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a b s t r a c t

Recent studies of subgrid-scale (SGS) mixing and turbulence-chemistry interaction have shown that turbu-

lent flames contain different structures. In flamelet structures diffusion of reactive scalars and chemical re-

action are tightly coupled. Most mixing models used in probability density and filtered density methods,

however, are based on non-reactive scalars. To investigate the effects of the coupling on the diffusion we de-

compose a reactive scalar into a steady flamelet part and perturbations from it. The diffusion of the former can

be obtained from a suitably chosen flamelet solution while the latter is unclosed. The conditionally filtered

diffusion and dissipation of the reactive scalar perturbations are analyzed using high-resolution line images

obtained in turbulent partially premixed (Sandia) flames. For SGS scalar containing flamelets, the perturba-

tion diffusion has characteristics similar to that of a non-reactive scalar, in contrast with the flamelet part.

The functional form of the conditionally filtered diffusion is well described by the Interaction by Exchange

with the Mean (IEM) model. Our perturbation analysis of the flamelet equation shows that for perturbations

having length scales smaller than the reaction zone width, the reactive scalar diffusion is largely controlled

by the mixture fraction field, thus having the characteristics of non-reactive scalar mixing. For perturbations

with length scales larger than the reaction width, the conditionally filtered diffusion has the same form as

non-reactive scalar mixing, with the mixing time scale determined by the flamelet. The IEM model predic-

tions based on this mixing time scale are in good agreement with the experimental results for a range of

SGS conditions, suggesting that the perturbations are consistent with unsteady flamelets for the conditions

studied. Thus, mixing models based on non-reactive scalars can potentially model the SGS mixing accurately.

The results in the present study can be useful for developing a unified mixing model that can predict all

combustion regimes accurately.

© 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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. Introduction

Turbulent flames contain a wide range of length scales as well

s structures, which presents a great modeling challenge. Two im-

ortant and distinct categories of turbulent combustion models are

robability density function (PDF) like and flamelet-like [1]. Mod-

ls in each category are advantageous in predicting different flame

tructures. Flamelet models are more accurate for predicting flamelet

ombustion while PDF models in principle can model all flame struc-

ures. Current mixing models used in PDF models, however, generally

re based on turbulence-controlled mixing, and therefore may be

ore accurate for non-reactive scalars and distributed reaction

ones, and are expected to be less accurate for flamelets, because

ixing (diffusion) of reactive scalars in them is enhanced by reaction.
∗ Corresponding author. Tel.: +01 864 6567225; Fax: +864 6564435.

E-mail address: ctong@clemson.edu (C. Tong).

t

m

a

d

ttp://dx.doi.org/10.1016/j.combustflame.2015.07.048

010-2180/© 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Several approaches have been proposed to improve predictions

f flamelet combustion by PDF models. Haworth et al. [2] proposed

n approach for partially premixed combustion employing the PDF

ethod for a reduced set of variables (e.g. mixture fraction) com-

ined with a flamelet library. Pope [3] proposed a hybrid approach

o explicitly include the flamelet structure into the PDF formalism,

ombining the chemical source term and the mixing term. The

ombined term is a unique function of the reaction progress variable

n a premixed laminar flamelet. In this approach the tight coupling

etween mixing and reaction in flamelets is accounted for using a

amelet library and no longer needs modeling.

Turbulent flames, especially at high Reynolds numbers, however,

an contain a range of structures, including flamelets and distributed

eaction zones. Even when flamelets are the dominant flame struc-

ure, there can be significant deviations from them, which mixing

odels need to account for. In the present study we investigate re-

ctive scalar mixing in turbulent partially premixed flames to un-

erstand the extent of coupling between mixing and reaction when

http://dx.doi.org/10.1016/j.combustflame.2015.07.048
http://www.ScienceDirect.com
http://www.elsevier.com/locate/combustflame
http://crossmark.crossref.org/dialog/?doi=10.1016/j.combustflame.2015.07.048&domain=pdf
mailto:ctong@clemson.edu
http://dx.doi.org/10.1016/j.combustflame.2015.07.048
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perturbations from flamelets exist, and how mixing may be mod-

eled more accurately. We study perturbations from flamelets burning

in non-premixed mode. While under certain conditions premixed-

mode burning can occur in partially premixed flames, the fuel stream

composition of the Sandia flames supports only flamelets in non-

premixed mode.

Since the diffusion in flamelets is strongly coupled to reaction, the

degree of coupling of the perturbation diffusion to the reaction term

is of interest. We decompose a reactive scalar, say temperature T,

into a steady flamelet part, T f (Z, χ f
s ), and perturbations from it, T∗,

where Z, χ f
s , and Tf are mixture fraction, the stoichiometric mixture

fraction dissipation rate, and a steady flamelet solution, respectively.

Following Bilger [4] and Peters [5] the transport equation of T can be

written as

ρ
∂T ∗

∂t
+ ρ

∂T f

∂Z

∂Z

∂t
+ ρuk

∂T ∗

∂xk

+ ρuk

∂Z

∂xk

∂T f

∂Z

= ∂

∂xk

(
ρD

∂T ∗

∂xk

)
+ ∂

∂xk

(
ρD

∂T f

∂xk

)
+ wT

= ∂

∂xk

(
ρD

∂T ∗

∂xk

)
+ ∂

∂xk

(
ρD

∂Z

∂xk

)
∂T f

∂Z
+ ρ

χ

2

∂2T f

∂Z2
+ wT , (1)

where D, uk, and wT are diffusivity, velocity component, and chemical

source term, respectively. The third term on the second line of Eq.

