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Several tests for detecting mean shifts at an unknown time in stationary time series have been proposed, including
cumulative sum (CUSUM), Gaussian likelihood ratio (LR), maximum of F(Fmax) and extreme value statistics. This
article reviews these tests, connects them with theoretical results, and compares their finite sample performance
via simulation. We propose an adjusted CUSUM statistic which is closely related to the LR test and which links all
tests. We find that tests based on CUSUMing estimated one-step-ahead prediction residuals from a fitted
autoregressive moving average perform well in general and that the LR and Fmax tests (which induce substantial
computational complexities) offer only a slight increase in power over the adjusted CUSUM test. We also conclude
that CUSUM procedures work slightly better when the changepoint time is located near the centre of the data, but
the adjusted CUSUM methods are preferable when the changepoint lies closer to the beginning or end of the data
record. Finally, an application is presented to demonstrate the importance of the choice of method.
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1. INTRODUCTION

Identifying and locating structural breaks (changepoints) is a common problem confronting the time-series analyst. For example,
mean shifts in temperature series frequently occur when the temperature gauge in a weather station is changed (see
Reeves et al., 2007 for a climate overview). Neglecting changepoints can produce radically misleading trend estimates or incorrect
short/long memory inferences about the autocovariance structure of the series. Identifying changepoint times in time-series data is
hence an important problem.

Changepoints can occur in the mean, variance and/or quantiles of a time series. Outside of speech and financial series, the most
commonly encountered problem lies with the detection of an undocumented mean shift. This article summarizes, connects and
compares three mean shift test statistics for stationary correlated data: cumulative sum (CUSUM), likelihood ratio (LR) and maximum
of F (Fmax) test statistics. We isolate to the at most one changepoint setting for simplicity; however, the methodology we discuss can
be used effectively in the presence of multiple changepoints (Robbins et al., 2011). See Davis et al. (2006) and Lu et al. (2010) for
recent work on multiple changepoint problems with autocorrelated data.

The general model considered here involves a time series fXtg with a stationary autocovariance structure – say c(h) ¼ Cov(Xt+h, Xt)
at lag h – with a possible mean shift at an unknown time c. Indexing the observed data from 1 to n, we write

Xt ¼
lþ �t; for 1 O t O c;
lþ Dþ �t; for c < t On;

�
ð1Þ

where l is unknown, D is the magnitude of the mean shift at the unknown time c, and f�tg is a zero mean stationary series with
autocovariance c(h) at lag h. We wish to test the null hypothesis H0 : D ¼ 0 against the alternative HA : D 6¼ 0.

The literature on changepoint problems is by now vast. Page (1954, 1955) is widely credited with introducing unknown
changepoint problems. Quandt (1958, 1960) extended the setting to linear models and first suggested LR approaches to the
problem. Yao and Davis (1984) established asymptotic properties of a LR test for a mean shift in i.i.d. normal data. Gombay and
Horváth (1990) quantified the asymptotics of LR changepoint test statistics for i.i.d. data via extreme value asymptotics and
convergence to functionals of Brownian motion. MacNeill (1974) discussed the CUSUM-type statistic fundamental to this article and
noted the convergence of this statistic to a Brownian bridge in the i.i.d. case. Csörgo} and Horváth (1988) extend this convergence to
the nonparametric i.i.d. setting and discuss the scaled CUSUM statistic that we will link to LR tests. Donsker’s invariance principle
(Billingsley, 1995) is the foundation for all results involving convergence to Brownian motion in the i.i.d. case. Under dependence
assumptions, results involving CUSUMs of observations (similar to results in the i.i.d. case) are discussed in Antoch et al. (1997) and
Berkes et al. (2009). Davis et al. (1995) established convergence of a LR statistic for autoregressive models when all parameters are
allowed to change at the changepoint time. Brown et al. (1975) introduced statistics based on CUSUMs of residuals in linear models
and Bai (1993) and Yu (2007) extended these ideas to residuals of autoregressive moving-average (ARMA) processes.
A comprehensive reference on large sample changepoint testing is Csörgo} and Horváth (1997). Fmax tests are popular
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changepoint tests in climatology (Lund and Reeves, 2002; Reeves et al., 2007 and the references therein). In many settings, Fmax and
LR tests are asymptotically equivalent. For example, see Theorem 5 given below.

In this article, we examine the CUSUM, LR and Fmax tests for detecting mean shifts in correlated data. The intent is to give practical
advice on which methods work best with correlated data. Adjusted CUSUM methods for one-step-ahead prediction residuals are
developed and used to link these three tests. We show that CUSUMs of raw data and CUSUMs of ARMA residuals have the same
asymptotic behavior (see Theorem 2 below). In Section 3, LR and Fmax tests for autoregressive models are connected to the adjusted
CUSUM test (see Theorem 5). This enables asymptotic quantification of the LR and Fmax test statistics. Throughout, the finite sample
performance of the tests is assessed via simulation. The simulations indicate that the adjusted CUSUM statistic applied to one-step-
ahead prediction residuals in general offers the most reliable tests. Moreover, we find that

1. For ARMA data, changepoint tests based on CUSUMs of prediction residuals can have significantly better finite sample
performance than those based on the observed series.

2. CUSUM tests have slightly higher power than the adjusted CUSUM (and the LR and Fmax) tests when the changepoint is near the
centre of the data record. Otherwise, adjusted CUSUM tests may have significantly higher power.

3. LR and Fmax tests where parameters are estimated under the alternative hypothesis introduce substantial computational
complexities, but typically only provide a very small increase in power over the adjusted CUSUM test.

The differences in the methods are highlighted in analyses of fish recruitment and southern oscillation index (SOI) series in Section 5.
There, we show how changepoint tests based on the raw data and on the residuals can lead to opposite conclusions; that is, the
choice of methods matters.

2. CUSUMS OF CORRELATED DATA

If the mean shift in truth occurred at time k, then a statistic comparing �Xk ¼ k�1
Pk

t¼1 Xt to �X�k ¼ ðn� kÞ�1Pn
t¼kþ1 Xt should reveal

differences. The CUSUM statistic,

CUSUMXðkÞ ¼
1ffiffiffi

n
p

Xk

t¼1

Xt �
k

n

Xn

t¼1

Xt

 !
¼ k

n
1� k

n

� � ffiffiffi
n
p

�Xk � �X�k
� �� 	

;

is a scaled difference of these sample means weighting for the respective number of observations. The magnitude of the maximum
absolute discrepancy is

max
1OkOn

jCUSUMXðkÞj;

which provides a test statistic, and the (smallest) argument that maximizes |CUSUMX(k)| is taken as the estimate of the changepoint time.
To quantify distributional characteristics of max1OkOn|CUSUMX(k)|, we need additional assumptions on the model in eqn (1). Let Z

denote the set of integers. We impose the causal linear process representation:

�t ¼
X1
j¼0

wjZt�j; t 2 Z; ð2Þ

on f�tg. Here, fZt; t 2 Zg is a sequence of i.i.d. random variables (each with zero mean and finite variance r2) and the weights fwjg
satisfy

P1
j¼1 jjwjj < 1.

