. Each of the previous tests were rerun using data from
these years only. Figures 7 and 8 suggest no changes in storm
strength, longitude, duration, and landfall probability during
this time period. However, a (somewhat inexplicable) down-
ward mean shift in the latitude series was detected circa 1986.
The resulting p-value is 0.00260. Overall, these results support
the notion that the satellite era data are reliable.

5.3 The Circa 1995 Changepoint

A question about the circa 1995 changepoint is whether it
remains significant when only the 44 years of reliable (1965–
2008) data are tested. The test finds Dmax = 25.164 with a p-
value of less than 10−5. Here, the changepoint is flagged at
ĉ = 30 (1994). Figure 9 provides graphical support of this con-
clusion.

One can also ask whether it is appropriate to apply asymp-
totic methods when n = 44 (or when n = 158 for the 1851–
2008 segment). To address this question, we simulated 100,000
series of Poisson data with a homogeneous mean of 10 for
each of n = 1000, n = 158, and n = 44. The results are sum-
marized in Table 2. For a target Type I error of 0.05, The-
orem 3 and (3.7) suggest P(Dmax > 9.929) = 0.0500 using
� = 1 − h = 0.05. The simulations for n = 1000 estimated
P(Dmax > 9.929) = 0.0433 using � = 1 − h = 0.05. In this
case, the simulated Type I error is reasonably close to its tar-
get value. The simulations for n = 44 resulted in an estimate of
P(Dmax > 9.929) = 0.0243 using � = 1 − h = 0.05. Here, the
simulated Type I error probability is significantly less than the
target value when n = 44, implying that the test is conservative.

Table 2. Simulated Type I error rates for 0.05-level
test based on Theorem 3

Sample size # rejections/100,000

n = 1000 0.0433
n = 158 0.0345
n = 44 0.0234

Table 3. Goodness-of-fit tests for Poisson marginals,
1931–1994 counts

Data Series x̄ s2 χ2 p-value IOD p-value

1931–1994 9.688 9.679 0.500 0.957

This only enhances the significance of the circa 1995 change-
point. Finally, the simulated Type I error probability for n = 158
is P(Dmax > 9.929) = 0.0345 using � = 1 − h = 0.05. Further
simulations in Robbins et al. (2011) demonstrate that asymp-
totic changepoint tests similar to the ones used in this article
tend to be conservative.

5.4 Test Assumptions: Robustness and Validation

We briefly consider changepoint tests for the annual storm
counts which do not require the assumption of IID Poisson data.
The CUSUM test of Theorem 1 (which only requires IID data)
when applied to 1965–2008 segment finds the 1995 change-
point with a p-value of 0.00357. The CUSUM test of Berkes,
Gombay, and Horváth (2009), which allows for autocorrelation,
also detects the 1995 changepoint at the 5% significance level.
For this test, we used a Bartlett-based expression to estimate the
long-run series variance; the results are somewhat dependent on
a bandwidth parameter used in the calculation of this estimate.
In applying the methods of Bai (1993) to the residuals from
a first order autoregressive fit of the 1965–2008 storm counts,
the 1995 changepoint is flagged with a p-value of 0.0166. The
1930s changepoint is also evident with these methods. As these
test do not assume independent Poisson data they are probably
not very powerful. Hence, we now investigate the validity of the
IID Poisson assumptions.

To validate the Poisson assumption, we first examine the con-
stant mean 1931–1994 segment of annual counts. We consider
two methods for testing the goodness of fit of the Poisson distri-
bution: the classic chi-square goodness-of-fit test (χ2, with bins
0–5, 6–7, 8–10, 11–14, and 15+) and the index of dispersion
test (IOD) of Sukhatme (1938) and Okamoto (1955), which
examines the ratio of the sample variance (s2) and the sample
mean (x̄). Table 3 reports p-values for these tests and suggests
that the 1931–1994 counts are reasonably Poisson. The other
segments test similarly as Poisson.

We also investigated annual count independence. Figure 10
shows the sample autocorrelation structure of the annual counts
after subtracting the mean of the three segments. The bounds
are pointwise 95% bounds (pointwise) for white noise. Overall
there does not seem to be much correlation. Of course, if there
was significant correlation in these counts, we would have an
easier time forecasting annual storm counts years in advance.

6. CONCLUDING REMARKS

The categorical changepoint tests have worked well in iden-
tifying changes in the Atlantic Basin hurricane record, illumi-
nating features that standard CUSUM and LR mean shift tests
miss. Contrary to some theories, we find no evidence of signif-
icant recent increases in storm strength or U.S. landfall strike
probability. We do, however, find recent increases in storm fre-
quencies circa 1995. Changepoints in many of the cyclone co-
variates are found circa 1960, which coincides with the onset of
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Figure 10. Sample autocorrelation of storm counts for 1851–2008
data after changepoint adjustment.

satellite surveillance; however, the post-1960 data appear reli-
able. We also find changepoints in the peak wind speeds of the
storms circa 1900 and 1960. The circa 1995 changepoint in fre-
quency is possibly explained by the increase of short-duration
weak storms in the recent record (Vecchi 2008; Landsea et al.
2010) and/or climate change.