(1) represents the diffusion of T induced by reaction, reflecting

the coupling between mixing and reaction. For a suitably defined

diffusivity, the terms containing ∂T f

∂Z
sum to zero, resulting in the

transport equation for T∗

ρ
∂T ∗

∂t
+ ρuk

∂T ∗

∂xk

= ∂

∂xk

(
ρD

∂T ∗

∂xk

)
+ ρ

χ

2

∂2T f

∂Z2
+ wT . (2)

The second term on the RHS can also be interpreted as the produc-

tion (or generation) of T∗ due to mixing. When the perturbations are

not very large (e.g., with T above local extinction values), this term

and wT are the dominant terms, balancing each other exactly when

T ∗ = 0, i.e., in a steady flamelet. Thus, the diffusion of T∗ depends

on the deviations of χ from the flamelet values. It is therefore likely

that some temperature perturbations may not have the structure

of the flamelets. If it is possible to model the diffusion of T∗ using

mixing models based on non-reactive scalars, an indirect model for

the diffusion of T can be obtained from the first three terms on the

RHS of Eq. (1) .

In the context of the PDF methods, the mixing process

that evolves the mass density function (MDF), FZT, of Z and T,

can be studied using the unclosed mixing terms in the MDF

transport equation [6], the conditional mixture fraction diffu-

sion and temperature diffusion, 〈 1
ρ

∂
∂xi

(ρD ∂Z
∂xi

)|Z = Ẑ, T = T̂〉,
〈 1
ρ

∂
∂xi

(ρD ∂T
∂xi

)|Z = Ẑ, T = T̂〉, or alternatively, the conditional mixture

fraction dissipation, temperature dissipation, and the cross dissi-

pation, 〈χ |Z = Ẑ, T = T̂〉 ≡ 〈2D ∂Z
∂xi

∂Z
∂xi

|Z = Ẑ, T = T̂〉, 〈χT |Z = Ẑ, T =
T̂〉 ≡ 〈2D ∂T

∂xi

∂T
∂xi

|Z = Ẑ, T = T̂〉, 〈χZT |Z = Ẑ, T = T̂〉 ≡ 〈2D ∂Z
∂xi

∂T
∂xi

|Z =
Ẑ, T = T̂〉, respectively, where Ẑ and T̂ are the sample-space variables

for Z and T, respectively, and are omitted hereafter for convenience.

The angle brackets denote ensemble averages. To investigate the

extent of the coupling between mixing and reaction, the conditional

diffusion of the reactive scalar (e.g., temperature) can be decomposed

into two terms:〈
1

ρ

∂

∂xi

(
ρD

∂T

∂xi

)∣∣∣∣Z, T

〉
=

〈
1

ρ

∂

∂xi

(
ρD

∂T f

∂xi

)∣∣∣∣Z, T

〉
+

〈
1

ρ

∂

∂xi

(
ρD

∂T ∗

∂xi

)∣∣∣∣Z, T

〉
. (3)
he conditional dissipation rate can be decomposed into three

erms:

T ≡
〈

2D
∂T

∂xi

∂T

∂xi

∣∣∣∣Z, T

〉
=

〈
2D

∂T f

∂xi

∂T f

∂xi

∣∣∣∣Z, T

〉
+

〈
2D

∂T ∗

∂xi

∂T ∗

∂xi

∣∣∣∣Z, T

〉
+

〈
4D

∂T f

∂xi

∂T ∗

∂xi

∣∣∣∣Z, T

〉
. (4)

ith flamelet solutions, the first terms on the RHS of Eqs. (3) and (4)

ontain the scalar (mixture fraction) dissipation rate (see Eqs. (6) and

8)) and do not require modeling of reaction scalar mixing. The dis-

ipation and diffusion of the temperature perturbations still require

odeling.

To analyze the diffusion of reactive scalar perturbations from

teady flamelet solutions using experimental data, we apply the con-

itional sampling method we developed previously [7–9] to select

nstantaneous local flame regions that contain flamelets. Our pre-

ious studies of subgrid-scale (SGS) mixing in the context of large-

ddy simulation of turbulent combustion [7–12] have shown that lo-

al regions containing flamelets can be selected by conditioning on

he SGS scalar variance. The SGS scalar at a fixed location has qual-

tatively different filtered density function (FDF) shapes and struc-

ures depending on the instantaneous SGS scalar variance. When the

GS variance is large compared to its mean value, the SGS scalar has

imodal distributions, indicating that the fuel-lean and fuel-rich re-

ions of the SGS fields are highly segregated. There is a ramp-cliff

tructure separating the two regions, across which there is a large

calar value jump, resulting in a conditional SGS structure resembling

hat of a counter-flow non-premixed flame, which is a model for lam-

nar flamelets. Thus, we can use large values of the SGS variance to

elect SGS scalars containing flamelets. We use the Favre filtered mix-

ure fraction, 〈Z〉L = 〈ρZ〉�/〈ρ〉�, and the Favre SGS scalar variance,

Z′′2〉L ≡ 1

〈ρ〉�

∫
FZL(Z; x, t)(Z − 〈Z〉L)

2dZ = 〈ρZ2〉�/〈ρ〉�−〈Z〉2
L ,

(5)

s conditioning variables, where 〈·(x)〉� = ∫ ·(x′)G(x − x′)dx′, and

·(x)〉L = 1
〈ρ〉�

∫ ·(x′)ρ(x′, t)G(x − x′)dx′, denote conventional and

avre filtering with a top-hat filter, respectively. The Favre filtered

ixture fraction, 〈Z〉L, is set to the stoichiometric mixture fraction,

s( = 0.35), to maximize the probability of the SGS fields containing

eaction zones. The Favre SGS scalar variance is set to values larger

han seven times its mean value to sample the SGS fields containing

amelets.

In the present study we analyze the conditionally filtered diffu-

ion and dissipation of the reactive scalar perturbations from steady

amelet solutions using experimental data obtained in the Sandia

ames. Knowledge of the mixing properties of the perturbations is an

mportant step in understanding the coupling effects between molec-

lar transport and chemical reaction in turbulent flames. The results

re relevant for improving modeling approaches, including the lam-

nar flamelet and the filtered mass density (FMDF) approaches for

arge-eddy simulation of turbulent combustion.