The asymptotics of max1OkOn|CUSUMX(k)| are explained in detail in Csörgo} and Horváth (1997). Let fB(t), t 2 [0,1]g denote a
standard Brownian bridge. Define

s2 ¼ lim
n!1

1

n
Var

Xn

t¼1

�t

 !
ð3Þ

and note that s2 ¼ r2 if f�tg is i.i.d. Observe that s2 ¼ 2pf(0) where

f ðgÞ ¼ 1

2p

X1
h¼�1

eihgcðhÞ ¼ r2

2p
jwðe�igÞj2; � pO g < p; ð4Þ

is the spectral density at frequency g 2 [�p, p). Here, wðzÞ ¼
P1

j¼0 wjz
j (see, e.g., section 4.4 of Brockwell and Davis 1991).

THEOREM 1. If fXtg satisfies eqns (1) and (2) and H0 holds, then

1

ŝ
max

1OkOn
jCUSUMXðkÞj �!

D
sup

0OtO1
jBðtÞj; ð5Þ

where ŝ2 is a consistent estimator of s2 and �!D indicates convergence in distribution.
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The above theorem follows from the work of Csörgo} and Horváth (1997) (it is essentially Donsker’s theorem) and the fact that
ŝ=s�!P 1, where �!P indicates convergence in probability. A popular estimator of s2 is the nonparametric Bartlett-based expression:

ŝ2
1 ¼

1

n

Xn

t¼1

ðXt � �XÞ2 þ 2
Xqn

s¼1

1� s

qn þ 1

� �
1

n� s

Xn�s

t¼1

ðXt � �XÞðXtþs � �XÞ: ð6Þ

To ensure consistency of ŝ2
1, one typically imposes growth conditions on the bandwidth parameter qn to allow for a slow

divergence to infinity as n ! 1. Here, we take qn ¼ bn1/3c, which seems to work well in a variety of practical situations and has
technical justification (Newey and West, 1987; Andrews, 1991).

Null hypothesis percentiles of the asymptotic distribution are needed to assess statistical significance of the CUSUM statistic. Such
percentiles are computed via the series expansion:

Pð sup
0OtO1

jBðtÞj > xÞ ¼ 2
X1
k¼1

ð�1Þkþ1e�2k2x2

; x > 0; ð7Þ

(see section 6.10 in Resnick, 2002 e.g.).

2.1. ARMA processes and CUSUMs of residuals

Strong correlation can degrade the test in Theorem 1 (simulations Section 2.2 will support this later). As convergence to limit laws is
typically faster with independent data, it may be beneficial to transform strongly correlated data into independent (or nearly
independent) data. In that vein, we proceed with the assumption that f�tg is the unique (in mean square) causal and invertible
stationary solution to the ARMA(p, q) difference equation

�t � /1�t�1 � � � � � /p�t�p ¼ Zt þ h1Zt�1 þ � � � þ hqZt�q; t 2 Z; ð8Þ

where fZtg is i.i.d. with E[Zt] ¼ 0 and E½Z2
t � ¼ r2. We let / ¼ f/1, . . . ,/pg0 and h ¼ fh1, . . . ,hqg0.

Causality implies that solutions to eqn (8) have the linear process form in eqn (2), where the weights fwjg are obtained from
the ARMA coefficients in the usual manner (see Brockwell and Davis 1991, Chapter 3) and satisfy

P1
j¼0 jwjj < 1, thus implying

absolute summability of the autocovariances. The spectral density formula for ARMA processes provides s2 ¼
r2ð1 þ

Pq
i¼1 hiÞ2=ð1 �

Pp
j¼1 /jÞ2. If the ARMA orders p and q are known, then one substitutes

ffiffiffi
n
p

-consistent ARMA
parameter estimators /̂ ¼ f/̂1; . . . ; /̂pg0 and ĥ ¼ fĥ1; . . . ; ĥqg0 to obtain a

ffiffiffi
n
p

-consistent parametric estimator of s2:

ŝ2
2 ¼ 2pf̂ ð0Þ ¼ r̂2ð1þ ĥ1 þ � � � þ ĥqÞ2

ð1� /̂1 � � � � � /̂pÞ2
: ð9Þ

In related work, Bai (1993, 1994) also suggests applying CUSUM methods to estimated one-step-ahead prediction residuals; Yu
(2007) extends Bai’s results to higher moments of the residuals in an effort to detect variance changepoints. The one-step-ahead
prediction residual at time t is

It ¼
Xt � X̂tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXt � X̂tÞ
q ; ð10Þ

where X̂t is the best linear prediction of Xt from linear combinations of a constant and X1, . . . , Xt�1. Here, VarðXt � X̂tÞ ¼ E½ðXt � X̂tÞ2�
is its unconditional variance. Because VarðXt � X̂tÞ converges very rapidly (geometrically) downwards to r2, there is no reason to
retain the denominator in eqn (10) in asymptotic analyses. Moreover, p. 265 of Brockwell and Davis (1991) suggests adopting a
computationally convenient form of the prediction residuals (see also Bai, 1993, 1994; Yu, 2007). Mimicking eqn (8), these residuals
are defined recursively in t via

Ẑt ¼ ðXt � l̂Þ � /̂1ðXt�1 � l̂Þ � � � � � /̂pðXt�p � l̂Þ � ĥ1Ẑt�1 � � � � � ĥqẐt�q; ð11Þ

here, l̂ denotes a
ffiffiffi
n
p

-consistent estimate of l, and one simply takes Xt � l̂ ¼ 0 ¼ Ẑt for t O 0. We use l̂, /̂ and ĥ to represent null
hypothesis estimates, which need to be

ffiffiffi
n
p

-consistent only when D ¼ 0 and may be calculated using standard ARMA model fitting
techniques for homogeneous data. An estimator of r2 is r̂2 ¼ n�1

Pn
t¼1 Ẑ2

t . As Yu (2007) shows, no asymptotic loss of precision
occurs when using fẐtg in lieu of estimated versions of fItg in a CUSUM procedure.

The CUSUM of residuals will be denoted by

CUSUMZðkÞ ¼
1ffiffiffi

n
p

Xk

t¼1

Ẑt �
k

n

Xn

t¼1

Ẑt

 !
:

Using the different equation structure in eqn (8), it is possible to relate CUSUMX(k) and CUSUMZ(k) directly. In fact, we offer the
following result, which is proven in the Appendix.
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LEMMA 1. Suppose that E[|Zt|
m] < 1 for some m P 2. Then, under H0,

1

r̂
ffiffiffi
n
p

Xk

t¼1

Ẑt �
k

n

Xn

t¼1

Ẑt

 !
¼
ð1� /̂1 � � � � � /̂pÞ

r̂
ffiffiffi
n
p
ð1þ ĥ1 þ � � � þ ĥqÞ

Xk

t¼1

Xt �
k

n

Xn

t¼1

Xt

 !
þ Akffiffiffi

n
p ;

where max1OkOn|Ak| ¼ op(n1/m). The explicit form of the remainder Ak is provided in the Appendix.

