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Changepoint detection in daily
precipitation data†

Colin Gallaghera, Robert Lunda* and Michael Robbinsb

This paper introduces a method to identify an undocumented changepoint time in a daily precipitation series. A two-state
Markov chain is used to induce dependence in the precipitation amounts; our dynamics allow for seasonality in the daily
observations, a structure inherent to many nonequatorial region series. No current precipitation changepoint techniques
exist that consider day-to-day dependencies, the zero support set aspect (the fact that most measurements are zero), and
the periodic dynamics of the problem. The test statistic is constructed by applying cumulative sum methods to a strategi-
cally devised set of one-step-ahead prediction residuals. The methods are robust to distributional assumptions, requiring
only seasonal mean and transition probability estimators. Simulations are presented that demonstrate the efficacy of the
methods; application to two daily precipitation series is made. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mean shift changepoints are found in many climatic series and can confound or degrade statistical inferences. United States temperature

stations average about six gauge and location changes per century (Mitchell, 1953). For accurate trend assessments, it is imperative that all

nonnatural discontinuities in the series be removed (or otherwise accounted for) before trends are computed. These discontinuities include

effects induced by changes in station gauges or location. Climatologists are by now well aware of the changepoint issue (see Buishand,

1982; Vincent, 1998; Peterson et al., 1998; Ducré-Robitaille et al., 2003; Degaetano, 2006; Reeves et al., 2007). An extreme example where

antipodal trend conclusions are drawn when changepoints are ignored/accounted for is discussed in Lu and Lund (2007). Precipitation is,

perhaps, more important than temperature for agricultural and recreational purposes. Although many authors have studied precipitation

changepoints (see Buishand, 1982, Alexandersson, 1986) by looking at annual amounts, a method that accounts for some of the important

features (autocorrelation and seasonality) in daily data has yet to be developed. In fact, the current state of the art for detecting daily precip-

itation changepoints (Wang et al., 2010) simply neglects all dry days and applies Box–Cox transformations to the wet day measurements to

induce Gaussianity (where standard normal homogeneity tests and their variants can be applied). No currently used precipitation changepoint

test accounts for the autocorrelation found in daily precipitation data. When dependence in positively correlated data is ignored, it is easy

to infer that too many changepoints exist. Lund et al. (2007) presents a comprehensive study of this issue. Although annually aggregating

a daily precipitation series helps remove autocorrelation and frequently produces stationary (nonperiodic) data, this procedure drastically

shortens the series length (and hence detection power). Moreover, one cannot infer a changepoint time to a resolution of less than a year.

To handle stochastic dependence and seasonality in the daily data, we employ a model used by Woolhiser and Pegram (1979) (see also

Gabriel and Neumann, 1962; Hann et al., 1976; Roldán and Woolhiser 1982; Rajagopalan et al., 1996). This model can be thought of as a

two-state Markov chain with periodic dynamics. The chain serves to induce dependence in the day-to-day precipitation amounts. Specifi-

cally, the chain has two states that we view as dry or wet. Conditional that a day is wet, the amount of precipitation that falls is modeled as a

positive random variable with a seasonally dependent mean. Elaborating, the rainfall amounts for a wet day occurring on 5 July (for example)

of any year are distributionally equivalent, but this distribution is not necessarily the same as that for 8 December wet days. Allowing for

such a seasonal cycle is important for stations with a definitive dry (or monsoon) season. Precipitation over much of the United States, in fact,

displays seasonal characteristics (see pages 66 and 67 of Chapman and Sherman, 1978). Whereas changepoint detection for autocorrelated

and periodic temperature series was considered in Lund et al. (2007), issues here are slightly more delicate because of the “zero support set

feature” (i.e, non-Gaussianity) of the precipitation amounts.

The test developed here is an at most one changepoint (AMOC) test. Authors have frequently adapted AMOC methods into multiple

changepoint segmenters with a simple segmentation algorithm, but better alternatives exist (Davis et al., 2006; Lu et al., 2010). Phrased

another way, our crux here lies with AMOC tests. Reference station aspects, which would likely require additional sophistication, are also

not considered here. A reference station for a daily precipitation series is a similar record from a geographically nearby station that can be
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Figure 1. Coldfoot, Alaska (top) and Provincetown, Massachusetts (bottom) precipitation data. The Coldfoot units are in inches, and the Provincetown units

are in tenths of millimeters

used to help illuminate any changes in the series under study. Even with these concessions, the reader will quickly gain appreciation for the

complexities that arise in our setting.

Figure 1 displays two daily precipitation series that are analyzed in Section 5. The series were recorded at Coldfoot, Alaska and

Provincetown, Massachusetts. Coldfoot, an aptly named Arctic hamlet, claims North America’s lowest (by one degree) observed temperature

of  82ı F. Although this record is not recognized because of gauge siting deficiencies, Coldfoot’s climate is very seasonal with little precip-

itation falling during the extremely cold winter months. Increasing precipitation is generally conjectured to accompany a warming Arctic.

