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Traditional a posteriori tests of subgrid-scale (SGS) models often compare large
eddy simulation (LES) profiles of various statistics with measurements. In this study
we propose and employ a new a posteriori test to study SGS model performance.
We compare the conditional means of the LES-generated SGS stress and stress
production rate conditional on the resolvable-scale velocity with measurements. These
statistics must be reproduced by the SGS model for LES to correctly predict the one-
point resolvable-scale velocity joint probability density function. Our tests using data
obtained in convective atmospheric boundary layers show that the a posteriori results
are consistent with our a priori tests based on the same conditional statistics. The
strengths and deficiencies of the models observed here were also identified in our
a priori tests. The remarkable consistency between the two types of tests suggests
that statistical model tests based on the conditional SGS stress and its production
rate are a highly capable approach for identifying specific model deficiencies and for
evaluating SGS model performance in simulations.

1. Introduction
Large eddy simulation (LES) computes the large, or resolvable scales of turbulent

flows, and models the effects of the small, or subgrid scales. When the filter is located
in the inertial range, the energy-containing scales are well resolved and most of the
turbulent stress is carried by the resolved scales. Under such conditions the LES
results are to some extent insensitive to the subgrid-scale (SGS) model employed
(Nieuwstadt & de Valk 1987; Mason 1994).

However, in LES of many important flows, such as in the near-wall region of
a high-Reynolds-number turbulent boundary layer, the filter scale is inevitably in
the energy-containing scales because the latter scale with the distance from the
surface (Kaimal et al. 1972; Mason 1994; Peltier et al. 1996; Tong et al. 1998; Tong,
Wyngaard & Brasseur 1999). Consequently, a significant portion of the turbulent
stress must be carried by the SGS model, causing strong dependence of the results
on the SGS model (e.g. Mason & Thomson 1992; Sullivan, McWilliams & Moeng
1994; Tong et al. 1999; Porté-Agel, Meneveau & Parlange 2000a). Any deficiencies
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in the SGS model are therefore likely to lead to errors in LES results in the near-
wall region. For example, LES of the unstable atmospheric boundary layer (ABL),
using the Smagorinsky model, over-predicts the mean shear and the streamwise
velocity variance (Nieuwstadt & de Valk 1987; Mason 1994; Sullivan et al. 1994;
Khanna & Brasseur 1997) in the surface layer, and at the same time under-predicts
the vertical velocity skewness. These deficiencies in LES results have been argued to be
related to the Smagorinsky model’s being too dissipative (Mason 1994; Sullivan et al.
1994). Various methods for improving LES results have been developed, including
stochastic backscatter (Schumann 1975; Leith 1990; Mason & Thomson 1992), the
split model of Schumann (Schumann 1975; Sullivan et al. 1994), a nonlinear model
(Kosović 1997) and the scale-dependent dynamic Smagorinsky model (Porté-Agel et al.
2000a). The improvements achieved by these methods demonstrated the importance
of incorporating surface-layer SGS physics into SGS models. However, a systematic
understanding of the effects of model behaviours on LES results, i.e. how the SGS
turbulence and SGS models affect the resolvable-scale statistics under these conditions,
an important issue for improving SGS models, is still lacking.

Traditional a priori and a posteriori tests of SGS models (e.g. Clark, Ferziger &
Reynolds 1979; McMillan & Ferziger 1979; Bardina, Ferziger & Reynolds 1980;
Nieuwstadt & de Valk 1987; Piomelli, Moin & Ferziger 1988; Lund & Novikov
1992; Mason & Thomson 1992; Domaradzki, Liu & Brachet 1993; Piomelli 1993;
Härtel et al. 1994; Liu, Meneveau & Katz 1994; Mason 1994; Meneveau 1994; Peltier
et al. 1996; Juneja & Brasseur 1999; Sarghini, Piomelli & Balaras 1999; Tao, Katz &
Meneveau 2000; Porté-Agel et al. 2001; Sullivan et al. 2003), although contributing
greatly to our understanding of current SGS models, provide little information
regarding the relationship between SGS models and LES results (statistics). From a
priori tests it is difficult to predict the effects of model behaviour on LES results, e.g.
the correlation between the modelled and measured SGS stress components provides
little information about model performance in simulations. From a posteriori tests it
is difficult to relate deficiencies of LES results (e.g. the mean velocity and Reynolds
stress profiles) to specific aspects of the model behaviour. Furthermore, the two
types of tests are disconnected as they deal with instantaneous SGS stress and LES
statistics, respectively. Therefore, a priori and a posteriori test results cannot be directly
compared to further evaluate model performance.

To better understand the relationship between SGS models and LES statistics,
as well as that between the SGS turbulence and the resolvable-scale statistics, a
systematic a priori test approach was developed (Chen et al. 2003, 2005; Chen &
Tong 2006) based on the transport equations of the resolvable-scale velocity and
velocity-scalar joint probability density function (JPDF). This approach analyses the
SGS dynamic terms that evolve the JPDF equation. The terms containing the SGS
stress are the conditional SGS stress and the conditional SGS stress production rate
conditional on the resolvable-scale velocity at the same location. The JPDF contains
all single-point velocity statistics, thereby making it possible to relate model test
results to LES statistics, i.e. to model performance in simulations.