Lemma 1 has an interesting implication: CUSUM changepoint inferences for ARMA processes will produce the same asymptotic
conclusion when applied to either the raw series or the one-step-ahead residuals. The result is stated formally as the following.

THEOREM 2. When fXtg is a causal and invertible ARMA series with innovations satisfying E[|Zt|
m] < 1 for some m P 2, and fẐtg are

the estimated residuals in eqn (11), then

1

r̂
max

1OkOn
jCUSUMZðkÞj �

1

ŝ
max

1OkOn
jCUSUMXðkÞj ¼ opð1Þ;

where r̂2 and ŝ2 are consistent estimates of r2 and s2 respectively. Moreover,

1

r̂
max

1OkOn
jCUSUMZðkÞj �!

D
sup

0OtO1
jBðtÞj: ð12Þ

2.2. Comparison of CUSUM techniques via simulation

Here, we examine the performance of the Theorem 1 and 2 statistics via simulation. We refer to tests utilizing eqn (5) as CUX tests and
tests utilizing (12) as CUZ test. Good tests should have a Type I error probability that is close to the preset Type I error probability a.
To explore this, we simulated a variety of time series, all under the null hypothesis of series homogeneity, and calculated the
frequency at which each test rejects the null. The empirical rejection proportions are shown in Table 1. Here and in all other
simulations presented in this article, we use r ¼ 1, we generate Gaussian errors, and we set qn ¼ n1/3 when eqn (6) is used; also, all
simulation results are based off of 10,000 replicate datasets per model, and we impose a target Type I error of a ¼ 0.05 throughout.

The Table 1 Type I errors vary wildly for the CUX tests (regardless of how s is estimated and even when it is taken as known). For the
AR(1) and MA(1) simulations, values of /1 or h1 close to unity produce Type I errors so far from 0.05 that we cannot recommend using
these tests. By contrast, the Type I error of the CUZ test is consistently close to 0.05.

The poor performance of all tests in the ARMA(2,2) model when /1 ¼ 0.5, /2 ¼ �0.2 and h1 ¼ �0.45, h2 ¼ �0.5 is attributed to a
near lack of invertibility; in fact, the MA(2) polynomial has a root at approximately 1.034. Models that are close to being non-invertible
have a large s�2 ¼ [2pf(0)]�1. The results suggest that ŝ2 provides a more accurate approximation of s than ŝ1; however, even when s
is taken as known, the CUX tests may display an unacceptable Type I error. Thus, not all performance issues involve estimation of s.

Table 1. CUSUM Type I error estimations for AR(1) models, MA(1) models, ARMA(1,1) models and ARMA(2,2) models with n ¼ 1000 and a ¼ 0.05

AR(1) Models MA(1) Models

/1 CUX
a CUX

b CUX
c CUZ h1 CUX

a CUX
b CUX

c CUZ

�0.95 0.0924 0.0001 0.0888 0.0442 �0.95 1.0000 0.0000 0.9985 0.0348
�0.9 0.0702 0.0014 0.0747 0.0486 �0.9 0.7733 0.0000 0.7605 0.0412
�0.5 0.0555 0.0286 0.0501 0.0449 �0.5 0.0559 0.0152 0.0597 0.0464
�0.1 0.0449 0.0391 0.0438 0.0431 �0.1 0.0465 0.0386 0.0437 0.0428
0.1 0.0427 0.0438 0.0439 0.0446 0.1 0.0457 0.0436 0.0460 0.0466
0.5 0.0438 0.0590 0.0359 0.0407 0.5 0.0438 0.0450 0.0410 0.0437
0.9 0.0250 0.3130 0.0214 0.0412 0.9 0.0468 0.0466 0.0420 0.0440
0.95 0.0192 0.5777 0.0091 0.0324 0.95 0.0450 0.0468 0.0398 0.0430

ARMA(1,1) Models ARMA(2,2) Models

/1 h1 CUX
b CUX

c CUZ f/1, /2g fh1, h2g CUX
b CUX

c CUZ

0.5 �0.95 0.0000 0.7282 0.0502 f0.6, 0.35g f0.6, �0.3g 0.7000 0.0041 0.0240
0.5 �0.9 0.0000 0.2465 0.0378 f0.6, 0.3g f0.5, �0.2g 0.4154 0.0162 0.0344
0.5 �0.1 0.0564 0.0334 0.0386 f0.6, �0.1g f�0.6, 0.3g 0.0584 0.0361 0.0396
0.1 �0.5 0.0178 0.0560 0.0454 f0.5, �0.2g f�0.45,�0.5g 0.0000 0.9693 0.1415
0.9 �0.5 0.3006 0.0211 0.0397 f0.5, �0.2g f�0.4, �0.5g 0.0000 0.7762 0.0530
0.95 �0.5 0.5594 0.0104 0.0346 f0.2, �0.5g f�0.45, �0.05g 0.0009 0.0860 0.0466

as is taken as known.
bs is estimated with ŝ1.
cs is estimated with ŝ2.
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The instability of CUSUM tests is due to slow convergence of the partial sums sequence to a Brownian motion, especially when the
AR(p) or MA(q) polynomial has a root close to the unit circle.

To further investigate convergence rates, we ran the tests for various sample sizes. Table 2 contains estimated p-values for each
test for an AR(1) with /1 ¼ 0.5 and /1 ¼ �0.5 and for n ¼ 50, 100, 200, 400, 800. The results suggest that the CUZ appears to be
conservative for small n. Also, the results indicate that the differences between tests can be even more noticeable for small n –
conclusions drawn from the CUX may be questionable even for moderate autocorrelation when the sample size is small.

To investigate if the CUX test offers power increases over the CUZ test, simulations similar to those in Tables 1 and 2 were run
for moderate correlation structures with n ¼ 1000, except that a mean shift of magnitude D ¼ 0.15 at time c ¼ n/2 ¼ 500 was
added to the series. The results are shown in Table 3, where one sees that CUZ tests are just as powerful as CUX tests.

Of course, the ARMA orders p and q are rarely known in application; hence, CUX methods are attractive as nonparametric tests. We
also examined the ability of the CUZ test to detect mean shifts when the ARMA orders were misspecified. Our results, which we
summarize with the following example, indicate that the test works well when the ARMA orders are overestimated. When data are
simulated from an ARMA(2,2) model with /

0 ¼ f0.4, 0.3g and h
0 ¼ f0.1, �0.6g and the resulting data are fitted with an ARMA(1,1),

the Type I error probability is estimated as 0.1359 with the CUZ test where we use a target of a ¼ 0.05. However, when these same
series are fitted with an ARMA(4,4) model, the Type I errors become 0.0504 and 0.0445 [compared to 0.0444 and 0.0386 when using
the correct ARMA(2,2) orders]. We also note that we observed no significant loss in power in residuals tests where the ARMA order
was overestimated.