Sixteen years of data from 1995–2010 are analyzed. The Provincetown series is also 16 years long and was recorded from 1953–1968.

Provincetown, which resides on the tip of Cape Cod, does not have a pronounced seasonal precipitation cycle. However, there is a meta-data

record for the Provincetown series. In particular, the station is known to have moved about three miles (from 42:083ı latitude and  70:216ı

longitude to 42:050ı degrees latitude and  70:183ı degrees longitude) on 1 May 1958. In Section 5, we will see if this changepoint induced

changes in the series. To obtain an exact period of 365 days, observations occurring on leap days (i.e., February 29) were deleted from

both series.

The rest of this paper proceeds as follows. The next section introduces our daily precipitation model. Section 3 then devises a cumulative

sum (CUSUM)-based statistic for testing whether or not a change occurs in the precipitation dynamics. The change can be either in the wet

day precipitation amounts or in the background wet/dry Markov chain. Section 4 contains a simulation study that demonstrates the efficacy

of the techniques. Section 5 details application of the methods to the Coldfoot and Provincetown series. The paper concludes with some

comments, including some avenues for future work.

2. MODEL

We begin by describing how dependence is modeled in the daily precipitations. The model is taken from Rajagopalan et al. (1996). Days

are divided into two types, wet and dry. A “dry” day has no recorded precipitation, and a “wet” day has a nonzero precipitation. Let fSt g
be a process that can only be zero or one for each t . The value St D 1 indicates a wet day and St D 0 a dry day. We posit that fSt g is a

time-homogeneous periodic Markov chain on the two states (dry and wet) with season � one-step-ahead transition probability matrix P.�/

defined by

P.�/D
"

˛.�/ 1 ˛.�/

1 ˇ.�/ ˇ.�/

#
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Here, � represents the season being considered, and our notation takes � 2 f1; : : : ; T g, where T D 365 is the period. Specifically, � D 1

corresponds to 1 January, and � D 365 corresponds to 31 December. The quantity ˛.�/ 2 .0; 1/ is the probability that a season � day

(call this today) is dry given that yesterday was dry. Analogously, ˇ.�/ 2 .0; 1/ is the probability that today, say a season � day, is wet given

yesterday was wet.

To impart seasonal features into the aforementioned dynamics, we assume that ˛.t/ and ˇ.t/ obey the first-order Fourier expansions

˛.t/D A˛ CB˛ cos

�
2�.t  �˛/

T

�
; ˇ.t/D Aˇ CBˇ cos

�
2�.t  �ˇ /

T

�
(2.1)

Higher-order Fourier or wavelet expansions could be pursued; however, day-to-day changes in precipitation are not climatologically abrupt,

and the simple first-order expansions earlier usually work well.

Precipitation amounts are modeled as a positive independent sequence. Specifically, when day t is rainy, the amount of precipitation is a

positive random variable Xt with mean �.t/; Xt and Xs are independent when t ¤ s and independent of fSt g. Hence, all dependence in the

model is induced by the two-state Markov chain. Two-state chains converge at a geometric rate to their stationary distribution; as such, our

model does not have any long-memory features. The variance Var.Xt / D �2.t/ may be periodic. Our methodology is designed to enable

flexibility in the modeling of wet day rainfall amounts; hence, discussion of specific models for �.t/ and �2.t/ will be given later. The

methods in the following do not require the marginal distribution of the wet day precipitation amounts to be specified—only the first two

moments are needed.

Let Yt be the observed precipitation on day t . The precipitation process fYt g obeys

Yt D St Xt (2.2)

where fSt g follows the aforementioned Markov chain structure. This structure will be used to derive a set of one-step-ahead prediction

residuals in the next section.

3. METHODS

Our methods will look for shifts in the first-order parameters of the precipitation process, which could stem from changes (changes here

refer to changes beyond the natural seasonal cycle) in wet day precipitation means �.�/ or changes in ˛.�/ or ˇ.�/. As a likelihood ratio

test requires specific distributional assumptions and would thereby be difficult to develop with seasonal dynamics and autocorrelation, a

changepoint test based on CUSUM techniques is devised.

3.1. CUSUM methods

Consider locating a mean shift in an otherwise homogeneous sequence f"t g. If a mean shift in truth occurred at day (time) k, then a statistic

comparing N"k D k 1
Pk

tD1 "t to N"�
k
D .n  k/ 1

Pn
tDkC1 "t should reveal differences. Here, n denotes the number of days on record.

The CUSUM statistic defined by

CUSUM".k/D 1p
n

0
@

kX

tD1

"t  
k

n

nX

tD1

"t

1
AD k

n

�
1 k

n

� �p
n
 
N"k  N"�k

��

is a scaled difference of these two sample means weighting for the number of observations before and after time k. The magnitude of the

maximum absolute discrepancy

M" D max
16k6n

jCUSUM".k/j

provides a mean shift changepoint test statistic, and argmaxk jCUSUM".k/j estimates the changepoint time.