Chen & Tong (2006) used this approach to study the SGS turbulence in the surface
layer of the atmospheric boundary layer and identified several deficiencies of the SGS
models that affect the LES statistics. The Smagorinsky model, the nonlinear model, the
mixed model and the Kosović nonlinear model were tested using measurement data
from a convective atmospheric surface layer. They found that none of these models
can predict both conditional SGS stress and conditional SGS stress production rate
correctly at the same time. The Smagorinsky model and the Kosović nonlinear model
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under-predict the anisotropy and the variations of the level of anisotropy, which are
considered to be important for predicting the mean shear and the streamwise velocity
variance profile, whereas the nonlinear model and the mixed model over-predict both.
The under-prediction of the vertical velocity skewness (Moeng 1984; Lemone 1990)
is argued to be related to the inability of the models to predict the asymmetry in
the conditional production rate of the vertical velocity variance. Therefore, analyses
using the JPDF equation can provide important guidance for developing SGS models.
However, to evaluate the model performance in actual simulations, these conditional
statistics need to be further examined in actual LES.

In the present work, a new a posteriori test approach based on the transport
equation of the resolvable-scale velocity JPDF is developed to study the SGS stress
models using the LES data. The equation for the resolvable-scale velocity JPDF, f ,
was given by Chen et al. (2003) and Chen & Tong (2006):
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rate. A superscript r and angle brackets 〈.〉 denote a resolvable-scale variable and
an ensemble average. Θ and θ are the mean and fluctuating potential temperatures,
respectively.

The left-hand side of the equation is the time rate of change and advection
in physical space. The right-hand side represents mixed transport in physical and
velocity spaces by the conditional SGS stress and the resolvable-scale pressure
and transport in velocity space by the conditional SGS stress production rate, the
conditional resolvable-scale pressure–strain correlation and the conditional buoyancy
force. Equation (1.1) shows that the SGS stress directly affects the resolvable-
scale velocity JPDF through the conditional SGS stress and the conditional SGS
stress production and indirectly through the pressure terms. Therefore, the necessary
conditions for LES to correctly predict the velocity JPDF are that the conditional
means of SGS stress and SGS stress production rate must be reproduced by the SGS
model (Chen et al. 2003). Therefore, (1.1) provides a link between the SGS stress
and the resolvable-scale velocity JPDF and can be used to study the effects of the
SGS stress on the JPDF in a posteriori tests. In such tests the conditional means of
LES-generated SGS stress and its production rate are compared to measurements
and/or DNS.

We note that the a posteriori tests performed here are qualitatively different from
traditional tests, in which the mean, variance, spectra and the profiles of other flow
parameters are often compared with experimental measurements. (Direct comparisons
between the instantaneous LES-generated SGS stress and measurements as done in
the traditional a priori tests are not possible because LES fields are not correlated
to the true turbulence fields.) A major limitation of such a posteriori tests is that
it is difficult to relate the deficiencies of LES results to specific aspects of the
model behaviour. This is because the SGS stress evolves LES fields through dynamic
equations, which are chaotic with many degrees of freedom, making it difficult to
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relate the properties of the solutions to the behaviours of the SGS terms in the
LES equations. By contrast, our a posteriori tests examine the conditional means,
which evolve directly the resolvable-scale velocity and scalar statistics through the
JPDF equation. Therefore, it provides a more direct link between the resolvable-scale
statistics and the SGS models. In addition, traditional a posteriori test results generally
cannot be directly related to a priori test results whereas the JPDF-equation-based a
posteriori tests analyse the same JPDF equation as the a priori tests, thereby making
it possible to directly evaluate the consistency of model performance in the two types
of tests.

In LES employing certain SGS models, such as the Smagorinsky model, only the
deviatoric part of the SGS stress τ d

ij = τij − 1/3τkkδij is modelled. Therefore, it is also

useful to examine the corresponding production term P d
ij defined as (Chen & Tong

2006)
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Thus, Pij can be written as

Pij = P d
ij − 2

3
τkkSij , (1.3)

where Sij is the resolvable-scale strain rate tensor. Equation (1.3) shows that the
normal components of Pij contain the energy transfer rate from the resolvable to
the subgrid scales P d

αα (α = 1, 2, 3), and the redistribution rates among three normal
components of the SGS stress (inter-component exchange), −2/3τkkSαα , respectively.
The off-diagonal components of Pij contain the production of the SGS shear stress
due to straining and rotation of the anisotropic part of the SGS turbulence by the
resolvable-scale velocity field P d

ij , and due to straining of the isotropic part of the
SGS turbulence −2/3τkkSij (i �= j ).

Chen & Tong (2006) studied the JPDF equation using field measurements data.
They found that the results of 〈τij |ur〉 and 〈Pij |ur〉 are closely related to the surface-
layer dynamics. The updrafts generated by buoyancy, the downdrafts associated with
the large-scale convective eddies, the mean shear and the length-scale inhomogeneity
play important roles in the behaviours of 〈τij |ur〉 and 〈Pij |ur〉. One important finding is
that each component of 〈Pij |ur〉 is often dominated by only one SGS stress component
and one resolved strain rate component. These results can be used to analyse the
trend of the conditional SGS stress production rate predicted by SGS models, and
to analyse the dynamics between the scalar flux and its production rate. We use
this method to analyse the means and conditional means of the SGS stress and its
production rate predicted in LES.

In this paper, the effectiveness of the new a posteriori test approach is evaluated
by employing it to study SGS model performance using LES data. The rest of the
paper is organized as follows. Section 2 outlines the LES and the field measurements.
The means and conditional means of SGS stress and its production rate obtained in
LES are compared with the measurements and a priori test results in § 3, followed by
conclusions.