Our simulation study yields a clear theme for the practitioner: whenever possible, use residuals-based mean shift tests.

3. THE ADJUSTED CUSUM AND RELATED TESTS

Issues arise with the CUSUM test at the data boundaries. In particular, the limiting Brownian bridge is tied down at t ¼ 0 and t ¼ 1
[meaning B(0) ¼ B(1) ¼ 0] and hampers the ability of the test to detect mean shifts occurring near the beginning or end of the data.
Many authors address this problem by scaling CUSUMX(k) by a weight function w(k/n). Specifically, let w be a non-zero function
defined on (0,1), increasing in a neighbourhood of zero, decreasing in a neighbourhood of unity, and satisfying &
inffOtO1 � fw(t) > 0 whenever 0 < f < 1/2. Define

Iðw; fÞ ¼
Z 1

0

1

tð1� tÞ exp � fw2ðtÞ
tð1� tÞ

� �
dt:

Following theorem 2.1.1 of Csörgo} and Horváth (1997), one obtains the following.

Table 2. CUSUM Type I error estimations for AR(1) models with various n for /1 ¼ 0.5 and /1 ¼ �0.5 when a ¼ 0.05

n

/1 ¼ 0.5 /1 ¼ �0.5

CUX
a CUX

b CUX
c CUZ CUX

a CUX
b CUX

c CUZ

50 0.0169 0.0135 0.0028 0.0096 0.0560 0.0034 0.0475 0.0241
100 0.0242 0.0388 0.0125 0.0246 0.0566 0.0100 0.0505 0.0333
200 0.0308 0.0523 0.0252 0.0342 0.0526 0.0167 0.0498 0.0386
400 0.0354 0.0590 0.0325 0.0397 0.0495 0.0206 0.0468 0.0392
800 0.0355 0.0579 0.0356 0.0406 0.0486 0.0264 0.0498 0.0439

as is taken as known.
bs is estimated with ŝ1.
cs is estimated with ŝ2.

Table 3. Power comparisons of CUSUM tests for various ARMA models with D ¼ 0.15, n ¼ 1000 and a ¼ 0.05

/0 h0 CUX
a CUX

b CUZ

f�0.2g – 0.6871 0.7230 0.7189
f0.2g – 0.3808 0.3679 0.3746
f0.4g – 0.2581 0.2186 0.2300

– f�0.4g 0.9060 0.9510 0.9445
– f�0.2g 0.7218 0.7616 0.7566
– f0.2g 0.4027 0.4011 0.4054

f�0.2g f0.2g 0.5371 0.5299 0.5329
f0.2g f�0.2g 0.5381 0.5306 0.5302
f0.4g f�0.4g 0.5500 0.5394 0.5423
f0.3, �0.1g f�0.1, �0.1g 0.5076 0.5499 0.5445
f�0.1, �0.1g f0.3, �0.1g 0.5198 0.5599 0.5560
f0.3, 0.1g f�0.1, �0.3g 0.4944 0.5428 0.5361

as is estimated with ŝ1.
bs is estimated with ŝ2.
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THEOREM 3. Let ŝ and r̂ be consistent estimators of s and r respectively. Then under H0,

max
1OkOn

jCUSUMXðkÞj
wðk=nÞŝ �!D sup

0<t<1

jBðtÞj
wðtÞ and max

1OkOn

jCUSUMZðkÞj
wðk=nÞr̂ �!D sup

0<t<1

jBðtÞj
wðtÞ

if and only if I(w, f) < 1 for some f > 0.

A natural weight choice is w(t) ¼ [t(1 � t)]c for non-negative c (Csörgo} and Horváth, 1997). When 0 < c < 1/2, the conditions for
Theorem 3 are satisfied, although null hypothesis percentiles akin to those in eqn (7) are not readily available. We will not consider
such tests in our ensuing discussion. To use c P 1/2, we must crop the set of admissible changepoint times. Below, we link LR and
Fmax tests to a weighted CUSUM with wðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 � tÞ

p
. Thereby, a limit result is needed for wðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 � tÞ

p
. We let

kXðkÞ ¼
CUSUM2

XðkÞ
k
n 1� k

n

� � and kZðkÞ ¼
CUSUM2

ZðkÞ
k
n 1� k

n

� � ; ð13Þ

and apply Theorem 3 to obtain the following key result.

THEOREM 4. Suppose that 0 < ‘ < h < 1 and that ŝ and r̂ are consistent estimators of s and r respectively. Then under H0,

1

ŝ2
max
‘Ok

nOh
kXðkÞ�!

D
sup
‘<t<h

B2ðtÞ
tð1� tÞ ð14Þ

and

1

r̂2
max
‘Ok

nOh
kZðkÞ�!

D
sup
‘<t<h

B2ðtÞ
tð1� tÞ : ð15Þ

We refer to tests using statistics in Theorem 4 as adjusted CUSUM tests, the modifier ‘adjusted’ referring to the inclusion of the
weighting function seen in eqn (13). One can find p-values for this test via

P sup
‘<t<h

B2ðtÞ
tð1� tÞ > x

� �
�

ffiffiffiffiffiffiffiffiffiffi
xe�x

2p

r
1� 1

x

� �
log

1� ‘ð Þh
‘ 1� hð Þ

� �
þ 4

x

� 


as x ! 1, which is provided in Csörgo} and Horváth (1997).

3.1. LR and Fmax tests for AR(p)

Thus far, all second-order parameters have been estimated under the null hypothesis. While such estimates are relatively easy to
calculate, they are not consistent under the alternative. A better approach would jointly estimate mean shift and autocovariance
parameters at each admissible changepoint time k and construct test statistics from this information. Such a procedure is
computationally intensive and considerably more involved to asymptotically quantify in generality. Because of this, we limit our
discussion on such methods here to AR(p) processes. In this subsection, two procedures that utilize parameters estimated under the
alternative, LR and Fmax tests, are studied.

Assume that f�tg follows a causal autoregression (AR) of order p. For convenience with start-up effects, we assume that Xt is
observed at times t ¼ �p + 1, . . . , n. Considering a LR test for a mean shift, let r̂2 ¼ n�1

Pn
t¼1 Ẑ2

t be the estimator of the error
variance under H0, where Ẑt is as defined in eqn (11) with l̂ and /̂ representing null hypothesis conditional Gaussian likelihood
estimators of l and /. (Note that one need not necessarily assume Gaussian innovations.)