. Experimental data and processing procedures

We use experimental data obtained in piloted turbulent partially

remixed methane jet flames with a 1:3 ratio of CH4 to air by volume

Sandia flames D and E, see [13,14] for details). The Reynolds number

f flame D and E are 22,400 and 33,600, respectively. The fuel jet di-

meter is 7.2 mm. The measurements employed combined line imag-

ng of Raman scattering, Rayleigh scattering, and laser-induced CO

uorescence. Simultaneous measurements of the major species (CO ,
2
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2, CO, N2, CH4, H2O, and H2), the mixture fraction (obtained from all

ajor species), the temperature, and the radial component of scalar

issipation rate were made. In each flame, approximately 6000 line

mages are available at each measurement location. The mixture frac-

ion is calculated using a variation of Bilger’s definition [15], which

as been modified by excluding the oxygen terms. The length of the

maging line is 6.0 mm with a pixel spacing of 0.2 mm.

Measurement noise can contribute to the perturbations obtained

sing experimental data. The typical uncertainty in the Sandia flame

ata is 1% for the temperature and the major species except the hy-

rogen mass fraction, YH2
, which has an uncertainty of 6%. The per-

urbations obtained in the present study are generally much larger.

ore important, the conditional scalar dissipation associated with

he perturbations is consistent with flame behaviors, with a higher

issipation rate corresponding to a lower temperature and vice versa.

hus, the experimental noise does not qualitatively alter the results

btained in the present study.

The steady flamelet library used in the analysis is for the counter-

ow configuration generated using the FlameMaster code [16]. The

hemistry mechanism is the GRI-Mech 3.0 for methane and air [17],

hich contains 325 reactions and 53 species. Barlow et al. [18,19]

ave shown that it predicts the Sandia flame B (a laminar flame) well.

n this work, effects of radiation on the major species and temper-

ture are neglected in the flamelet calculations as previous studies

ave shown that they are quite small in the Sandia flames [20,21].

Calculations of the conditionally filtered variables require spatial

ltering of scalar fields. In this work a simple top-hat filter is chosen

ecause it is (i) used in most if not all FDF/LES and (ii) it is positive,

hus ensuring that the filtered (fine-grained) density has the property

f a density. A spectral filter, however, cannot ensure positiveness

f the filtered density. The line images are used to perform one-

imensional filtering. Thus we obtain one component of the filtered

ariables. For the same filter width one-dimension filter results in

somewhat higher SGS variance than a three-dimensional one,

ffecting the conditionally filtered scalar diffusion and dissipation.

his increase, however, is not sufficiently large to significantly alter

he functional forms of the variables. Small-scale anisotropy can also

esult in differences between the scalar diffusion and dissipation

omponents obtained using one- and three-dimensional data. Given

he moderate level of anisotropy in free shear flows, however, we ex-

ect the one-dimensional results to be similar to three-dimensional

esults.

The filter width employed in this work is 3.0 mm, significantly

arger than the dissipative (Corrsin) scales (0.065–0.106 mm [22]),

o that the subgrid scales contain sufficient fluctuations. This filter

idth is not very small compared to the integral length scales. Never-

heless, given Reynolds number of the Sandia flames, they are prefer-

ble than smaller filter sizes, which will not be much larger than the

orrsin scale. Previous studies (e.g., Refs. [7,9]) have shown that when

he filter width is much larger than the dissipation scales the properly

caled conditional statistics are not sensitive to the filter width.

In the present study the dissipation and diffusion terms are calcu-

ated using 10th-order explicit central differencing schemes. While

he measurement noise affects the conditional mean diffusion ob-

ained from the experimental data, the effects are not amplified by

he finite difference scheme because the noises from different sam-

les are uncorrelated and their contributions to the diffusion are can-

eled when calculating the conditional mean. The noise only enters

hrough the conditioning variable, whose value is the sum of the

calar value and the noise. Thus the measured conditional diffusion

s the noise-free diffusion averaged over the PDF of the noise, and

herefore depends on the curvature of the conditional diffusion in

he scalar sample space (the second derivative). Because significant

urvature effects of the conditional mean only occur over large-scale

calar fluctuations, which is much larger than the noise variance, the

ffects of the noise are negligible.
Previous results [18] as well as our calculations have shown that

he Lewis number has strong effects on the laminar flame predic-

ion for the fuel used in the Sandia flames. Barlow et al. [18] have

hown that in Sandia flame B, which has a low Reynolds number and

s laminar, the measurements are in good agreement with laminar

ame calculations with detailed molecular transport (using the Tsuji

urner configuration). However, in flame E at x/d = 45, the data agree

ell with the unity Lewis number calculations, where x and d are

he distance downstream of the nozzle and the nozzle diameter, re-

pectively. In Fig. 1 we compare the conditionally filtered scalars (e.g.,

〈T|Z〉L|〈Z〉L, 〈Z′′2〉L〉) at x/d = 30 in flame E, where line images are

vailable for calculating diffusion and dissipation, with flamelet cal-

ulations using both unity and non-unity Lewis numbers. The mea-

ured conditional mean temperature and mass fractions are in good

greement with the unity Lewis number prediction, although not to

he same extent as at x/d = 45 for YH2
and YCO2

. These results suggest

hat the Lewis number effects in the Sandia flames are quite com-

lex, depending both the Reynolds number and the downstream lo-

ation. Due to the complexity of the differential diffusion effects in

urbulent flames, in the present study we use unity Lewis number

n the flamelet calculations and focus on the temperature and YH2O

t x/d = 30 in flame E, because differential diffusion effects for these

ariables are small at this location, as evidenced by the excellent ap-

roximations of their conditional means by the flamelet calculations.

n addition, at this location the flame is highly turbulent; therefore

he SGS mixing is more representative of high-Reynolds-number tur-

ulent flames. We also use the temperature data at x/d = 15 in flame

and x/d = 15 and 30 in flame D, which are only weakly affected

y differential diffusion. The issue of differential diffusion will be ad-

ressed in a future study.