2. LES data and field measurements
In this work, several SGS models commonly employed in LES of the ABL, the

Smagorinsky model (Smagorinsky 1963; Lilly 1967; Moeng 1984), the split model
(also called two-part eddy-viscosity model) (Sullivan et al. 1994) and the Kosović
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model (Kosović 1997) are used to generate LES fields for model testing. These models
use the resolvable-scale strain rate (and the resolvable-scale rotation rate tensor for
the Kosović model) as model inputs, representative of a class of SGS models. They
have been widely employed in LES of the ABL and many researchers have extensive
experience with them. In addition, these models are suitable for tests using the field
measurement data (see below) and a priori tests have been conducted (Chen & Tong
2006). Therefore, the tests will help elucidate the strengths and deficiencies of this
class of models in terms of their ability to predict the resolvable-scale JPDF. We
emphasize that the primarily goal of the tests performed in the present paper is not
to provide a comprehensive evaluation of the current SGS models but to demonstrate
the proposed statistical a posteriori test approach by focusing on several commonly
employed SGS models.

The data using the Smagorinsky model and the Kosović model are described by
Otte & Wynngard (2001). The data using the split model are described by Sullivan
et al. (1994). The split model (Sullivan et al. 1994) preserves the usual eddy-viscosity
model formulation, but includes a mean strain rate contribution and a reduced
contribution from the fluctuating strain rate near the surface. Our previous a priori
study (Chen & Tong 2006) showed that the conditional statistics of the split model
are similar to those of the standard Smagorinsky model, but with mean offsets and
smaller magnitudes.

The Smagorinsky model is described in Smagorinsky (1963), Lilly (1967) and Moeng
(1984).

τ
smg
ij = −2νtSij = −2Ck	e1/2Sij , (2.1)

where νt , Ck = 0.1, e, Sij and 	 are the SGS viscosity, the model constant (Moeng
1984), the SGS turbulent kinetic energy, the resolvable-scale strain rate and the filter
size, respectively. This variant of the model is given by Schumann (1975). Chen &
Tong (2006) also used the strain rate formulation for the SGS eddy viscosity and
found that the conditional statistics obtained are very close. Therefore, the properties
of the Smagorinsky model are largely due to the proportionality of the modelled SGS
stress and the resolved strain rate. The split model was proposed by Sullivan et al.
(1994):

τ
split
ij = −2νtγSij − 2νT 〈Sij 〉, (2.2)

where γ is the isotropy factor, and νT is the mean field eddy viscosity. These two
factors change with height to match the Monin–Obukhov similarity theory at the first
grid point and provide anisotropy in the SGS motion near the surface. In present
study, we choose the second grid point to compute the mean and the conditional mean
statistics, where the corresponding isotropy factor γ = 0.61. Kosović (1997) proposed
a nonlinear model

τ kos
ij = −2νtSij − (Cs	)2

{
C1

(
SikSkj − 1

3
SmnSmnδij

)
+ C2(SikΩkj − ΩikSkj )

}
, (2.3)

where Ωij is the rotation rate tensor and Cs, C1 and C2 are model parameters.
We note that LES results near the surface, where the errors are the largest, are

influenced by both the SGS model and the boundary conditions. The latter might also
have an influence on the LES conditional statistics. However, previous studies (see
§ 1) have shown improvements in near-wall LES statistics with improved SGS models,
indicating a strong role played by the SGS model. Therefore, we expect that our a
posteriori tests can provide valuable information on the SGS model performance. The
issue of boundary conditions will be a topic of our future investigations.
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Case Lx(Ly × Lz) Nx(Ny × Nz) Q∗ Ug u∗ −zi/L

Sullivan 1994 10 000 × 2000 250 × 128 0.1 20.0 0.66 5.63
Otte 2001 (Smag) 2500 × 999 144 × 160 0.2 15.0 0.66 6.04
Otte 2001(Kosović) 2500 × 1000 140 × 160 0.2 15.0 0.65 5.57

Table 1. LES simulation parameters.

The LES code used in the present investigation is well documented in the literature
(Moeng 1984; Moeng & Wyngaard 1988; Sullivan et al. 1994; Sullivan, McWilliams &
Moeng 1996; McWilliams, Moeng & Sullivan 1999; Otte & Wynngard 2001; Moeng &
Sullivan 2002). The spatial discretization is pseudo-spectral (Fourier) in the horizontal
(x, y)-directions and finite difference in the vertical z-direction. The advective terms
are implemented in rotational form and aliasing errors are controlled using an
explicit sharp Fourier cutoff of the upper 1/3 wavenumbers (Canuto et al. 1988).
A staggered vertical mesh is used with the vertical velocity w and subgrid-scale
energy e located at cell faces while the horizontal velocities (u, v), pressure p and
potential temperature θ are located at cell centres. This grid arrangement maintains
tight velocity–pressure coupling. The discretization and solution of the pressure
Poisson equation is consistent with the time-stepping scheme and continuity equation
and ensures that the flow remains incompressible (Sullivan et al. 1996). The time-
stepping scheme is a third-order Runge–Kutta scheme (Spalart, Moser & Rogers
1991; Sullivan et al. 1996). Consistent with the horizontal Fourier representation,
periodic boundary conditions are used on the sidewalls of the computational domain.
At the lower boundary, wall functions are used to estimate the surface stress and
temperature. The wall functions are based on Monin–Obukhov similarity theory
Businger et al. (1971) which incorporates stability effects in the logarithmic wind
profile; an implementation is described by Moeng (1984). At the upper boundary of
the domain a radiation condition (Klemp & Durran 1983) is imposed along with zero
SGS fields. A prognostic SGS turbulent kinetic energy equation including advection,
buoyancy, diffusion, production and dissipation (Deardorff 1980) is used to calculate
the SGS eddy viscosity. Parallelization of the code is accomplished using the Message
Passing Interface (MPI).

The parameters for the simulations are given in table 1. The ratio of the boundary
layer depth zi to the Monin–Obukhov length L = − u3

∗Θ/kag〈u′
3θ

′〉 is close to −6,
indicating moderately convective boundary layers, where u2

∗ = − 〈u′
1u

′
3〉 (where prime

denotes fluctuations), ka = 0.41 and g are square of the friction velocity, the von
Kármán constant and the gravitational acceleration, respectively. The simulation
results are compared with both the a priori test results and the results from
measurements described in Chen & Tong (2006).