An exact distribution of M" under a null hypothesis of no changepoint is usually intractable; however, asymptotic guidance is available.

For instance, under fairly general conditions (Csörgő and Horváth, 1997)

M"
D ! � sup

0<t<1
jB.t/j (3.1)

where � is a positive constant to be discussed in the following text, fB.t/g1tD0 denotes a Brownian bridge process, and
D ! indicate

convergence in distribution. If f"t g is a short-memory stationary process with lag h autocovariance 
.h/D Cov."t ; "tCh/, then

�2 D
1X

hD 1


.h/ (3.2)

(Berkes et al., 2009). If f"t g is an independent and identically distributed (IID) sequence, then �2 D Var."1/. Short memory here means thatP1
hD0 j
.h/j<1.

Environmetrics 2012; 23: 407–419 Copyright © 2012 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/environmetrics

4
0
9



Environmetrics C. GALLAGHER, R. LUND AND M. ROBBINS

A changepoint test based solely on (3.1) and (3.2) simply applies CUSUM techniques to the raw data fYt gwithout worry of periodicities or

zero support set issues. Such a test is investigated in Section 4. This said, periodic dynamics are important in our setup, and the convergence

stated in (3.1) is slow in the presence of substantial positive autocorrelation (Robbins et al., 2011). If instead the one-step-ahead prediction

residuals described later are CUSUMed, temporal dependence will be accounted for and the test statistic will be sensitive to changes in �.t/

and/or ˛.t/ and/or ˇ.t/.

3.2. One-step-ahead prediction residuals

Several authors have considered changepoint testing in time series frameworks and have suggested applying CUSUM methods to estimated

one-step-ahead prediction residuals (Bai, 1993, 1994; Yu, 2007; Lund et al., 2007; Robbins et al., 2011). Given a series fYt g with finite

second moments, the standardized one-step-ahead prediction residual at time t is

It D
Yt  QYtq

Var.Yt  QYt /

(3.3)

Here, QYt DE.Yt jYt 1; Yt 2; : : : ; Y1/ is the conditional expectation prediction of Yt from the history Yt 1; Yt 2; : : : ; Y1, and Var.Yt  QYt /

is its unconditional error variance. One does not need to include the normalizing denominator Var.Yt  QYt /
1=2 in many stationary process

settings; however, our dynamics are periodic, and the factor here serves to scale all prediction residuals to a common (unit-variance) basis.

For the aforementioned model, the best predictor of YiTC� given the past, by independence of fXt g and fSt g and the Markov property

of fSt g, is
QYiTC� DEŒXiTC� �EŒSiTC� jYiTC� 1�

D �.�/
n
1ŒYiTC� 1>0�ˇ.�/C 1ŒYiTC� 1D0�.1 ˛.�//

o
(3.4)

where the index i D 0; 1; 2; : : : denotes the year. Equation (3.4) holds when iT C � > 2. The startup condition is QY1 D �.1/P ŒS1 D 1�.

To obtain P ŒS1 D 1�, an initial distribution for S1 needs to be specified. For this, we assume that the chain starts in its periodic

stationary state (a periodic stationary state exists for a two-state chain whenever ˛.�/ and/or ˇ.�/ are not zero or one). Our nota-

tion will use E�.�/ D .�d .�/; �w .�//0 to denote the stationary season � dry/wet probabilities, that is, P ŒSiTC� D 0� D �d .�/ and

P ŒSiTC� D 1�D �w .�/ are constant for all i .

Identifying E�.�/ from the seasonal transition probabilities is not overly difficult. As the periodic stationary distribution will also arise in

the variance formulas in the following text, we cannot bypass this computation. Periodic stationarity implies that E�.�  1/P.�/D E�.�/ for

each � 2 f1; 2; : : : ; T g, which shows how to recursively compute E�.�/ for � > 1 from fP.�/gT�D1 once E�.0/ D E�.T / is known. To find

E�.0/, one simply solves the stationary equation E�.0/
�QT

�D1 P.�/
�
D E�.0/ subject to the restraint �d .0/C �w .0/D 1. To calculate E�.0/,

one may use

E�.0/0 D 1
0

0
@I  

TY

�D1

P.�/C J

1
A
 1

where 1 is a length-2 vector of 1 s, I is the 2 � 2 identity matrix, and J is a 2 � 2 matrix of 1 s. For more on stationary distributions of

periodic Markov chains, see Fralix et al. (2012) and the references therein.