. Results

In the present study, due to the limited amount of data available,

are must be taken to ensure sufficient convergence for the statis-

ics obtained. Thus, we choose only one SGS variance value much

arger than the mean SGS variance when sampling the SGS fields

ontaining flamelets so that a relatively large bin size can be used

o ensure sufficient number of samples are obtained. We only ana-

yze the burning samples, as our objective is to examine the mixing

rocess in burning flamelets (local extinction and reignition pose dif-

erent modeling challenges and are beyond the scope of this work).

he flamelet solution at χ f
s = 610/s (extinction limit) is used to sepa-

ate the (nominally) extinguished samples from the burning samples,

here χ f
s is scalar dissipation rate at the stoichiometric mixture frac-

ion. The line images containing extinguished samples are excluded.

he flamelet solution for which the Z − T and Z − YH2O profiles are

losest to the conditional means obtained from the burning samples

s chosen. Figure 1 shows that for flame E at x/D = 30 the flamelet

ith χ f
s = 143/s closely matches the conditional means of the tem-

erature and YH2O for the SGS scalar variance chosen. It also better

atches the conditional means of YCO2
, and YH2

than other values of
f

s (not shown).

We choose a steady flamelet solution Tf in our analysis instead

f the conditional mean 〈T|Z〉 for two reasons. First, since the goal

s to model diffusion in the flamelet regime more accurately, it is

atural to use the flamelet solution and model perturbations from

t. Second, a flamelet is a physical model for flame structure and

flamelet solution is an exact solution of the flamelet equation.

he conditional mean, however, is a statistic and the solution of its

quation involve additional assumptions. In particular, assumptions

n the conditional reaction term and the covariance of conditional

uctuations are needed. Thus, the equation for the conditional

erturbations is more complex than that for the perturbations from

flamelet, making modeling and asymptotic analyses more difficult.

n addition, the functional form of the conditional mean obtained
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Fig. 1. Measured conditionally filtered mean of (a) temperature and (b) YH2 O, (c) YCO2
, (d) YH2

at x/d = 30 in flame E compared with flamelet calculations with and without the unity

Lewis number assumption.
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experimentally is affected by statistical uncertainty. Thus, for the

present study it is more effective to use flamelet solutions than

conditional means.

3.1. The conditionally filtered diffusion of mixture fraction and

temperature perturbations

The conditionally filtered diffusion of the flamelet temper-

ature and that of the temperature perturbations at x/d = 30

in flame E, 〈〈 1
ρ

∂
∂y

(ρD ∂T f

∂y
)|Z, T〉�|〈Z〉L, 〈Z′′2〉L〉 and 〈〈 1

ρ
∂
∂y

(ρD ∂T∗
∂y

)|
Z, T〉�|〈Z〉L, 〈Z′′2〉L〉 respectively, are shown in Fig. 2 along with the

mixture fraction diffusion. Because they are transport velocities of

the FMDF in the mixture fraction-temperature sample space, we

present them as a diffusion velocity in the form of streamlines

and magnitudes [23,24]. Here the mixture fraction diffusion is non-

dimensionalized by the square root of the SGS variance 〈Z′′2〉1/2
L

and the Favre conditional scalar dissipation rate, 〈〈χ〉L|〈Z〉L, 〈Z′′2〉L〉
while the temperature diffusion is non-dimensionalized using the

peak temperature and the Favre conditional temperature dissipa-

tion, 〈〈χ T〉L|〈Z〉L, 〈Z′′2〉L〉. Since T f = T f (Z, χ f
s ), the diffusion of Tf de-

pends on the mixture fraction, the scalar dissipation and diffusion as

follows:〈
1

ρ

∂

∂y

(
ρD

∂T f

∂y

)∣∣∣∣Z, T

〉
�

= ∂T f

∂Z

〈
1

ρ

∂

∂y

(
ρD

∂Z

∂y

)∣∣∣∣Z, T

〉
�

+ ∂2T f

∂Z2

〈
D

∂Z

∂y

∂Z

∂y

∣∣∣∣Z, T

〉
�

. (6)

Near the peak temperature the mixture fraction diffusion is small

because this region is close to the center of the ramp-cliff structure.

The diffusion of Tf is negative due to the negative curvature of the

Tf profiles as a function of mixture fraction (Fig. 2b). Consequently,

the streamlines starting near the peak temperature nearly move
ertically toward lower temperatures. As the streamlines move to-

ard lower temperatures, the scalar dissipation increases, resulting

n larger diffusion magnitudes. For very lean and rich mixtures,

he dominant term for the diffusion of Tf is the first term on the

HS of Eq. (6) so that the diffusion of Tf is proportional to mixture

raction diffusion, which results in long straight streamlines along

he direction of ridgeline of the FMDF [25]. This diffusion streamline

attern is very similar to that of the conditionally filtered diffusion

f T (Fig. 2a) [25], suggesting that the steady flamelet can represent

uch of the coupling between mixing and reaction. The pattern is,

owever, very different from that of non-reacting scalar mixing [23],

hich tends to have streamlines converting to the conditional mean,

urther highlighting the effects of reaction in inducing diffusion.