The conditional statistics from the LES are compared with the results obtained using
field measurement data. The field program, named the horizontal array turbulence
study or HATS, was conducted at a field site 5.6 km east-northeast of Kettleman
City, California, in the summer of 2000 as a collaboration primarily among the
National Center for Atmospheric Research, Johns Hopkins University and Penn
State University (C. Tong was part of the Penn State group). Horst et al. (2004)
describe the field site and the data collection procedures in detail.

The design for the field measurements is based on the transverse array technique
proposed, studied and first used by the Penn State group (Edsall et al. 1995; Tong et al.
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1997, 1998, 1999) for surface-layer SGS measurements in the ABL. The technique uses
horizontal sensor arrays to perform two-dimensional filtering to obtain resolvable- and
subgrid-scale variables. Two arrays are vertically spaced to obtain vertical derivatives.
The primary horizontal array consists of nine equally spaced sonic anemometers
(Campbell Scientific SAT3) and the secondary array has five sonics at a second height.
The arrays are aligned perpendicular to the nominal prevailing wind direction.

The filter operation in the streamwise direction is performed by invoking Taylor’s
hypothesis. Filtering in the transverse direction is realized by averaging the output
signals from the sonic arrays (Tong et al. 1998). To compare the statistics of LES fields
to turbulence, the latter should be filtered so that the filtered turbulence has the same
spectrum as the LES fields. The LES spectrum is a result of a combination of explicit
filters (e.g. de-aliasing filter) and implicit filters (SGS model and numerical scheme).
Although the simulations use a spectral cutoff filter in the horizontal directions for
de-aliasing, the effective filter as a result of the generally dissipative nature of the SGS
model has a slower roll-off (see Pope 2000 for a discussion of the filtering effects of the
Smagorinsky model in isotropic turbulence). In the present study, we use the arrays
to approximate top-hat filters, which are the most compact type in physical space
and are the most suitable type for the array data. In addition, the vertical derivatives
in LES are computed using centre differencing, which is effectively a top-hat filter.
Therefore, top-hat filters are a good approximation of the horizontal LES filter and
provide consistency between the resolvable-scale velocity and its derivatives in the
vertical direction.

To examine the sensitivity of the conditional SGS stress and the conditional SGS
stress production rate to the filter shape, we computed these SGS statistics using a
combination of a cross-stream top-hat filter and a streamwise Gaussian filter having
the same variance as the top-hat filter. In all cases (an example is given in figure 7e)
the differences between the statistics obtained using this filter combination and top-
hat filters in both directions are typically less than 5 %–10 % of their values, much
smaller than the differences between the measurements and the SGS models, which
are often as large as the statistics themselves. Therefore, the sensitivity of the statistics
to the filter is sufficiently low to justify the use of top-hat filters for the model tests in
the present study.

Four different array configurations are employed in the HATS program. The filter
(grid) aspect ratio (	/z, where z as the height of the primary array) ranges from 0.48
to 3.88, allowing the effects of grid anisotropy to be examined. Chen & Tong (2006)
focused on an unstable case from array 1, because it has the largest 	/z = 3.88, with
highly anisotropic SGS motions and is thus the most difficult case for SGS models
to predict. In the present work, we choose an unstable case from array 2, because
its aspect ratio 	/z = 2.0 is closer to those of the LES data (	/z =2.14 for the split
model runs and 	/z = 1.92 for the Smagorinsky model and the Kosović model runs)
than the other arrays. The stability parameter −z/L for this case is 0.36, larger than
those for the LES fields at the second grid height (0.18 for the split model runs
and 0.15 for the Smagorinsky model and the Kosović model runs). However, for
an unstable boundary layer the influence of −z/L essentially amounts to a stability
correction, therefore is weaker than that of 	/z. Therefore, this difference is unlikely
to significantly affect the comparisons. For more details of the HATS data see Horst
et al. (2004) and Chen & Tong (2006).

Due to the complexity of the variables of interest and of the conditional sampling
procedure, we are not able to provide a precise level of statistical uncertainty for the
conditional statistics. However, by monitoring the statistical scatter while increasing
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Figure 1. (a) LES results of the mean vertical gradient of the horizontal resolvable-scale
velocity in the surface layer. The dashed line is the empirical form based on the the
Monin–Obukhov similarity theory (Businger et al. 1971); (b) LES results of the horizontal
velocity variance and the Minnesota measurements (Wyngaard 1988) with an error bar.

the data duration from 51 to 257 min, which correspond to 2200–11 000 advection
time scales for the vertical velocity integral-scale eddies respectively, we find that
reasonable statistical convergence (typically less than 5 % of the maximum of these
conditional statistics) is achieved (Chen & Tong 2006). This level of uncertainty is
small compared to the differences between the measurements and the SGS model.
Therefore, the data size is sufficient for obtaining reliable statistics for the model tests
in the present study.

In the following section, the results for the mean SGS stress 〈τij 〉 and the conditional
SGS stress 〈τij |ur〉 are normalized by the square of the friction velocity u2

∗. The results
for the mean and the conditional SGS stress production rates, 〈Pij 〉 and 〈Pij |ur〉, are
normalized by the estimated energy dissipation rate ε = φεu

3
∗/kaz, where φε = 1 − z/L

for z/L � 0 as suggested by Kaimal et al. (1972).