Another computation is needed to identify Var. QYt  Yt /. The projection theorem gives

Var
 QYiTC�  YiTC�

�
DE

h
Y 2

iTC�

i
 E

h
QY 2
iTC�

i

and it is easy to see that E
h
Y 2

iTC�

i
D �w .�/

�
�2.�/C�.�/2

�
. Using (3.4) gives

QY 2
iTC� D �.�/2

n
1ŒYiTC� 1>0�ˇ.�/2 C 1ŒYiTC� 1D0�.1 ˛.�//2

o

Taking an expectation in the aforementioned equation now produces

Var.YiTC�  QYiTC�/D �w .�/
�
�2.�/C�.�/2

�

 �.�/2
h
�w .�  1/ˇ.�/2 C �d .�  1/.1 ˛.�//2

i
(3.5)

To test for a shift at an unknown time, we simply CUSUM the standardized one-step-ahead prediction residuals fIt g defined in (3.3). If the

model dynamics do not change, then fIt g is a sequence of martingale differences with unit variance. This is all that is needed for CUSUM

limit theory to hold (Billingsley, 1999)—independence is not needed. Our CUSUM statistic for the It s at time k is

CUSUM.k/D 1p
n

0
@

kX

tD1

It  
k

n

nX

tD1

It

1
A (3.6)
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and the previous work shows that

max
16k6n

jCUSUM.k/j D ! sup
06t61

jB.t/j (3.7)

There is, however, one complication. The parameters governing the model are not known but need to be estimated. Before quantifying the

limiting behavior of a test statistic on the basis of estimated parameter values, we describe model parameter estimation.

3.3. Parameter estimation

Consider estimating the parameters in (2.1) involving ˛.�/. It is convenient to reexpress (2.1) in the equivalent form

˛.t/D A˛ CC˛ cos

�
2�t

T

�
CD˛ sin

�
2�t

T

�

ˇ.t/D Aˇ CCˇ cos

�
2�t

T

�
CDˇ sin

�
2�t

T

�
(3.8)

One expansion is converted to the other via B2
˛ D C 2

˛ CD2
˛ and �˛ D T tan 1.D˛=C˛/=2� .

The harmonic coefficients for ˛.�/ in (2.1) are estimated as follows. First, obtain an “unsmoothed estimate” of ˛.�/ for a fixed season �

as the empirical ratio

Ǫ .�/D f#i W SiTC� 1 D 0\ SiTC� D 0g
f#i W SiTC� 1 D 0g (3.9)

(take the ratio as zero should the denominator be zero). Hence, Ǫ .�/ is simply the empirical proportion of times that a dry day in season

�  1 is followed by another dry day. Now, smooth these estimators with a harmonic fit, minimizing the weighted sum of squares

TX

�D1

N˛.�/ Œ Ǫ .�/ A˛  C˛ cos .2��=T / D˛ sin .2��=T /�2 (3.10)

in A˛ , C˛ , and D˛ to obtain null hypothesis estimators of these parameters. Here, the weight N˛.�/ is the denominator in (3.9). These

weights place more emphasis on seasons with larger counts. A similar tactic working with seasonal counts of wet days followed by wet days

will estimate ˇ.�/.

Estimation of �.t/ and �2.t/ depends on how the analyst wishes to model the wet day periodicities. For instance, if �.t/ is first-order

Fourier periodic and �2.t/ is constant in t , one can fit the linear model

Xt D A� CC� cos

�
2�t

T

�
CD� sin

�
2�t

T

�
C "t (3.11)

where f"t g is IID zero mean noise to the wet day precipitation amounts. Elaborating, we time-order our wet day precipitations as X1; : : : ; Xp ,

set P D f1 6 t 6 n W St D 1g, and find A�, C�, and D� that minimize

X

t2P

�
Xt  A�  C� cos .2�t=T / D� sin .2�t=T /

�2
(3.12)

It is not clear how one can model the error sequence f"t g in a pragmatic fashion while ensuring that each Xt is positive. Although this is

not necessarily troublesome for simple applications of our method, in many circumstances (including our simulation study in the following

text), it is easier to work with the logarithms of the precipitation amounts. Applying (3.11) and (3.12) to log.Xt / provides estimators of

�`.t/ WDEŒlog.Xt /�. Further, if Xt is log-normally distributed with parameters �`.t/ and �2
`
, then

�.t/D e�`.t/C�
2=2

` ; �2.t/D
�
e�2

`  1
�

e2�`.t/C�2
` (3.13)

Estimated values of �.t/ and �2.t/ are obtained by substituting estimators of �`.t/ and �2
`
into (3.13). Such estimators are

p
n-consistent

(this follows from
p

n-consistency and asymptotic normality of O�`.t/ and O�2
`
and a delta-method).