Let /̂k ¼ f/̂1;k; . . . ; /̂p;kg0 be the conditional Gaussian likelihood estimators of / based on a likelihood function that allows for a
mean shift at time k. For example, the prediction residual variance is estimated with

r̂2
k ¼

1

n

Xn

t¼1

½ðXt � l̂tÞ � /̂1;kðXt�1 � l̂t�1Þ � � � � � /̂p;kðXt�p � l̂t�pÞ�2;

where

l̂t ¼
l̂k for �pþ 1OtOk;
l̂�k for k þ 1OtOn;

�
ð16Þ

with l̂k denoting the likelihood estimator of l and l̂�k denoting the likelihood estimator of l� ¼ l + D while allowing for a mean shift
at time k. The likelihood estimators of l̂, l̂k and l̂�k differ from their sample mean counterparts �X , �Xk and �X�k ; see (3.103) in Shumway
and Stoffer (2006) for p ¼ 1 and Chapter 3 therein for generalities.
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The Gaussian LR statistic for gauging a mean shift at time k is

Kk ¼
r̂2

k

r̂2

� �n=2

;

where max‘Ok
nOhf�2 log Kkg is used as the test statistic. Likewise, the F-statistic for a mean shift at time k is

Fk ¼
SSE0 � SSEk

SSEk=ðn� 2Þ :

where SSE0 ¼ nr̂2 and SSEk ¼ nr̂2
k . We connect �2 logKk and Fk via kX(k):

max
‘Ok

nOh
f�2 log Kkg �

1

ŝ2
2

max
‘Ok

nOh
kXðkÞ ¼ opð1Þ ð17Þ

and

max
‘Ok

nOh
Fk �

1

ŝ2
2

max
‘Ok

nOh
kXðkÞ ¼ opð1Þ; ð18Þ

where ŝ2
2 is the null hypothesis estimator in eqn (9). Formulae (17) and (18) follow from the following, which is proven in the

Appendix.

LEMMA 2. Suppose that E[|Zt|
m] < 1 for some m P 2. If f�tg is a causal AR(p) process, then under H0,

nðr̂2 � r̂2
kÞ ¼ ð1� /̂1 � � � � � /̂pÞ2kXðkÞ þ Ck;

where max‘Ok
nOh jCkj ¼ opðn1=m�1=2Þ with 0 < ‘ < h < 1.

Lemma 2 implies that the ratio of the null and alternative error variance estimators converges to unity, which yields eqn (18).
To extract eqn (17) from Lemma 2, write 2 log Kk ¼ n log½1 � ðr̂2 � r̂2

kÞ=r̂2� and then Taylor expand the logarithm. Theorem 4
now gives the following result.

THEOREM 5. If the conditions of Lemma 2 hold, then

max
‘Ok

nOh
f�2 log Kkg�!

D
sup
‘<t<h

B2ðtÞ
tð1� tÞ ; ð19Þ

and

max
‘Ok

nOh
Fk �!

D
sup
‘<t<h

B2ðtÞ
tð1� tÞ : ð20Þ

One drawback of adjusted CUSUM methods lies with the need to truncate the admissible set of changepoints times to obtain a
proper limit distribution of the supremum. A cancer patient seeking to detect the disease as soon as possible after onset would not
consider truncating data boundaries. For such purpose, we would suggest a sequential analysis approach along the lines of Mei
(2006). Another avenue of attack lies through extreme value scalings. As suggested earlier, if we let Tn ¼ max1OkOnkX(k), then
Tn ! 1 almost surely as n ! 1. One way to address this problem is to find constants an and bn such that anTn � bn converges to a
Gumbel distribution asymptotically. Berkes et al. (2009) provide such results for the kX(k) statistic. However, as is commonly
conceded throughout the literature (see Csörgo} and Horváth, 1997, p. 25, e.g.), statistics that employ convergence to extreme value
distributions can exhibit significantly slower convergence rates than those that utilize quantiles based on Brownian motion.

3.2. Comparisons of the adjusted CUSUM and related rests

We compare adjusted CUSUM, LR and Fmax statistics via simulation in this subsection. We call tests based on eqns (14) and (15) as kX

and kZ tests respectively (both are adjusted CUSUM methods). The LR and Fmax statistics are found in eqns (19) and (20) respectively.
Here, we use ‘ ¼ 1 � h ¼ 0.05 and a ¼ 0.05.

Simulations akin to those in Table 1 were conducted to compare kX and kZ tests. The conclusions are similar to those drawn from
Table 1: residuals-based methods outperform non-residual methods. Because of this, we only consider residual tests in the ensuing
discussion.

The kZ test enjoys practical advantages over the LR and Fmax tests. For instance, LR and Fmax tests are more computationally
intensive. The Type I error rates in Table 4 indicate that the asymptotics for the LR and Fmax tests are slower to ‘kick in’ than
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those for the kZ test. Another advantage of the kZ test is that it may be applied to processes with a moving average (MA)
component.

Table 5 compares powers of the kZ, LR and Fmax tests under the alternative hypothesis. Here, the results are mixed. One may
believe that the LR and Fmax tests would be more powerful than the kZ test, especially when the null hypothesis estimates of second-
order parameters are biased, which is likely the case when the magnitude of the mean shift is large, when autocorrelations are
strong, or when n is small. However, most large mean shifts will likely be detected by the kZ test. Also, when n is small or when the
autocorrelation is strong, the LR and Fmax tests may have too large of a Type I error. Although the results in Table 5 demonstrate
situations in which the LR and Fmax tests provide a significant increase in power, it does not seem worthwhile to tune the time-series
parameter estimators to the changepoint time in general circumstances.

We also ran simulations to compare the utility of the kX and kZ tests against that of their extreme value analogues (as mentioned at
the end of Section 3.1). The extreme value tests proved to be overly conservative for all practical sample sizes. Taking a ¼ 0.05, an
extreme value test based off of the kX(k)-statistic while estimating s with eqn (6) had an approximate Type I error rate of 0.0153 for
AR(1) data with /1 ¼ 0.3 and with n ¼ 12,800 (whereas the kX test observed a rate of 0.0526 for the same data).

At this point, we have now justified bullet points 1 and 3 in the Introduction. Our next section considers bullet point 2.

4. POWER COMPARISONS: CUSUM VS. ADJUSTED CUSUM

Our objective in this section is to compare the power of the residual versions of the CUSUM and adjusted CUSUM tests. If a mean
shift is deemed to occur at time c, we will report the value of c/n. In accordance with eqn (1), the magnitude of the mean shift is
denoted by D. In this subsection, we also use ‘ ¼ 1 � h ¼ 0.05 as needed and we set a target Type I error rate of a ¼ 0.05
throughout.

First, consider an AR(1) series with u1 ¼ 0.5. For D ¼ 0.5, Figure 1 plots the empirical power of the residual based tests as a
function of c/n for n ¼ 500,1000 and 2000.

Figure 1 shows powers that increase with n for all tests and decreases as c/n obtains close to 1 or 0. When the mean shift occurs
near the endpoints, the adjusted CUSUM statistics are more powerful; by contrast, when the mean shift occurs in the middle of the
data set, the CUSUM test is more powerful. Around c/n ¼ 0.25, all tests have approximately the same power.