3. Mean SGS stress and SGS stress production rate
As pointed out in § 1, the SGS model predictions of the SGS stress and SGS

stress production rate impact the LES statistics. In figures 1 and 2, the mean
non-dimensional horizontal resolvable-scale velocity vertical gradient (Φm = (∂〈u〉/
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Figure 2. LES results of the vertical resolvable-scale velocity skewness profiles in the surface
layer. The solid and open circles are from the Minnesota experiment (Wyngaard 1988) and
AMTEX (Lenschow & Stephens 1980), respectively.

∂z)(kaz/u∗)), the total velocity variances profiles and the vertical resolvable-scale
velocity skewness from the simulations are shown. Here, Φm and the horizontal
velocity variance are compared with an empirical form based on the Monin–
Obukhov theory (Businger et al. 1971) and the Minnesota data (Lenschow & Stephens
1980), respectively. The vertical resolvable-scale velocity skewness is compared with
the skewness of the measured total vertical velocity (Lenschow & Stephens 1980;
Wyngaard 1988). This comparison is justified due to the fact that the length scale
of the vertical velocity in the surface layer scales with the distance from the surface.
Therefore, the vertical velocity is reasonably well resolved beyond the first few grid
points from the surface regardless of the numerical resolution (see Khanna & Brasseur
1997 for some examples of the vertical velocity spectra with resolved energy-containing
scales) and the resolvable-scale velocity statistics should approach those of the total
velocity. The LES profiles obtained using the split model and the Kosović model are
closer to measurements than those using the Smagorinsky model.

Table 2 shows that the measured Reynolds stress components 〈u′
1u

′
1〉 and 〈u′

2u
′
2〉

have larger values than the other components, so are the measured mean resolvable-
scale stress components 〈ur

1
′ur

1
′〉 and 〈ur

2
′ur

2
′〉. This feature is generally captured by

all the simulations. The smaller LES values for the normal components may be
related to the difference in zi/L between LES and measurements. We note that the
properties of the SGS turbulence are strongly influenced by 	/z. For a convective
boundary layer the parameter zi/L primarily influences the horizontal to vertical
velocity variance ratio, the former having the largest contribution from eddies of the
size of the boundary layer depth. For such a boundary layer the influence of zi/L on
the SGS turbulence is secondary to that of 	/z. Therefore, the smaller LES values
for the normal components will not significantly affect the results of the conditional
SGS statistics.

The mean SGS stress normal components 〈τ d
11〉 and 〈τ d

33〉 have larger magnitudes
than 〈τ d

22〉. This feature cannot be captured by the Smagorinsky model and the
split model because the strain rate components used to model τ d

11 and τ d
22 have zero

mean. This situation is unlikely to be fundamentally different when using the dynamic
Smagorinsky model (Germano et al. 1991) and its variants as they use the same strain
rate components. The Kosović model captures this trend much better, but slightly
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′ur
2

′〉/u2
∗ 11.40 3.20 4.31 3.16

〈ur
3

′ur
3

′〉/u2
∗ 0.44 0.12 0.38 0.25

〈−ur
1

′ur
3

′〉/u2
∗ 0.46 0.39 0.71 0.52

〈τ d
11〉/u2

∗ 0.55 0.014 0.011 0.32 0.006 0.003 0.29
〈τ d

22〉/u2
∗ −0.08 0.012 0.026 0.05 0.006 0.006 0.19

〈τ d
33〉/u2

∗ −0.44 0.007 0.008 −0.33 −0.012 −0.009 −0.48
〈−τ13〉/u2

∗ 0.57 0.225 0.376 0.23 0.444 0.278 0.29
〈τkk/3〉/u2

∗ 1.87 1.318 0.831 1.12

〈P11〉/ε 0.87 0.67 0.75 0.69 1.13 0.80 0.64
〈P22〉/ε 0.29 0.44 0.42 0.46 0.18 0.27 0.32
〈P33〉/ε 0.07 0.09 0.08 0.03 −0.04 0.00 0.02

〈−P13〉/ε 0.63 0.90 0.90 0.53 1.34 0.60 0.32

〈P d
11〉/ε 0.80 0.59 0.67 0.62 1.10 0.79 0.60

〈P d
22〉/ε 0.19 0.34 0.32 0.36 0.15 0.24 0.30

〈P d
33〉/ε 0.11 0.12 0.11 0.07 0.04 0.06 0.09

〈P d
13〉/ε 0.22 −0.05 −0.05 0.32 0.00 0.02 0.43

Table 2. Statistics from the HATS (array 2) data, the a priori tests and the LES (at the
second grid-point height).

over-predicts 〈τ d
22〉 and 〈τ d

33〉. The better prediction is because this model can be
derived from the SGS stress transport equation with a local equilibrium assumption
and does not assume proportionality between the SGS stress and the resolvable strain
rate. The mean SGS shear stress is under-predicted by all the models in both a priori
and a posteriori tests. Because SGS model coefficients are usually constrained by
the energy transfer rate Pkk , there is no reason for the modelled mean SGS stress
to match measurements. As previously pointed out (Kosović 1997; Chen & Tong
2006), an under-prediction of 〈τ13〉 leads to over-predictions of the mean shear and
the streamwise velocity variance (figure 1), which is further evidenced by the LES
prediction of 〈τ13〉.