3.4. A Limit theorem

The time t estimated standardized one-step-ahead prediction residual is

OIt D
Yt  OYtq

cVar.Yt  QYt /
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where OYt and cVar.Yt  QYt / are versions of (3.4) and (3.5), respectively, calculated using estimated parameter values. Our estimated CUSUM

statistic at index k is

3CUSUM.k/D 1p
n

0
@

kX

tD1

OIt  
k

n

nX

tD1

OIt

1
A (3.14)

We make a technical comment. In this setting, unlike similar settings in Bai (1993), it does not hold that max16k6n

ˇ̌
ˇ
Pk

tD1 It  
Pk

tD1

OIt

ˇ̌
ˇD op.

p
n/. However, we will be able to show that the difference between the CUSUM expressions in (3.6) and (3.14) is asymptotically

negligible, as stated in the following lemma.

Lemma 3.1. Under H0, it holds that

max
16k6n

ˇ̌
ˇCUSUM.k/ 3CUSUM.k/

ˇ̌
ˇDOp.n 1=2/

where CUSUM.k/ and 3CUSUM.k/ are defined in (3.6) and (3.14).

Although the proof of the lemma is technical, an outline of its justification is given in the Appendix. The result motivates the use of the

changepoint statistic

M D max
16k6n

j3CUSUM.k/j (3.15)

The asymptotic behavior of M is stated formally in the following result.

Theorem 3.1. Suppose that M is as in (3.15) and that all parameter estimates are
p

n-consistent and that H0 holds. Then,

M
D ! sup

06t61
jB.t/j (3.16)

where fB.t/g1tD0 is a Brownian bridge.

Equation (3.16) is derived by combining (3.7) with the result of Lemma 3.1. Percentiles for the limiting distribution in (3.16) are given in

Robbins et al. (2011) among others.

4. SIMULATIONS

This section compares the performance of the residual-based CUSUM test of Theorem 3.1 to a simpler CUSUM procedure via simulation.

As a competitor to the residual test, the convergence in (3.1) is applied to the raw precipitation amounts, replete with all zeros. This requires

that periodic aspects of the problem be neglected. In the time-homogeneous case, fYt g is stationary with lag-h autocovariance

Cov.Yt ; YtCh/D �2�w

h
p

.h/
w;w  �w

i
C �2�w1ŒhD0�; h > 0

where �w denotes the wet day stationary probability and p
.h/
w;w D P ŒStCh D 1jSt D 1�. More detailed computations give �w D

.1  ˇ/=.2  ˛  ˇ/, �d D 1  �w , Cov.Yt ; YtCh/ D �2�d �w .˛ C ˇ  1/jhj for jhj > 1, and Var.Yt / D �2�w�d C �2�w . The

aforementioned computations use ˛.�/ � ˛, ˇ.�/ � ˇ, �.�/ � �, and �2.�/ � �2. The quantity � WD .˛ C ˇ  1/ is an important

parameter since it controls the autocovariance decay rate.

From (3.1) and (3.2), it holds that

max
16k6n

ˇ̌
ˇ̌
ˇ̌

1

�
p

n

0
@

kX

tD1

Yt  
k

n

nX

tD1

Yt

1
A
ˇ̌
ˇ̌
ˇ̌

D ! sup
0<t<1

jB.t/j (4.1)

where

�2 D
1X

hD 1

Cov.Yt ; YtCh/D �2�w�d

�
˛C ˇ

2 ˛  ˇ

�
C �w�2 (4.2)

The convergence in (4.1) holds when �2 is calculated using
p

n-consistent parameter estimators. In the following, we will compare the

performance of the residual-based test to a test that uses the left-hand side of (4.1) as a test statistic. Such a test statistic has the same

asymptotic distribution as M .

4
1
2

wileyonlinelibrary.com/journal/environmetrics Copyright © 2012 John Wiley & Sons, Ltd. Environmetrics 2012; 23: 407–419



CHANGEPOINT DETECTION IN PRECIPITATION DATA Environmetrics

4.1. Type I errors

This section uses simulation to study the type I error ˛ of the various tests. The tests we consider are listed as follows.

� bCU .Ind/—The CUSUM test of (4.1) assuming IID data, that is, �2 D Var.Y1/. Further, Var.Y1/ is estimated with the sample variance.

� CU .Y /—The CUSUM test of (4.1), where �2 as defined in (4.2) is used and assumed known (exact parameters are used).

� bCU .Y /—The CUSUM test of (4.1), where �2 as defined in (4.2) is used, assumed unknown, and estimated under the null hypothesis of

no changepoints.

� CU .R/—The residual CUSUM test of Theorem 3.1, where all parameters are known.

� bCU .R/—The residual CUSUM test of Theorem 3.1, where parameters are unknown and are estimated under the null hypothesis.

We begin by considering the effects of autocorrelation on the type I error rates. To isolate on correlation aspects, no periodic effects are

included in these simulations. Figure 2 shows simulated type I errors for various values of � 2 . 1; 1/. Each type I error was aggregated

from 50,000 independently generated series. The chain parameters are taken as ˛ D ˇ D .�C 1/=2, and rainfall amounts were generated

from a log-normal distribution with parameters �` D 1 and �2
`
D 0:5. The number of years of data was N D 10, that is, nD 365N .