To investigate how the changepoint time, the model and the magnitude of the mean shift affect test power, we express the
CUSUM of the data in terms of a CUSUM of zero mean random variables. When a mean shift occurs at time c, some computations
provide

CUSUMXðkÞ
s

¼ 1

s
ffiffiffi
n
p

Xk

i¼1

Yi �
k

n

Xn

i¼1

Yi

 !
�

ffiffiffi
n
p
�min

k

n
;

c

n

� 

1�max

k

n
;

c

n

� 
� �
D
s
; ð21Þ

where Yi ¼ Xi � l if i O c and Yi ¼ Xi � (l + D) if i > c. Arguments akin to those in the proof of Lemma 1 establish a relationship
similar to eqn (21) for CUSUMs of residuals. From this, we see that the asymptotic power of a CUSUM test is a function of

Table 4. Type I error rates for the kZ, LR and Fmax tests for various AR(1) models when n ¼ 200 and n ¼ 1000

/1

n ¼ 200 n ¼ 1000

kZ LR Fmax kZ LR Fmax

0.9 0.0212 0.3237 0.3403 0.0329 0.3463 0.3501
0.7 0.0250 0.1348 0.1418 0.0354 0.0912 0.0930
0.5 0.0248 0.0754 0.0799 0.0401 0.0566 0.0577
0.3 0.0274 0.0524 0.0565 0.0384 0.0490 0.0496
0.1 0.0276 0.0418 0.0450 0.0409 0.0503 0.0510
�0.1 0.0330 0.0445 0.0469 0.0417 0.0413 0.0418
�0.3 0.0246 0.0370 0.0384 0.0372 0.0318 0.0424
�0.5 0.0348 0.0357 0.0376 0.0433 0.0433 0.0441
�0.7 0.0338 0.0329 0.0356 0.0432 0.0393 0.0400
�0.9 0.0372 0.0342 0.0362 0.0437 0.0382 0.0386

Table 5. Power approximations for the kZ, LR and Fmax tests for various AR(1) models when n ¼ 200 with c¼20 and D ¼ 1.0 (Case 1) and when
n ¼ 1000 with c ¼ 500 and D ¼ 0.15 (Case 2)

/1

Case 1 Case 2

kZ LR Fmax kZ LR Fmax

0.5 0.1866 0.3427 0.3514 0.1107 0.1493 0.1498
0.3 0.4657 0.5743 0.5835 0.2052 0.2298 0.2316
0.1 0.7737 0.8106 0.8167 0.3307 0.3469 0.3492
�0.1 0.9501 0.9521 0.9543 0.4949 0.5016 0.5040
�0.3 0.9926 0.9915 0.9922 0.6616 0.6642 0.6654
�0.5 0.9995 0.9993 0.9994 0.8031 0.8030 0.8051
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d1 ¼
ffiffiffi
n
p
� c

n
1� c

n

� � jDj
s
; ð22Þ

and the asymptotic power of an adjusted CUSUM test is a function of

d2 ¼
ffiffiffi
n
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

n
1� c

n

� �r
jDj
s
: ð23Þ

Table 6 explores the power claims in eqns (22) and (23) in more detail for the CUZ and kZ tests. The estimated power of these tests
is simulated for various series lengths, ARMA models, and mean shift times and magnitudes. We consider two cases: the first picks D
so that d1 is always 1.2 and the second picks D so that d2 is always 3.5. The Table 6 powers for Case 1 are for CUSUM tests and those
for Case 2 are for adjusted CUSUM tests. The powers in Table 6 appear roughly constant across the two columns, as they should be if
eqns (22) and (23) hold. However, the last two rows show substantially smaller powers. The reduction of power here is again
attributed to near unit roots of the AR or MA polynomials.

Finally, we examine the difference in power between the CUSUM and adjusted CUSUM tests in more detail. Figure 2 plots empirical
powers with d1 or d2 held constant (and hence the powers for the CUZ or kZ tests should be relatively constant) for various values of
c/n. Because these powers are a priori symmetric about c/n ¼ 0.5, we isolate on cases where c/n O 0.5. The results in Figure 2 show
that the adjusted CUSUM tests are more powerful than CUSUM tests in some settings; however, when the CUSUM tests are more
powerful, the difference is never substantial.

Overall, we suggest that the practitioner uses the adjusted CUSUM test as a first choice if the location of the changepoint is
‘uniformly unknown’. Should a hypothesized changepoint lie closer to the centre of the data record, one may improve the power of
the adjusted CUSUM test by increasing ‘ and 1�h.

5. DATA APPLICATIONS

Theorems 2 and 5 demonstrate the asymptotic equivalence of the different methods. However, our simulation studies suggested
that different methods may yield different conclusions in finite samples, which is a point that we now illustrate using data. Here, we
apply the changepoint methods to two related data sets, the classical SOI and its related fish recruitment series. These series are

Figure 1. Graph of c
n (horizontal axis) against power (vertical axis) with D ¼ 0.5 for an AR(1) with /1 ¼ 0.5

Table 6. The power of the CUZ test when restricting d1 ¼ 1.2 (Case 1) and the power of the kZ test when restricting d2 ¼ 3.5 (Case 2)

/0 h0 n c/n

Case 1 Case 2

D Power D Power

f�0.5g – 500 0.50 0.1431 0.5539 0.2087 0.7815
f0.1g – 1000 0.40 �0.1757 0.5599 �0.2510 0.7894
f0.7g – 2000 0.30 0.4259 0.5661 0.5693 0.7978
– f�0.5g 500 0.20 �0.1677 0.5287 �0.1957 0.7388
– f0.1g 1000 0.10 0.4638 0.5850 0.4058 0.7909
– f0.7g 2000 0.05 �0.9603 0.6225 �0.6105 0.7981
f0.2g f0.4g 1000 0.95 1.3981 0.5053 0.8887 0.7720
f�0.4g f�0.3g 500 0.90 �0.2981 0.4860 �0.2609 0.7457
f0.5g f�0.1g 2000 0.80 0.3019 0.5698 0.3522 0.7932
f0.1, �0.6g f�0.8, 0.3g 2000 0.70 �0.0426 0.5731 �0.0569 0.7962
f0.9, �0.2g f0.3, 0.2g 1000 0.60 0.7906 0.5474 1.1296 0.7917
f0.3, �0.6g f0.7, �0.5g 500 0.50 �0.1982 0.5212 �0.2890 0.7569
f�0.6, 0.1g f�0.5, �0.4g 500 0.70 �0.0170 0.2871 �0.0228 0.5151
f0.5, 0.4g f0.1, 0.6g 1000 0.60 2.6879 0.4260 3.8407 0.6602
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plotted in Figure 3 and are discussed further in Example 1.5 of Shumway and Stoffer (2006). Each series contains n ¼ 453 monthly
observations ranging from 1950 to 1987. The SOI series measures pressure differences between Darwin and Tahiti in the Pacific
Ocean; the recruitment data count the number of new fish in a fish population. The SOI series measures the strength of the El-Nino
effect and is known to influence weather patterns on a global scale.

Sample autocorrelations and partial autocorrelation suggest that an AR(2) model is reasonable for both the SOI and recruitment
series respectively. With these model orders, the following changepoint statistics were computed: CUX with the Bartlett estimator (6),
CUX with s2

2 estimated via eqn (9), CUZ, the adjusted versions kX based on the Bartlett estimator ŝ2
1, kX based on the estimator ŝ2

2, kZ,
and finally LR and Fmax.