The mean SGS stress production rate components 〈P11〉, 〈P22〉 and 〈P13〉 have larger
magnitudes than the other components, which are generally captured by the models
in both a priori and a posteriori tests. However, none of the models captures well
the relative magnitudes among these components. The large magnitudes of 〈P d

11〉
and 〈P d

22〉 are generally captured by the models, but their ratio is not reproduced
whereas 〈P d

13〉 is under-predicted by the Smagorinsky model and the split model in
both a priori and a posteriori tests, which is due to the under-prediction of 〈τ d

33〉 as
〈P d

13〉 is dominated by −〈τ d
33∂ur

1/∂x3〉 (Chen & Tong 2006). At the same time, 〈P d
13〉 is

over-predicted by the Kosović model in both a priori and a posteriori tests due to its
over-prediction of 〈τ d

33〉. The SGS production component 〈P d
33〉 is well predicted in a

priori tests by the Smagorinsky model and the split model but less well captured in



A posteriori subgrid-scale model tests 159

–0.2 –0.1 0 0.1 0.2 0.3
0

0.05

0.10

0.15

0.20

0.25

0.30

(a) (b)

(c) (d)

η
η

Reynolds
Resolvable
SGS
Smag
Split
Kosovic
Bandpass
Strain Rate

–0.2 –0.1 0 0.1 0.2 0.3
0

0.05

0.10

0.15

0.20

0.25

0.30

increasing bandwidth

–0.2 –0.1 0 0.1 0.2 0.3
0

0.05

0.10

0.15

0.20

0.25

0.30

ξ ξ

Measured
Smag
Split
Kosovic

–0.2 –0.1 0 0.1 0.2 0.3
0

0.05

0.10

0.15

0.20

0.25

0.30

Measured
Smag
Split
Kosovic

Figure 3. Lumley triangle representations of (a) the measured Reynolds stress, mean
resolvable-scale stress, mean SGS stress, mean band-passed stress with a second filter size
twice that of the first filter and the modelled (a priori test) mean SGS stress. The strain rate is
also given for reference. (b) the LES results of the mean band-passed stress using the Kosović
model. The bandwidth increases from 2 grid spaces to 34 grid spaces with an increment of
4 grid spaces; (c) the measured and the modelled (a priori test) mean SGS stress production
rate 〈Pij 〉; (d ) the measured and the modelled (a priori test) 〈P d

ij 〉.

the LES, which is probably due to the LES not reproducing the correct correlation
between τ d

33 and ∂ur
3/∂x3 (the dominant term in 〈P d

33〉; see Chen & Tong 2006).
In order to quantitatively measure the anisotropy of the SGS turbulence and the

relationships among SGS components, we examine their eigenvalue structures using
the Lumley triangle (Lumley 1978). For example, the normalized mean SGS stress
tensor for 〈τij 〉, 〈

τ d
ij

〉
/〈τkk 〉 = 〈τij 〉/〈τkk 〉 − 1

3
δij , (3.1)

can be determined by two variables ξ and η defined in terms of its invariants (Pope
2000)

6η2 = −2II =
〈
τ d
ij

〉〈
τ d
ij

〉
/〈τkk 〉2, (3.2)

6ξ 3 = 3III =
〈
τ d
ij

〉 〈
τ d
jk

〉 〈
τ d
ki

〉
/ 〈τkk〉3

, (3.3)

where II and III are the second and the third invariants of the anisotropy tensor. If
〈τij 〉 is isotropic, both ξ and η are zero (the first invariant or trace of 〈τ d

ij 〉 is always
zero by definition).

The Lumley triangle representations of the measured Reynolds stress and the
resolvable-scale stress (figure 3a) show that both are close to axisymmetric with two
large eigenvalues (η = − ξ ). On the other hand, the mean SGS stress is close to
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axisymmetric with one large eigenvalue (η = ξ ) in the surface layer. This difference is
due to the influence of large-scale convective eddies, which result in large values
of horizontal velocity variances. The filter near the surface removes the effects
of the large-scale eddies, resulting in a structure close to axisymmetric with one
large eigenvalue. The eigenvalue structure of the modelled mean SGS stress using
these models (a priori tests), also shown in figure 3(a), is less anisotropic than the
measurements. The slightly higher level of anisotropy of the Kosović model than that
of the Smagorinsky model was also observed in a priori tests (Chen & Tong 2006).
The higher level of anisotropy of the split model than that of the Smagorinsky model
is due to the contribution from the mean part of the modelled τ13 component.

The SGS stress production rate does not satisfy the Cauchy–Schwartz inequality.
Consequently its ξ and η values are not confined to the Lumley triangle. Nonetheless,
it is useful to present its structure using the Lumley triangle in order to compare it
with that of the SGS stress. We use an arbitrary factor to normalize the production
rate such that the ξ and η values fall within the Lumley triangle. Therefore, ξ > 0
still represents a structure close to axisymmetric with one large eigenvalue, ξ < 0
represents a structure close to axisymmetric with two large eigenvalues and the origin
represent an isotropy structure. However, contrary to the case for SGS stress, the
distance from the origin does not represent the level of anisotropy. Figures 3(c)
and 3(d) show the Lumley triangle representation of the measured 〈Pij 〉 and 〈P d

ij 〉,
respectively. Figure 3(c) shows that 〈Pij 〉 has a similar structure to the mean SGS
stress as they are approximately on the same radical line originating from the origin,
consistent with the good alignment and tensorial contraction between the conditional
SGS stress and its production rate (Chen & Tong 2006). Figure 3(d) shows that 〈P d

ij 〉
has a structure similar to 〈Pij 〉, but is closer to axisymmetric with one large eigenvalue
(η = ξ ), indicating that including the production rate due to straining of the isotropic
part of the SGS stress shifts the SGS stress production rate structure away from
being axisymmetric with one large eigenvalue. Note that in the a priori tests the
modelled SGS stress is obtained by adding the measured τkk/3 to the modelled τ d

ij

to compute the modelled Pij . Therefore, the eigenvalue structure of the mean SGS
stress production rate is influenced by the relative ratio between the measured τkk/3
and the modelled τ d

ij . We find that artificially increasing the percentage of τkk shifts
the eigenvalue structure of the mean SGS stress production rate closer to being
axisymmetric with two large eigenvalues, indicating that this observed trend is at
lease qualitatively correct.