The results show that the residual test performs well for all magnitudes of correlation. Tests that fail to incorporate autocorrelation have

little utility in settings where � is close to unity. Because of this, we will not consider the bCU (Ind) test further. CUSUMing the raw data

(while incorporating correlation aspects) appears to be a viable option in this case.

To investigate convergence issues, we vary N while using the same setup used to generate Figure 2. Here, �D 0:8 is fixed, and no periodic

dynamics are used in the simulations. Empirically aggregated type I errors are reported in Figure 3. The residual test does not perform partic-

ularly well when N D 1 or N D 2. This is attributed to estimation of the seasonal parameter structure (seasonal parameters were estimated

even though the dynamics chosen were not seasonal). In fact, the type I errors for the residual test using known parameters (CU .R/) are

close to the nominal 5% level for all N .

Next, the performance of the tests in the presence of periodic dynamics will be explored. For chain transition probabilities, we take

A˛ D 0:7, Aˇ D 0:5, and D˛ DDˇ D 0 in (3.8). For the C parameters in (3.8), we vary p 2 Œ0; 1� and take C˛ D 0:25p and Cˇ D 0:45p.
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A larger p entails more seasonality in the model dynamics. The precipitation amounts were generated from a log-normal distribution, where

�`.�/ and �2.�/ are defined for a log-scale version of (3.11) with A� D  0:5, C� D p, D� D 0, and �2
`
� 0:5. Figure 4 displays type

I errors for various values of p. Again, seasonality increases with increasing p. Some of the simulated type I errors for the CU.Y / and
bCU .Y / tests are significantly bigger or smaller than 5%; however, the residual test’s type I error stays close to the targeted 5% value. The

inference is that one should not apply nonperiodic tests to series with periodic dynamics.

4.2. Detection power

This section studies the detection power of the tests. Our intent is to demonstrate that the residual test can effectively detect a single change-

point. In the simulations later, a changepoint mean shift is added to the data at time (expressed as a portion of the data) c=n D 0:726. For
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realism, the changepoint time, mean shift, and other parameters are set to those estimated for the Coldfoot series in the next section. The

specific parameter values are listed in Table 2. We vary N to verify that detection powers increase to unity as the sample size increases.

Estimated powers are shown in Figure 5. As exact parameters are not known in this situation, results for CU.Y / cannot be presented.

Figure 5 suggests that the residual test detects the changepoint effectively when N > 5. Although the bCU .Y / test has larger power when

N D 1 and N D 2, it also erroneously accepts changepoints too many times (as was shown in Figure 4). To assess whether the residual

test is less powerful than the bCU .Y / test, we put both tests on the same footing. Elaborating, the simulations in Figure 5 are repeated after

removing all periodic dynamics: C˛ D D˛ D 0, Cˇ D Dˇ D 0 and C� D D� D 0. Figure 6 displays these powers. The other parameters

for the residual tests are estimated in a time-homogeneous fashion. The residual test does not appear to suffer any loss of power; in fact, for

larger values of N , it appears that the residual test is more powerful than tests that directly CUSUM the data.

5. APPLICATIONS

This section examines the Coldfoot, Alaska and Provincetown, Massachusetts precipitation series of the introduction. We first look at the

Coldfoot series.

Figure 7. Plots demonstrating the periodic features (or lack thereof) of the Coldfoot (left column) and Provincetown (right column) estimated parameters.

Plotted sequences include Markov chain dry/wet (top row) and wet/wet (middle row) transition probabilities and wet day mean rainfall (bottom row)
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The periodic structure of the Coldfoot data is graphically portrayed in Figure 7. The top left plot shows the empirical “unsmoothed”

values of 1  ˛.�/ for � 2 f1; : : : ; T g, as found using (3.9), along with the smoothed values found by minimizing (3.10). The middle left

plot contains corresponding results for ˇ.�/. The empirical version of ˇ.�/ portrays more dispersion than the corresponding version of ˛.�/

because there are fewer wet days (than dry days) on record. The bottom left plot in Figure 7 shows an unsmoothed version of �.�/ against

the first-order Fourier mean fitted assuming the observations follow a log-normal distribution. The bottom plot also displays all positive pre-

cipitation amounts. Note that all precipitation amounts have been rounded to the nearest 0.1 in. The other two plots show estimated versions

of 1 ˛.�/ and ˇ.�/ (that is, the probability of rainfall on day � after a dry day and wet day, respectively). As the structures in all plots are

quite seasonal, it would be inappropriate to proceed with time-homogeneous dynamics.

The changepoint tests in Section 4 were applied to the Coldfoot data. The results are listed in Table 1. All tests locate a changepoint at

time c D 3974 or c D 3973 (fall of 2006) that is significant at the 5% level. It is not clear what caused this changepoint as no meta-data is

available. However, the transition has been to dryer conditions (see Figure 8). To assess the impact of outliers, all precipitation measurements

greater than 0.8 in were truncated to 0.8 in, and the analysis was rerun. The p-value for the bCU .R/ tests increases from 0.0132 to 0.0302.