The test statistics and p-values are summarized in Table 7 and vary considerably. It is clear that the choice of changepoint detection
method matters greatly. Non-residual based tests produce smaller p-values than residual based tests. LR and Fmax tests always reject.
Despite the varying conclusions, all SOI test statistics are maximized at an estimated changepoint time of ĉ ¼ 339 (ca. 1978), while
most recruitment statistics are maximized 6 months later at ĉ ¼ 345. A cross-correlation analysis reveals that SOI tends to lead
recruitment by half a year (see Shumway and Stoffer, 2006 for details). The segmented levels in Figure 3 graphically portray estimated
means before and after the estimated mean shift time.

Figure 2. Power (vertical axes) vs. c
n (horizontal axes) while holding d1 or d2 constant for an ARMA(1,1) with u1 ¼ 0.5 and h1 ¼ 0.5

(n ¼ 1000)

0 100 200 300 400

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(a) (b)

0 100 200 300 400

0
20

40
60

80
10

0

Figure 3. Time-series plots of SOI (a) and recruitment (b)

Table 7. Changepoint test results for the SOI data (a), and the recruitment data (b) when an AR(2) is fit to both series

SOI data Recruitment data

Test stat. p-value ĉ Test stat. p-value ĉ

CUX
a 1.4733 0.0260 339 1.1895 0.1180 345

CUX
b 1.1896 0.1179 339 0.8513 0.4632 345

CUZ 1.2288 0.0976 339 0.8373 0.4848 344
kX

a 11.5264 0.0244 339 7.7923 0.1278 345
kX

b 7.5143 0.1440 339 3.9918 0.5866 345
kZ 8.0184 0.1159 339 3.8371 0.6192 344
LR 10.0815 0.0467 339 17.0518 0.0019 345
Fmax 10.1495 0.0453 339 17.3001 0.0017 345

as is estimated with ŝ1:
bs is estimated with ŝ2:
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With the changepoint times estimated at 339 and 345, AR parameter estimates are /̂1 ¼ 0:5767� 0:0921 and
/̂2 ¼ 0:0018� 0:0923 for the SOI data and /̂1 ¼ 1:3508� 0:0817 and /̂2 ¼ �0:4647� 0:0825 for the recruitment data
(these intervals have a 95% confidence level). These estimates suggest strong positive autocorrelation in both series. Given that
the simulations in Tables 1 and 4 imply that the CUSUM and adjusted CUSUM tests have inflated Type I error probabilities in
settings with strong correlation, the residuals-based tests are viewed as more reliable. As such, we conclude that neither series
shows sufficient evidence of a changepoint at the 5% significance level. We have been unable to find any physical reason for
changepoints circa 1978.

We noticed that the estimate for /2 in the SOI dataset is not significantly different from 0, therefore, we ran the changepoint tests
while fitting an AR(1) to these data. The results were nearly identical to those seen in Table 7.

6. COMMENTS AND CONCLUSIONS

The results show that applying CUSUM methods to stationary correlated series to find undocumented mean shifts can produce
spurious conclusions if care is not taken. The Type I errors in Table 1 for such tests are far from their intended values, even for sample
sizes on the orders of thousands. The situation improves when one applies changepoint tests to the one-step-ahead prediction
residuals of an ARMA model fitted to the data. With residual tests, it is shown that an adjusted CUSUM test is best at detecting mean
shifts occurring near the data boundaries, while CUSUM tests are slightly more powerful when the changepoint occurs near the
centre of the record. An undesirable feature of the proposed adjusted CUSUM test is that one must crop endpoint data. Phrased
another way, it is difficult to detect changepoints occurring near the data boundaries. To avoid this, one could perform the test
without cropping and use a bootstrapping technique to determine statistical significance.

APPENDIX

PROOF OF LEMMA 1. Let �t ¼ Xt � l, where f�tg satisfies eqn (8) and set �̂t ¼ Xt � l̂. An application of eqn (11) gives

ð1þ ĥ1 þ � � � þ ĥqÞ
Xk

t¼1

Ẑt � ð1� /̂1 � � � � � /̂pÞ
Xk

t¼1

�̂t

¼
Xq

‘¼1

Ẑk�‘þ1

Xq

j¼‘
ĥj:þ

Xp

‘¼1

�̂k�‘þ1

Xp

j¼‘
/̂j:

Calling the bottom line in the above equation Rk and applying the triangle inequality yields

jRkjOq2 max
1OiOq

jĥij max
1OtOn

jẐtj þ p2 max
1OiOp

j/̂ij max
1OtOn

ĵ�tj:

As the fitted model is causal and invertible, Zt ¼
P1

j¼0 pjð/; hÞ�t�j , where pj ¼ pjð/; hÞ and p̂j ¼ pjð/̂; ĥÞ are absolutely summable in j.
Moreover, the definition of the prediction residual gives Ẑt ¼

Pt�1
j¼0 p̂j �̂t�j . Hence,

jẐtjO max
1OtOn

ĵ�tj
X1
j¼0

jp̂jj:

For any � > 0, there is some K > 0 and 0 < b < 1 so that jp̂j � pjjO �Kjbj�1 for all j P 0 whenever j/̂ � /j < � and
jĥ � hj < �. This follows from lemma 4.2.1 of Csörgo} and Horváth (1997) and yields, by the consistency of /̂ and ĥ, thatP1

j¼0 jp̂jj �!
P P1

j¼0 jpjj. Consequently,

max
1OkOn

jRkj ¼ Op max
1OtOn

ĵ�tj
� �

:

It remains to estimate maxt ĵ�tj. We note that

max
1OtOn

jXtj ¼ opðn1=mÞ ð24Þ

for some m P 2, which is justified below. Using eqn (24) and the weak consistency of l̂ for l, we see that maxt ĵ�tj ¼ opðn1=mÞ.
Combining these now gives

CUSUMZðkÞ
r̂

� CUSUMXðkÞ
ŝ2










O jRkj þ k

n jRnj
r̂
ffiffiffi
n
p
j1þ ĥ1 þ � � � þ ĥqj

¼ jAkjffiffiffi
n
p :

We note that max1OkOn|Ak| ¼ op(n1/m), which follows from eqn (24), the weak consistency of the second-order parameter estimates
and the fact that jRkj þ k

n jRnjO 2 max1OkOn jRkj.
To verify eqn (24), use strict stationarity of fXtg to obtain P(max(X1, . . . , Xn) > �n1/m) O nP(X1 > �n1/m) for each � > 0. Now

combine this with
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nPðX1 > �n1=mÞO nPðjX1jm > n�mÞOn

Z 1
n�m

dFmðyÞ

O n

Z 1
n�m

y

n�m
dFmðyÞO��m

Z 1
n�m

ydFmðyÞ

¼ ��mE½jX1jmI½jX1jm>n�m ��;

which tends to zero as n ! 1 for any fixed � > 0 by the assumption that E[|X1|m] < 1, to complete the proof. Here,
Fm(x) ¼ Pð|X1|mOxÞ. u