The Lumley triangle representations of the Reynolds stress, the mean resolvable-
scale stress and the mean SGS stress obtained in LES using the Smagorinsky model,
the split model and the Kosović model are shown in figures 4(a), 5(a) and 6(a),
respectively. The structures of the Reynolds stress and the mean resolvable-scale
stress are well predicted by the split model and the Kosović model. The predicted
level of anisotropy of the Reynolds stress using the Smagorinsky model is slightly
lower than the measurements, but the resolvable-scale mean stress is slightly higher
than the measurements, which results from the over-prediction of 〈u′

3u
′
3〉 and the

under-prediction of 〈ur
3u

r
3〉 by the Smagorinsky model.

The LES mean SGS stress using the Smagorinsky model, the split model and the
Kosović model are close to axisymmetric with two large eigenvalues. Their eigenvalue
structures are different from the measured mean SGS stress eigenvalue structure, but
are similar to the a priori test results (figure 3a). The Lumley triangle representation of
〈Pij 〉 from LES is close to axisymmetric with one large eigenvalue (figures 4b, 5b and
6b), which is similar to the measurements shown in figure 3(c). Its deviatoric part 〈P d

ij 〉
is also close to axisymmetric with one large eigenvalue, similar to the measurements
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Figure 4. The Smagorinsky model results (a posteriori test) of the Lumley triangle
representations of (a) the Reynolds stress, mean resolvable-scale stress, mean SGS stress,
mean band-passed stress with a second filter size twice that of the first filter and the mean
strain rate; (b) the mean SGS stress production rate.

and the a priori test results (figure 3d), except the Kosović model, which over-predicts
the magnitude of 〈P22〉 due to the over-predicted magnitude of 〈τ22〉.

While the LES mean SGS stress eigenvalue structure is different from the
measurements, the eigenvalue structures of the Reynolds and mean resolvable-scale
stresses are quite well predicted, probably because the SGS stress has a relatively weak
influence on the large convective eddies, which impact strongly the structure of the
Reynolds stress. In order to examine the influence of the SGS model on the different
parts of the resolved scales, we compute a band-passed stress using a bandpass filter
〈τ b

ij 〉 = 〈(ur
i −unr

i )(ur
j −unr

j )〉, where nr denotes a second low-pass filter of width n times
that of the LES filter size. Figure 3(b) shows the LES results for several second filter
widths ranging from 2 grid spaces to 34 grid spaces. For n= 2 the LES band-passed
stress has a structure quite different from that of the measured band-passed stress. As
the bandwidth increases, i.e. as the large scales are included, the structure shifts closer
to the mean resolvable-scale stress structure. Therefore, the LES stress structure near
the filter scale is quite different from that of measurements but the large-scale LES
structure is similar to the measurements, suggesting the SGS stress influences strongly
the structure near the filter scale but not the large scales.

The different eigenvalue structures of the LES Reynolds stress and SGS stress
can also be understood by examining the first two terms on the right-hand side of
(1.1): In a horizontally homogeneous atmospheric boundary layer, the derivatives
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Figure 5. The split model results (a posteriori test) of the Lumley triangle representations
of (a) the Reynolds stress, mean resolvable-scale stress, mean SGS stress, mean band-passed
stress with a second filter size twice that of the first filter and the mean strain rate; (b) the
mean SGS stress production rate.

in the horizontal directions in the first term vanish, and the SGS stress influences
the resolvable-scale JPDF through 〈τ13|ur〉, 〈τ23|ur〉 and 〈τ33|ur〉. Therefore, the over-
prediction of the magnitude of 〈τ22〉 by the Kosović model does not influence strongly
the eigenvalue structure of the Reynolds stress. However, it may cause inaccuracies
in flows that are not horizontally homogeneous. The slight inaccuracies in the LES
eigenvalue structures of the Reynolds stress and the mean resolvable-scale stress
using the Smagorinsky model come from the inaccuracies of 〈u′

3u
′
3〉 and 〈ur

3
′ur

3
′〉,

which are probably due to the inaccuracies of 〈τ33〉 (the dominant term in 〈P33〉).
The improvement of the LES results using the split model over the Smagorinsky
model is probably a result of the increased anisotropy through 〈τ13〉, which partially
compensates the effects of the under-prediction of 〈τ33〉. The second term in (1.1)
contains the SGS stress production rate, which influences the resolvable-scale statistics
regardless of homogeneity (Chen et al. 2003). It is likely that the relatively good LES
predictions of the eigenvalue structure of the Reynolds stress and the resolvable-scale
stress are partly a result of the good prediction of the eigenvalue structure of 〈P d

ij 〉.
In addition, the Lumley triangle representation of the normalized mean LES strain
rate (normalized by

√
〈τkk〉/2/(0.1	)) is also generally well predicted by all models

(figures 3a, 4a, 5a and 6a).



A posteriori subgrid-scale model tests 163

–0.2 –0.1 0 0.1 0.2 0.3
0

0.05

0.10

0.15

0.20

0.25

0.30

η
η

Reynolds
Resolvable
SGS
Bandpass
Strain Rate

(a)

(b)

–0.2 –0.1 0 0.1 0.2 0.3
0

0.05

0.10

0.15

0.20

0.25

0.30

ξ

�P�
�Pd�

Figure 6. The Kosović model results (a posteriori test) of the Lumley triangle representations
of (a) the Reynolds stress, mean resolvable-scale stress, mean SGS stress, mean band-passed
stress with a second filter size twice that of the first filter and the mean strain rate; (b) the
mean SGS stress production rate.