As a nonparametric test for changes in distribution, the χ2
max

test introduced here seems preferable to standard CUSUM and
LR methods. Specifically, the χ2

max tests can detect changes in
distribution rather than simple changes in mean.

APPENDIX: PROOF OF THEOREM 2

From the definition of Ni,t , we have

χ2
k =

m∑
i=1

(
Oi,k − k

n
Oi

)2/
(kp̂i)

+
m∑

i=1

(
O∗

i,k − n − k

n
Oi

)2/
((n − k)p̂i).

Since Oi,k +O∗
i,k = kOi/n+(n−k)Oi/n, we obtain O∗

i,k − n−k
n Oi =

−(Oi,k − kOi/n). Therefore,

χ2
k =

m∑
i=1

1

p̂i

(
Oi,k − k

n
Oi

)2(
1

k
+ 1

n − k

)

= n

k(n − k)

m∑
i=1

1

p̂i

(
Oi,k − k

n
Oi

)2
.

Using the fact that

k∑
t=1

Ni,t − k

n

n∑
t=1

Ni,t = k

(
1 − k

n

)
(p̂i,k − p̂∗

i,k), (A.1)

we can reexpress χ2
k as

χ2
k = k(n − k)

n

m∑
i=1

(p̂i,k − p̂∗
i,k)

2

p̂i
. (A.2)

Now define X2
k by replacing p̂i by pi in (A.2):

X2
k = k(n − k)

n

m∑
i=1

(p̂i,k − p̂∗
i,k)

2

pi
.

Under the null hypothesis, p̂i is a
√

n-consistent estimator of pi;
hence, χ2

k and X2
k have the same limiting distribution. Define the

(m−1)-dimensional vectors P = (p1,p2, . . . ,pm−1)′, P̂k = (p̂1,k, . . . ,

p̂m−1,k)
′, and P̂∗

k = (p̂∗
1,k, . . . , p̂∗

m−1,k)
′. Also, let D = diag(P). Then

under the null hypothesis, P̂k − P̂∗
k has zero mean and covariance ma-

trix

M = n

k(n − k)
(D − PP′).

Then M−1 = k(n − k)A−1/n, where

A−1 = (D − PP′)−1 =
(

D−1 + J
pm

)
.

Here, J is a matrix consisting entirely of unit entries. Observe that
under the null hypothesis, A is the covariance matrix of (N1,t, . . . ,

Nm−1,t)
′ and A−1 exists and does not depend on n or k. For estimating

the category m probabilities, we use

p̂m,k = 1 − p̂1,k − · · · − p̂m−1,k and

p̂∗
m,k = 1 − p̂∗

1,k − · · · − p̂∗
m−1,k.

Using these facts, we see that

X2
k = k(n − k)

n

(m−1∑
i=1

(p̂i,k − p̂∗
i,k)

2

pi
+ (

∑m−1
i=1 p̂∗

i,k − p̂i,k)
2

pm

)

= k(n − k)

n
(P̂ − P̂∗)′

(
D−1 + 1

pm
J
)

(P̂ − P̂∗)

= (P̂ − P̂∗)′M−1(P̂ − P̂∗)

= (
M−1/2(P̂ − P̂∗)

)′(M−1/2(P̂ − P̂∗)
)

= Z′
kZk,

where the components in Zk are uncorrelated under the null hypothe-

sis. Using M−1/2 =
√

k(n−k)
n A−1/2 and (A.1), we see that each com-

ponent of Zk has the form

Zj,k =
m−1∑
i=1

√
k(n − k)

n
aij

( k∑
t=1

Ni,t − k

n

n∑
t=1

Ni,t

)/
(k(1 − k/n))

=
( k∑

t=1

Yj,t − k

n

n∑
t=1

Yj,t

)/√
n(k/n)(1 − k/n),

where the coefficients {aij} come from A−1/2 and do not depend on n
or k. Letting

Yt = (Y1,t, . . . ,Ym−1,t)
′ = A−1/2(N1,t, . . . ,Nm−1,t)

′,
we see that Zk consists of scaled CUSUMs of IID vectors with uncor-
related components and a unit variance. It now follows that

X2
k =

m−1∑
j=1

CUSUM2
j,k

/(
k

n

(
1 − k

n

))
,

where CUSUMj refers to a cumulative sum in {Yj,t}. Using Slutsky’s
theorem and (3.6) finishes our work.

[Received January 2010. Revised August 2010.]
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