Figure 2 c and d shows the conditionally filtered diffusion of Z and
∗ plotted in the Z − T and Z − T ∗ sample space, respectively. Unlike

hose in Fig. 2b, the diffusion velocity streamlines generally move

rst toward a manifold close to Tf, which is also close to the ridge-

ine of the FMDF [23]. The diffusion velocity magnitude decreases as

t approaches Tf. The streamlines then move along the manifold at

ower velocities. In addition, the magnitude of the diffusion veloc-

ty is generally smaller than that of T [23]. Figure 2d further shows

hat the streamlines largely move toward T ∗ = 0 near the peak tem-

erature, i.e., the dominant effect of diffusion is to reduce T∗. This

GS mixing pattern of the mixture fraction and the temperature per-

urbations is similar to that of three (non-reactive) scalar mixing in

turbulent coaxial jet [26] and to the temperature mixing in dis-

ributed reaction zones [23]. The coaxial jet consists of a center jet,

n annular flow, and a co-flow. The spatial relationship among the

calars carried by each stream is similar to the fuel-product-oxidizer

elationship in a non-premixed reaction flow. However, the pattern is

ualitatively different from the conditionally filtered diffusion of Tf,

or which the streamlines move toward lower temperature, not the

onditional mean temperature. The diffusion results for YH2O is also

imilar (not shown).
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Fig. 2. (a) Conditionally filtered mixture fraction diffusion and temperature diffusion; (b) the flamelet part; (c) conditionally filtered mixture fraction diffusion and temperature

perturbation diffusion conditional on temperature and (d) conditionally filtered mixture fraction diffusion and temperature perturbation diffusion conditional on temperature

perturbation. All figures are for flame E at x/d = 30. The gray scales denote the magnitude of the diffusion velocity vector.
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The similarities between the form of the conditionally filtered dif-

usion of T∗ and that of a non-reactive scalar suggest that the former

ay be modeled using the Interaction by Exchange with the Mean

IEM) model [27], which was developed based on non-reactive scalar

ixing characteristics. The IEM model for the conditionally filtered

emperature perturbation diffusion is

1

ρ

∂

∂xi

(
ρD

∂T ∗

∂xi

)∣∣∣∣Z, T ∗
〉

�

= − T ∗

2τT ∗
, (7)

here τT∗ is the mixing time scale for T∗. To examine the trend of

he diffusion more clearly in Fig. 3 we plot the conditionally filtered

iffusion of T∗ as a function of T∗ at x/d = 15 and 30 in flames D and

. The overall linear trend is indeed consistent with the IEM model.

ote that the IEM model is qualitatively inconsistent with the diffu-

ion of Tf, which is not toward the conditional mean temperature due

o the coupling of the diffusion to the reaction. The issue of the choice

T∗ and the comparison between the experiment results and the IEM

odel will be discussed in Section 3.3.

Two other commonly used mixing models are the Modified Curl

MC) model and the Euclid Minimum Spanning Tree (EMST) model.

hese models are stochastic models, thus their performance cannot

e directly evaluated from experimental data. Nevertheless, we ex-

ect that their performance will be improved if only the diffusion of

he perturbations from flamelets is modeled, although may be to a

esser extent than the IEM model. For example, since mixing in the

C model occurs between pairs of stochastic particles, if two parti-

les lie on a flamelet but have different mixture fraction values, the

ixed particle will not be on the flamelet due to the curvature of the

− Z curve, which is inconsistent with the flamelet solution. How-

ver, if only mixing of the perturbations from the flamelet is mod-

led, the mixed particle will still be on the flamelet. The EMST model

s local in composition space, its performance will probably not be

trongly affected by modeling diffusion of the perturbations. Never-
heless, we still expect some improvement of its performance since

he non-localness is reduced for the perturbations. However, the ex-

ent of improvement will perhaps be the smallest among the three

odels discussed.

.2. The conditional filtered dissipation rate for temperature

erturbations

The conditionally filtered dissipation rate of the flamelet part

nd its perturbations filtered conditionally on both the mix-

ure fraction and temperature, 〈〈2D ∂T f

∂y
∂T f

∂y
|Z, T〉�|〈Z〉L, 〈Z′′2〉L〉 and

〈2D ∂T∗
∂y

∂T∗
∂y

|Z, T〉�|〈Z〉L, 〈Z′′2〉L〉 are shown in Fig. 4. The cross-

issipation term is generally small compared to the other two terms

nd is not shown. For the flamelet part, its dissipation only depends

n the scalar and the scalar dissipation rate:

T f ≡
〈

2D
∂T f

∂y

∂T f

∂y

∣∣∣∣Z, T

〉
�

=
(

∂T f

∂Z

)2〈
2D

∂Z

∂y

∂Z

∂y

∣∣∣∣Z, T

〉
�

. (8)

he conditionally filtered temperature dissipation rate of the flamelet

art has two peak values, one on the lean side near Z = 0.3 and one

n the rich side near Z = 0.5 and (Fig. 4b), where the conditionally fil-

ered scalar dissipation rate is generally large at lower temperatures

25]. Near the peak temperature ∂T f

∂Z
is approximately zero, which

esults in a lower dissipation rate of Tf. Because the tight coupling be-

ween Tf and Z, χT f can be obtained from the conditionally filtered

calar dissipation rate.

Figure 4 c shows the conditionally filtered dissipation rate of T∗.

nlike
〈
χT f |Z, T

〉
�

(Fig. 4b) and 〈χ T|Z, T〉� (Fig. 4a), there is generally

ne peak near Z = 0.45 at a lower temperature where the maximum

radient in the ramp-cliff structure is located. Thus, the dependence

f 〈χT∗ |Z, T〉 on T and Z has some similarities to that of a nonreactive

calar and temperature in distributed reaction zones [25]. Compared
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(a) (b)

(d)(c)

Fig. 3. Conditionally filtered temperature perturbation diffusion near the peak temperature in flame E compared with the mixing time scale given in Eq. (30) and a C value of

2.5. The unit for the diffusion is K/s. (a) At x/d = 15 in flame D, χs = 245.8/s; (b) x/d = 30 in flame D, χs = 126.8/s; (c) x/d = 15 in flame E, χs = 275.8/s; (d) x/d = 30 in flame E,

χs = 143.5/s.
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(c)

Fig. 4. Conditionally filtered dissipation rate of (a) T and (b) Tf and (c) T∗ at x/d = 30

in flame E. The unit for the dissipation is K2/s.
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o Fig. 4b, the dissipation rate of T∗ is almost an order of magnitude

maller than that of Tf, indicating that the dominant contributions of

he conditional filtered temperature dissipation rate come from the

amelet structure and that the mixing of T∗ may pose a lesser mod-

ling challenge.