Table 2 shows the estimated parameter values before and after the flagged changepoint time and assuming a changepoint-free scenario

(i.e., H0 holds). The changepoint alters the values of C˛ , Aˇ , Dˇ , C�, and D�. Figure 8 plots observed precipitation amounts replete with

all zeros against the fitted mean structure (unconditional) of the data. Although the changes in the mean at the changepoint time are not

Table 1. Results of changepoint tests for the Coldfoot and Provincetown series

Coldfoot Provincetown

bCU .Y / bCU .R/ bCU .Y / bCU .R/

Stat 1.4940 1.5840 0.3865 0.4403

Oc 3974 3973 1201 3729

p-value 0.0230 0.0132 > 0:5 > 0:5

Coldfoot: Observed Rainfall with Periodic Fits
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Table 2. Estimated parameters for the Coldfoot and Provincetown series. The Coldfoot figures estimate the breakpoint at Oc D 3973

Coldfoot

A˛ C˛ D˛ Aˇ Cˇ Dˇ A� C� D� �2
`

Under H0 0.8314 0.0377 0.0429 0.04046  0.0781  0.0397  1.8415  0.1737  0.0554 0.3936

Before Oc 0.8338 0.0491 0.0439 0.4308  0.0696  0.0617  1.8084  0.1568  0.0742 0.4243

After Oc 0.8238 0.0065 0.0407 0.3314  0.0902 0.0265  1.9306  0.2082  0.0003 0.2943

Provincetown

A˛ C˛ D˛ Aˇ Cˇ Dˇ A� C� D� �2
`

Under H0 0.7423  0.0160  0.0232 0.4368 0.00886 0.0113 3.5779 0.2232  0.01748 1.9980

particularly large, it is detectable because of the large number of days on record. The changepoint has reduced the overall mean of the series;

in addition, there appears to be a decrease in the amplitude of the harmonic component of the mean.

Next, the methods were applied to the Provincetown series. The measurements in this series are recorded to tenths of a millimeter. Table 1

shows that the 1 May 1958 station move does not induce a changepoint. In fact, p-values for all tests exceed 0.5. Perhaps, this is not

surprising given the homogeneity of the terrain in Provincetown. The estimated model parameters in Table 2 indicate that the seasonality in

the wet/dry and wet/wet one-step-ahead transition probabilities is not as pronounced as that for the Coldfoot series; this point is graphically

illustrated in Figure 7. Figure 8 shows the unconditional mean of the model against the data.

Finally, a QQ plot (not shown) of the wet day precipitation amounts was made to assess log-normality of the Provincetown data (rounding

issues make such an assessment difficult for the Coldfoot data). Formally, log-normality is rejected; however, as noted earlier, distributional

assumptions are not needed as the methods only employ the first two seasonal moments.

6. COMMENTS

CUSUM methods can be adapted to handle changepoint detection issues in daily precipitation series. Although CUSUMing the raw data

replete with zeroes is not a radically inferior approach, one must account for autocorrelations in the data to obtain reliable inferences.

Also, it is not advisable to apply nonperiodic techniques to periodic data.

Modifications of our methods merit exploration. For example, the statistic

M� D max
`6

k
n 6h

3CUSUM2.k/

k
n

�
1 k

n

� (6.1)

is often more powerful than M but requires that one “crops” the data boundaries to an interval Œ`; h� � .0; 1/. Specifically, one must take `

small and positive and h close to (but less than) unity. This statistic has close connections to likelihood ratios and has higher power than M

when the changepoint is not near the center of the data record. Robbins et al. (2011) discussed these issues in detail. The limiting distribution

of M� under the null hypothesis of no changepoints is known to be

M� D ! sup
`6t6h

B2.t/

t.1 t /

where fB.t/g1tD0 is again a Brownian bridge process. Null hypothesis percentiles are easily obtained; however, one must select ` and h.

Selection of these parameters is usually not crucial, and we have successfully used `D 0:01 and hD 0:99 in other applications.

A short simulation was conducted to compare the performances of M and M�. We use the setup in Figure 5 with the following modifica-

tions: to increase the magnitude of the change, we use A� D  1:508 prior to the changepoint, and we impose a more “recent” changepoint

— c=nD 0:925, specifically. For N D 10 with `D 0:05 and hD 0:95, the power increases from 0.23658 to 0.79356.