PROOF OF LEMMA 2. Set �̂t ¼ Xt � l̂, where l̂ is the conditional maximum-likelihood estimator (MLE) of l under H0, and
~�t ¼ Xt � l̂t for all t, where l̂t is the conditional MLE allowing for a mean shift at lag k defined in eqn (16). Then, let
ĉðjÞ ¼ n�1

Pn
t¼1 �̂t�j �̂t and ĉkðjÞ ¼ n�1

Pn
t¼1 ~�t�j~�t be estimators of c(j) under the null and alternative hypotheses allowing a mean

shift at lag k respectively. Set Ĉ ¼ fĉði � jÞgp�1
i;j¼0, ĉ ¼ fĉð1Þ; . . . ; ĉðpÞg0, Ĉk ¼ fĉkði � jÞgp�1

i;j¼0 and ĉk ¼ fĉkð1Þ; . . . ; ĉkðpÞg0.
Extensive calculations then yield

n r̂2 � r̂2
k

� �
¼
Xp

i¼0

p̂i

Xp

j¼0

p̂j

Xn

t¼1

�̂t�i �̂t�j � ~�t�i~�t�j

� �
þ ð/̂� /̂kÞ

0nĈkð/̂� /̂kÞ; ð25Þ

where we employ the usual notation for invertible time series by setting p̂0 ¼ 1 and p̂i ¼ �/̂i for all i ¼ 1, . . . , p and k ¼ 1, . . . , n.
Recall that /̂ and /̂k are null and alternative hypothesis MLEs, respectively, of /. Derivation of eqn (25) uses ĉk � Ĉk/̂k ¼ 0, which
follows from the normal equations for autoregressive processes.

We consider the first term on the right-hand side of eqn (25). Since �̂t�i �̂t�j � ~�t�i~�t�j is symmetric in i and j, we assume without
loss of generality that 0 O i O j O p. Then, some lengthy computations yield that

Xn

t¼1

ð�̂t�i �̂t�j � ~�t�i~�t�jÞ ¼
Xn

t¼1

ðl̂2 � l̂2
t Þ � ðl̂� l̂tÞXt � ðl̂� l̂tÞXt

� 	

þ ðl̂k � l̂Þ
X0

t¼1�i

Xt þ
X0

t¼1�j

Xt

 !

þ ðl̂� l̂�kÞ
Xn

t¼n�iþ1

Xt þ
Xn

t¼n�jþ1

Xt

 !

þ ðl̂�k � l̂kÞ jl̂�k þ il̂k þ
Xkþj�i

t¼kþ1

ðXt�ðj�iÞ � XtÞ
" #

; ð26Þ

where the number of terms in each summation other than the first depends only on i and j (some of the summations may equal 0 if
i ¼ 0 and/or i ¼ j). Further computations show

Xn

t¼1

ðl̂2 � l̂2
t Þ � ðl̂� l̂tÞXt � ðl̂� l̂tÞXt

� 	
¼ �n�X2 þ k�X2

k þ ðn� kÞð�X�k Þ
2 þ nðl̂� �XÞ2

� kðl̂k � �XkÞ2 � ðn� kÞðl̂�k � �X�k Þ
2: ð27Þ

Next, we examine the rate of convergence of the conditional MLEs to their sample mean counterparts. To this end, taking partial
derivatives of the null log likelihood with respect to l and setting equal to zero yields

ð1� /1 � � � � � /pÞ
Xn

t¼1

Xt � nl

 !
¼
Xp

j¼1

/j

X0

t¼1�j

Xt �
Xn

t¼n�jþ1

Xt

 !
;

which in turn gives the bound

j�X � l̂jO 1

n

maxfj/̂1j; . . . ; j/̂pjg
1� /̂1 � . . .� /̂p

Xp�1

j¼0

ðp� jÞjX�j � Xn�jj ¼ Opðn�1Þ: ð28Þ

Similarly, setting the derivatives of the log likelihood under the alternative with resepect to lk and l�k equal to zero and arguing as
above yields

max
‘Ok

nOh

�Xk � l̂kj j ¼ opðn1=m�1Þ and max
‘Ok

nOh

�X�k � l̂�k


 

 ¼ opðn1=m�1Þ; ð29Þ

where we have used eqn (24). Calculations provide

n�1=2 � CUSUMXðkÞ ¼
k

n
ð�Xk � �XÞ ¼ k

n
1� k

n

� �
ð�Xk � �X�k Þ ¼ 1� k

n

� �
ð�X � �X�k Þ:
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Applying eqn (28), (29) and Donsker’s theorem to the above, we see

max
‘Ok

nOh
l̂� l̂kj j ¼ Opðn�1=2Þ and max

‘Ok
nOh

l̂� l̂�k


 

 ¼ Opðn�1=2Þ: ð30Þ

Donsker’s theorem and eqn (29) also give

max
‘Ok

nOh
jl̂k � lj ¼ Opðn�1=2Þ and max

‘Ok
nOh
jl̂�k � lj ¼ Opðn�1=2Þ: ð31Þ

Finally, eqns (26), (27) and additional calculations provide

Xn

t¼1

ð�̂t�i �̂t�j � ~�t�i~�t�jÞ ¼ k�X2
k þ ðn� kÞð�X�k Þ

2 � n�X2 þ Bk ¼ kXðkÞ þ Bk; ð32Þ

where max‘Ok
nOh jBkj ¼ opðn1=m� 1=2Þ for some m P 2, which follows from eqns (24), (28), (29), (30) and (31).

It remains to show that the second term on the right-hand side of eqn (25) is asymptotically negligible. Since
max‘Ok

nOh kXðkÞ ¼ Opð1Þ, eqn (32) yields

max
‘Ok

nOh
ĉðjÞ � ĉkðjÞj j ¼ Opðn�1Þ ð33Þ

for all 0 O j O p. Recognizing the equivalence of moment and MLEs in AR settings, this gives, when /̂ ¼ Ĉ�1ĉ is also applied, the
bound

max
‘Ok

nOh
/̂j � /̂j;k




 


 ¼ Opðn�1Þ ð34Þ

for the MLEs of the autoregressive parameters, j ¼ 0, 1, . . . , p. From the ergodic theorem (Theorem 24.1, Billingsley, 1995) along
with eqn (33) we see

max
‘Ok

nOh
ĉkðjÞ ¼ Opð1Þ ð35Þ

for j ¼ 0, . . . , p � 1. Combining eqns (32), (34) and (35), we can simplify eqn (25) to

nðr̂2 � r̂2
kÞ ¼ ðp̂0 þ p̂1 þ . . .þ p̂pÞ2kXðkÞ þ Ck ¼ ð1� /̂1 � . . .� /̂pÞ2kXðkÞ þ Ck;

where max‘Ok
nOh jCkj ¼ opðn1=m� 1=2Þ, which proves Lemma 2. u
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