.3. Asymptotic analysis of the perturbations from flamelets

The similar functional forms of SGS diffusion and dissipation of re-

ctive scalar perturbations observed in Sections 3.1 and 3.2 to those

f a non-reactive scalar suggest that they may be modeled in a similar

ay. To further understand the reactive scalar perturbations, such as

heir dynamics and time and length scales, we perform perturbation

nalysis of the flamelet equation. We will consider two possible lim-

ting forms of the perturbations, whose length scales are small and

arge compared to the reaction zone width, respectively. While these

orms only represent the perturbations in flames under limiting con-

itions, they nevertheless can help us understand the nature and be-

aviors of the perturbations. Consistent with our objective of exam-

ning mixing in burning flamelets and perturbations from them, in

he analysis we assume that χ f
s is far from the extinction limit (high

amköhler number).

Starting from the transport equation for reactive scalars φi,

∂φi

∂t
+ ρuk

∂φi

∂xk

− ∂

∂xk

(
ρD

∂φi

∂xk

)
= wi, (9)

ith the coordinate transformation using Z2 = x2, Z3 = x3, t∗ = t, and

eplacing the coordinate x1 by Z, we obtain

∂

∂t
= ∂

∂t∗ + ∂Z

∂t

∂

∂Z
,

∂

∂x1

= ∂Z

∂x1

∂

∂Z

∂

∂xk

= ∂

∂Zk

+ ∂Z

∂xk

∂

∂Z
, (k = 2, 3) (10)

ne obtains the flamelet equation [28]

∂φi

∂t∗ = ρD∇Z · ∇Z
∂2φi

∂Z2
+ wi + R, (11)
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= −ρ

(
u2

∂φi

∂Z2

+ u3
∂φi

∂Z3

)
+ ∂(ρD)

∂x2

∂φi

∂Z2

− ∂(ρD)

∂x3

∂φi

∂Z3

+ρD

[(
∂Z

∂xk

)2
∂2φi

∂Z2
+ 2

∂Z

∂x2

∂2φi

∂Z∂Z2

+ 2
∂Z

∂x3

∂2φi

∂Z∂Z3

+ ∂2φi

∂Z2
2

+ ∂2φi

∂Z2
3

]
. (12)

o perform singular perturbation expansions with the inner layer

ontaining the stoichiometric mixture fraction, stretched coordinates

re introduced

= Z − Zs

ε
, τ = t∗

ε2
, (13)

he reactive scalars and the reaction rate are then expanded into

eading-order and first-order terms

φi = ∇φ0
i + ε∇φ1

i , (14)

i = w0
i +

(
∂wi

∂φ j

)0

εφ1
j , (15)

here a superscript denotes the order. Since perturbations from

amelets are caused by perturbations in the mixture fraction gradi-

nt, we expand the latter as

Z = ∇Z0 + ε∇Z1. (16)

ubstituting Eqs. (13)–(16) into the flamelet equation and using the

ixture fraction transport equation,

∂Z

∂t
+ ρuk

∂Z

∂xk

− ∂

∂xk

(
ρD

∂Z

∂xk

)
= 0, (17)

e obtain the leading-order equation

∂φ0
i

∂τ
= ρ

χ0

2

∂2φ0
i

∂ζ 2
+ ε2w0

i , (18)

nd the equation for the first-order perturbation

∂φ1
i

∂τ
= ρ

χ0

2

∂2φ1
i

∂ζ 2
+ ρ

χ1

2

∂2φ0
i

∂ζ 2
+ ε2

(
∂wi

∂φ j

)0

φ1
j

− ρD

3∑
k=2

2
∂Z0

∂xk

∂2(φ0
i

+ εφ1
i
)

∂ζ∂Zk

= ρ
χ0

2

∂2φ1
i

∂ζ 2
+ ρ

χ1

2

∂2φ0
i

∂ζ 2
+ ε2

(
∂wi

∂φ j

)0

φ1
j

− ερD

3∑
k=2

2
∂Z0

∂xk

∂2φ1
i

∂ζ∂Zk

, (19)

here χ0 = 2D∇Z0 · ∇Z0 and χ1 = 4D∇Z0 · ∇Z1 are the flamelet

issipation rate and the dissipation perturbation, respectively. The

erms on the RHS of Eq. (19) are the diffusion of the perturbation, pro-

uction of the perturbation due to the scalar dissipation rate pertur-

ation, the reaction source term, and the curvature term, respectively.

he curvature term containing φ0
i

vanishes because there are no cur-

ature effects in the (leading-order) equation for φ0
i

. The perturbation

Z1 must be of order one in order for φ1
i

to be of the same order:

∇Z1 ∼ ∇Z0 �R
�

∼ ε∇Z0, where � and �R are the length scale of ∇Z0

nd the reaction zone width, respectively. We further decompose

Z1 and χ1 into ∇Z1 = ∇Z1 f + ∇Z1∗ and χ1 = χ1 f + χ1∗, where

Z1f, χ1f, ∇Z1∗, and χ1∗ represent the slow variations of ∇Z and χ
or the first-order corrections to ∇Z0 and χ0, respectively) inside the

eaction zone and the perturbations from the flamelet (∇Z0 + ε∇Z1,
0 + εχ1), respectively. Correspondingly, φ1 f
i

and φ1∗
i

are the first-

rder correction to φ0
i

and the perturbations resulting from χ1∗, re-

pectively. In the following we consider two limiting cases of χ1∗

ith its length scales, �1, much smaller and larger than the reaction

one width respectively.