We make one final comment. It is not clear how to handle reference station aspects. One possible method would incorporate reference

station aspects via a linear regression covariate term in the one-step-ahead predictions in (3.4). Beaulieu et al. (2011) have recently explored

similar tactics with promising results.
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APPENDIX

Proof of Lemma 3.1. Let Ǫ .t/, Ǒ.t/, and O�.t/ represent the estimated versions of ˛.t/, ˇ.t/, and �.t/, respectively. Recall that ˛.t/ D
˛.�/, ˇ.t/ D ˇ.�/, and �.t/ D �.�/ whenever t D iT C � for � 2 f1; : : : ; T g—the same will hold for the estimators and the stationary

distributions, f�d .t/; �w .t/gntD1. Set �t D Var.Yt  QYt /
 1=2 and use O�t to represent the version of �t calculated using the estimated

parameter values. Define QSt and OSt so that QYt D �t QSt and OYt D O�t OSt . The
p

n-consistency of the parameter estimators gives

max
16�6T

jjf O�.�/; Ǫ .�/; Ǒ.�/; O��g0  f�.�/; ˛.�/; ˇ.�/; ��g0jj DOp

�
n 1=2

�
(A.1)

for the Euclidean norm jj � jj.
Let �t D Yt  QYt be the true prediction residuals and let O�t D Yt  OYt be the estimated prediction residuals. Additionally, let Rk represent

the difference between the true and estimated partial sum sequences at time k. Then,

Rk D
kX

tD1

.�t �t  O�t O�t /D
kX

tD1

�t Œ QSt �.t/ OSt O�.t/�C
kX

tD1

O�t .�t  O�t /

Using (3.4) and simplifying provide

Rk D
kX

tD1

�t O�.t/ Œ˛.t/ Ǫ .t/� .St 1  �w .t  1//C
kX

tD1

�t O�.t/Œˇ.t/ Ǒ.t/�.St 1  �w .t  1//

C
kX

tD1

�t Œ�.t/ O�.t/� . QSt  �w .t//C
kX

tD1

.�t  O�t /O�t C
kX

tD1

Bt (A.2)
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where

Bt D �t �.t/Œ Ǫ .t/ ˛.t/��d .t  1/C �t �.t/Œˇ.t/ Ǒ.t/��w .t  1/C �t Œ�.t/ O�.t/��w .t/

Define Ak DRk  
Pk

tD1 Bt . To show that max16k6n jAk j DOp.1/, we need to show that the first four sums in (A.2) are Op.1/. For the

first term, it is sufficient to consider ks that are whole multiples of T . For k D rT ,

kX

tD1

�t O�.t/Œ˛.t/ Ǫ .t/�.St 1  �w .t  1//D
TX

�D1

�� O�.�/Œ˛.�/ Ǫ .�/�

rX

iD1

ŒSiTC� 1  �w .iT C �  1/�

For each fixed �,

max
16r6N

ˇ̌
ˇ̌
ˇ

rX

iD1

ŒSiTC� 1  �w .iT C �  1/�

ˇ̌
ˇ̌
ˇDOp.

p
n/

and by (A.1), j�� O�.�/Œ˛.�/ Ǫ .�/�j DOp.n 1=2/. Thus, the first term is Op.1/. The second and third summations are handled similarly.

The arguments for the fourth term are essentially the same, except one must deal with the fact that �t is being estimated. More detailed

work using the consistency of the estimators shows that

max
16k6n

ˇ̌
ˇ̌
ˇ̌

kX

tD1

O�t

ˇ̌
ˇ̌
ˇ̌DOp.

p
n/

and the fourth term is Op.1/ as well. Note that the term
Pk

tD1 Bt is not Op.1/. In fact, max16k6n jRk j DOp.
p

n/.

Next, consider the difference between the true and estimated CUSUM statistics:

p
n
�
CUSUM.k/ 3CUSUM.k/

�
D

kX

tD1

Bt  
k

n

nX

tD1

Bt CAk  
k

n
An (A.3)

where CUSUM.k/ and 3CUSUM.k/ are defined in (3.6) and (3.14). We note that the Bt are periodic in that B� D BiTC� for � D 1; : : : ; T .

Letting NB DPT
tD1 Bt , invoking periodicity, and using

PT
�D1.B�  NB/D 0 give

ˇ̌
ˇ̌
ˇ̌

kX

tD1

Bt  
k

n

nX

tD1

Bt

ˇ̌
ˇ̌
ˇ̌D

ˇ̌
ˇ̌
ˇ̌

kX

tD1

.Bt  NB/ k

n

nX

tD1

.Bt  NB/

ˇ̌
ˇ̌
ˇ̌

6

ˇ̌
ˇ̌
ˇ̌

kX

tD1

.Bt  NB/

ˇ̌
ˇ̌
ˇ̌C

ˇ̌
ˇ̌
ˇ

nX

tD1

.Bt  NB/

ˇ̌
ˇ̌
ˇ

6 2T max
16t6T

jBt  NBj

6 4T max
16t6T

jBt j DOp.n 1=2/ (A.4)

Using (A.3) followed by max16k6n jAk j DOp.1/ and (A.4) proves Lemma 3.1.
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