1. Perturbations with �1 	 �R

For the case �1 	 �R, the perturbations could potentially result in a

reater curvature of the mixing fraction field. However, the curvature

f the perturbed mixture fraction field (Z = Z0 + ε(Z1 f + Z1∗)) must

emain of order ε for the leading-order expansion to be valid. The

urvature without the fluctuations ∇Z1∗ is
�R
�

∼ ε. When ∇Z1∗ has

uctuations of scale �1 	 �R the curvature is

ε(|∇Z1∗|/|∇Z0|)�1

�1

= ε
|∇Z1∗|
|∇Z0| , (20)

here ε|∇Z1∗|�1 is the change of scalar difference over the length

1 due to ∇Z1∗; therefore ε(|∇Z1∗|/|∇Z0|)�1 is the displacement of

he iso-mixture fraction contour. If ∇Z1∗ is of order one or less, the

urvature induced by ∇Z1∗ is of the same order to or smaller than the

urvature of the Z0 field, i.e., ε |∇Z1∗|
|∇Z0| ≤ ε. Thus, for |∇Z1∗| 	 |∇Z0|, i.e.,

or a perturbation gradient much smaller than the flamelet gradient,

he flamelet structure is preserved, even when scalar fluctuations are

resent in the reaction zone.

For isotropic ∇Z1 perturbations, the orders of magnitude of the

iffusion term and the curvature term in Eq. (19) can be estimated

s

χ0

2

φ1∗
i

�2
1
∇Z0 · ∇Z0/ε2

= ε2ρD
φ1∗

i

�2
1

(21)

nd

ρD∇Z0
φ1∗

i

�1∇Z0�1/ε
= ε2ρD

φ1∗
i

�2
1

, (22)

espectively. Thus, the two terms are of the same order of magnitude.

he reaction term, on the other hand, is smaller, as will be shown

elow.

For �1 	 �R, the variables χ0,
∂2φ0

i

∂ζ 2 , and ∂Z0

∂xk
in Eq. (19) can be con-

idered as independent of ζ . Fourier transform the first order equa-

ion, we have

iωÂi = −ρ
χ0

2
Âik

2
ζ + 1

2
ρ

∂2φ0
i

∂ζ 2
χ̂1∗ + ε2

(
∂wi

∂φ j

)0

Â j

+ ρD

3∑
m=2

∂Z0

∂xm
εÂikζ km (23)

[
ρiωδi j + ρ

χ0

2
k2
ζ δi j − ε2

(
∂wi

∂φ j

)0

− ερD

3∑
m=2

∂Z0

∂xm
(kζ km)

]
Âi

= 1

2
ρ

∂2φ0
i

∂ζ 2
χ̂1∗ (24)

here Âi = Âi(ω, kζ , k2, k3) and χ̂1∗ = χ̂1∗(ω, kζ , k2, k3) are the

ourier transforms of φ1∗
i

and χ1∗ respectively, and ω, kζ , k2, k3

re the angular frequency, wavenumber in the ζ direction, and

avenumber in the x2 and x3 directions, respectively. An overbar de-

otes the spatially averaged value in the reaction zone. The terms

n the bracket on the LHS can be inverted to obtain the transfer

unction of the system described by Eq. (24) which is a frequency-

avenumber filter of first and second orders, respectively, acting on

he production (or forcing) term 1
2 ρ

̂∂2φ0
i

∂ζ 2 χ1∗. The reaction term does

ot depend on the wavenumber, and consequently is small compared

o the second term (diffusion) for small-scale perturbations, because
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Fig. 5. Conditionally filtered temperature perturbation diffusion near the peak tem-

perature from flamelet solutions with χ f
s = 143/s.
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for kζ > ε
�ZR

,

χ0

2
k2
ζ >

χ0

2

ε2

(�ZR)2
≈ ε2 χ0

2

φ0

Zs(1 − Zs)�ZR

Zs(1 − Zs)

�ZRφ0

≈ ρ
χ0

2

∂2φ0

∂ζ 2

Zs(1 − Zs)

φ0�ZR

(25)

≈ ε2w0 Zs(1 − Zs)

φ0�ZR

≈ ε2

(
∂w

∂φ

)0
Zs(1 − Zs)

�ZR

≈ ε2

(
∂w

∂φ

)0

,

(26)

i.e., the reaction term does not significantly alter the filter function at

high wavenumbers. The perturbation φ1∗
i

is essentially proportional

to the filtered production term, with the filter function largely de-

termined by the mixture fraction field, and the length scale deter-

mined by ∇Z1∗. Therefore, it is expected to have diffusion character-

istics that are similar to a non-reactive scalar, such as the functional

form of the conditionally filtered diffusion and the SGS mixing time

scale. Physically, when the perturbations occur at high wavenumbers

(k ∼ 1/�1 � 1/�R), their dynamics are dominated by the forcing term

and the diffusion term. This type of perturbations are likely to occur

in high-Reynolds number flames where the dissipation length scales

are smaller than the reaction zone width.

2. Perturbations with �1 � �R

For �1 � �R, χ1∗ is independent of ζ in the reaction zone, and is

only a function of time. Thus the perturbations essentially cause type

the flamelet to become unsteady or quasi-steady. For isotropic ∇Z1

perturbations, the orders of magnitude of the diffusion term and the

curvature term in Eq. (19) can be estimated as

ρ
χ0

2

φ1∗
i

�2
R
∇Z0 · ∇Z0/ε2

= ε2ρD
φ1∗

i

�2
R

(27)

and

ερD∇Z0
φ1∗

i

�R∇Z0�1/ε
= ε2ρD

φ1∗
i

�R�1

, (28)

respectively. The curvature term therefore is much smaller and is ne-

glected in the following analysis.

The Fourier transform of Eq. (19) is

ρiωÂ(k,ω) = −ρ
χ0

2
Âk2

ζ + 1

2
ρ

∂̂2φ0

∂ζ 2
χ̂1∗(ω) + ε2

̂
(

∂wi

∂φ j

)0

∗ Â j.

(29)

The spatial variations of φ1∗
i

is now determined by ∂2φ0

∂ζ 2 and

(
∂wi
∂φ j

)0. Since both terms are limited to the reaction zone, so is the

diffusion term. Thus, the length scales of these terms are of the order

of the reaction width. The orders of magnitudes of the diffusion and

reaction terms are estimated as ρ χ0
2 φ1∗

i
and ε2

w0
i
φ1∗

j

φ0
j

, respectively,

and therefore, are of the same order. This shows that the diffusion

is strongly influenced by reaction. The temporal variations of φ1∗
i

is

largely determined by χ1∗ through a first-order filter.

The diffusion term in Eq. (19) is largely limited to the re-

action zone, and therefore can be estimated as ρ χ0

2

∂2φ1∗
i

∂Z2 ∼
−ρ χ0

2

φ1∗
i

Zs(1−Zs)�ZR
, which can be expressed in the same form as the

IEM model:

−C
χ0

2

φ1∗
i

Zs(1 − Zs)�ZR

= −C
φ1∗

i

2τφ1∗
i

, (30)

where τφ1∗
i

= Zs(1−Zs)�ZR

χ0 and C are the SGS mixing time for φ1∗
i

and

the model coefficient respectively. Since the estimate should also be

valid for nearly steady flamelet, we show in Fig. 5 the perturbation
iffusion from the steady flamelet (differences between the domi-

ant flamelet and other flamelets) near the peak temperature. The

verall functional form is indeed consistent with the IEM model.

hus, while the diffusion of Tf has qualitatively different characteris-

ics than that of a non-reactive scalar, the perturbation diffusion has

imilarities to the latter.

The above asymptotic analysis suggests that the diffusion of the

eactive scalar perturbations, whether in the form of small-scale ran-

om fluctuations or unsteady flamelets, has the form of non-reactive

calars, but with different mixing times. To examine which forms of

he perturbations are more consistent with those observed in the

andia flames, in Fig. 3 we compare the experimental results of the

onditionally filtered diffusion of T∗ (= εT 1∗) near the peak tempera-

ure to the prediction of the IEM model using τ ∗
T = τφ1∗

i
(Eq. (30)). The

esults at x/d = 15 and 30 in flames D and E cover two Reynolds num-

ers, two SGS variance values (the SGS variance values at the same

ownstream locations are approximately equal for the two flames),

nd four scalar dissipation rate values, and therefore are good test

ases for the scaling of the mixing time scale. The approximately

inear trend of the experimental results is consistent with the IEM

odel. Perhaps more important, the magnitude of the measured dif-

usion is consistent with the IEM model having the mixing time given

y Eq. (30) and a C value of 2.5 for all the cases. The significance of

hese results is that the mixing time appears to scale with τφ1∗
i

. Us-

ng the time scale of SGS mixture fraction, on the other hand, would

equire different C values for the model to fit the data for the dif-

erent cases. The overall similarity of the experimental results to the

amelet solutions suggests that the perturbation diffusion is consis-

ent with predictions based on unsteady or quasi-steady flamelets.

. Discussions and conclusions

In the present work we used data obtained in turbulent partially

remixed flames (Sandia flames) to study SGS mixing of temperature

erturbations from steady flamelets. The Favre filtered mixture frac-

ion and Favre filtered SGS scalar variance were used as conditioning

ariables for analyzing the conditionally filtered dissipation and dif-

usion of temperature perturbations. We focus on the temperature

nd YH2O in flame E at x/d = 30 where the Reynolds number is high

nd the differential diffusion effects for these variables are negligi-

le. We chose the flamelet with T f (Z, χ f
s ) closest to the conditionally

ltered temperature 〈〈 T|Z〉 L| 〈Z〉 L, 〈Z′′2〉L〉 for the burning samples.

ue to the limited amount of data available, we obtained results for

ne large SGS variance value. If other values are chosen, the dissi-

ation rate χ s for flamelets that match the conditional mean values

ill vary. Since 〈Z′′2〉 L is a fluctuating quantity in a turbulent flame,

o does χ s, allowing the analysis to account for the scalar dissipation

ate fluctuations.
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The results show that for large SGS variance, the streamline rep-

esenting the conditionally filtered diffusion of mixture fraction and

emperature perturbations for the nearly fully burning samples gen-

rally converge quickly to a manifold close to T f (Z, χ f
s ), along which

hey continue at lower velocities, i.e., the dominant effect of the dif-

usion is to reduce T∗. The conditionally filtered dissipation rate of the

emperature perturbations is generally much smaller than the value

rom the flamelet part. The peak value is near ξ = 0.4–0.45 at lower

emperature where the maximum gradient in the ramp-cliff structure

s located. These mixing patterns are very similar to those of three

on-reactive scalar mixings in a turbulent coaxial jet. Further analy-

is shows that the functional form of the diffusion is well described

y the IEM model.

Our perturbation analysis of the flamelet equation shows that

or perturbations having length scales smaller than the reaction

one width, the reactive scalar diffusions are largely controlled by

he mixture fraction field, thus having the characteristics of non-

eactive scalar mixing. This type of perturbations probably requires

igh Reynolds numbers so that the scalar dissipation length scale is

maller than the reaction zone width. For perturbations with length

cales larger than the reaction width, which are consistent with un-

teady or quasi-steady flamelets, the conditionally filtered diffusion

as the same form as non-reactive scalar mixing, with the mixing

ime scale depending on Zs and �ZR. The IEM model predictions

ased on this mixing time scale are in good agreement with the ex-

erimental results for a range of SGS conditions, suggesting that the

erturbations for the conditions studied are consistent with unsteady

r quasi-steady flamelets.

The present study suggests that mixing models that are based on

on-reactive scalars can potentially model the mixing of the reactive

calar perturbations from flamelets accurately. Because the mixing

odels do not need to model the flamelet part, the total reactive

calar diffusion (the flamelet part plus the perturbations) can be

odeled more accurately. Since most current mixing models already

erform well for distributed reaction zones, the results in the present

tudy can be useful for developing a unified mixing model that can

redict all combustion regimes, including distributed reaction zones

nd flamelets accurately.
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