4. Conditional SGS stress and conditional SGS stress production
The conditional statistics are plotted against the sample-space variable for the

horizontal resolvable-scale velocity ur
1 for different values of the vertical resolvable-

scale velocity ur
3. To achieve sufficient statistical convergence while using relatively

small data bin sizes, we do not include the third velocity component as a conditioning
variable. The data bins for the first conditioning variable (e.g. ur

1 in figure 7a) have the
width shown in the figures (12 bins between ±2 standard deviations whereas that for
the second conditioning variable is twice as wide). For clarity, only the fluctuations of
the resolvable-scale velocity components normalized by their respective r.m.s. values
are plotted.

The measured conditional SGS stress and its production rate components are shown
in figure 7. Their trends and the magnitudes generally depend on the resolvable-scale
velocity and increase with the resolvable-scale velocity. One exception is 〈P33|ur

1, u
r
3〉,

which weakly depends on ur
1, consistent with the results in Chen & Tong (2006). The

Lumley triangle representation, the eigenvector geometric alignment, eigenvalues and
the eigenvalue ratios of the conditional SGS stress to its production rate are shown in
figures 8(a) and 9, respectively. These results are similar to those for array 1 discussed
in detail in Chen & Tong (2006).
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Figure 7. Conditional means of the measured deviatoric SGS stress components and its
production rate conditional on the resolvable-scale velocity components. The dependence
on the horizontal velocity components is generally stronger for positive ur

3. The conditional
shear stress component obtained using a combination of a cross-stream top-hat filter and a
streamwise Gaussian filter having the same variance as the top-hat filter (e) is within 10 % of
that obtained using top-hat filters (b).

Several a priori test results for the Smagorinsky model are shown in figure 10. The
model can predict well neither the conditional mean of SGS stress nor its production
rate. It can only predict quite well the trends of some shear stress components, but
not the normal components and can predict the trends of some diagonal components
of the conditional SGS stress production rate, but not the off-diagonal components.
The magnitudes of these components are generally poorly predicted. The level of
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(d ) the Kosović model. The arrows represent the conditioning vector (ur
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r
3).

anisotropy is also severely under-predicted (figure 8b). These results are similar to
those discussed in Chen & Tong (2006).

The a priori test results for the split model are generally similar to that of the
Smagorinsky model except 〈τ13|ur〉 (figure 11) because the contribution from the
mean part is generally small except for the SGS shear stress. Figure 11 shows that
the variation of 〈τ split

13 |ur〉 is smaller but the magnitude is larger than that of the
Smagorinsky model due to the contribution from the mean part, which results in a
higher level of anisotropy (figure 8c).

The results for the Kosović model (figure 12) show that it has better overall
performance than the Smagorinsky model and the split model. Chen & Tong (2006)
showed that it has the best overall performance among the models tested. However,
it under-predicts the magnitude of the conditional SGS stress when the mean energy
transfer is matched. The level of anisotropy (figure 8d) is also under-predicted, but
the prediction is improved over that of the Smagorinsky model.

In the following, we present the a posteriori test (LES) results of these SGS models
and compare them with the measurements and the a priori test results discussed above
(figure 7–12). Additional a priori test results can be found in Chen (2006).

4.1. The Smagorinsky model

Several LES results for 〈τ smg
ij |ur

1, u
r
3〉 and 〈P smg

ij |ur
1, u

r
3〉 are shown in figure 13. The

magnitudes of both are under-predicted. The trend of 〈τ d
11|ur〉 (not shown, refer to

Chen 2006) is generally well predicted. However, similar to the a priori test results,
its magnitude is severely under-predicted. The trend and magnitude of 〈τ d

22|ur
2, u

r
3〉
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Figure 9. The measured geometric alignment angles and eigenvalues of the conditional SGS
stress and its production rate: (a, b) the geometric alignment angles; (c, d) the eigenvalues of
the conditional SGS stress; (e, f ) the eigenvalue ratios of the conditional SGS stress to its
production rate.

(not shown) are generally well predicted. The dependence of 〈τ d
33|ur

1, u
r
3〉 (figure 13a)

on ur
1 and the magnitude are under-predicted. Figure 13(b) shows that the trend of

〈τ13|ur
1, u

r
3〉 on ur

3 is reasonably well predicted, but the magnitude is under-predicted.
These results are similar to the a priori test results (figure 10). The under-prediction of
〈τ13|ur

1, u
r
3〉 in both a priori and a posteriori tests provides strong evidence supporting
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Figure 10. Modelled conditional SGS stress and its production rate (a priori test) using the
Smagorinsky model. Only the trend of 〈τ13|ur
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r
3〉 is predicted reasonably well.
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Figure 11. Modelled conditional SGS shear stress (a priori test) using the split model. The
variations of the predicted 〈τ13|ur

1, u
r
3〉 are smaller but the magnitude is larger than that of the

Smagorinsky model due to the contribution from the mean part.

the argument that it causes the over-prediction of the vertical mean shear and the
streamwise velocity variance (see Chen & Tong 2006).

The magnitude of 〈P d
11|ur

1, u
r
3〉 (not shown) is generally under-predicted, but its

dependence on ur
3 is reasonably well predicted. The under-prediction of the magnitude
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Figure 12. Modelled conditional SGS stress and its production rate (a priori test) using the
Kosović model.

is a result of the under-predictions of the magnitudes of τ d
11 and τ13, the two dominant

SGS stress components in 〈P d
11|ur

1, u
r
3〉 = 〈−τ d

1j ∂ur
1/∂xj |ur

1, u
r
3〉 (Chen & Tong 2006).

The magnitude of 〈P d
33|ur

1, u
r
3〉 (figure 13c) and its asymmetric dependence on ur

3 are
not well captured due to the under-prediction of τ33 because 〈P d

33|ur
1, u

r
3〉 is dominated

by 〈−τ d
33∂ur

3/∂x3|ur
1, u

r
3〉 (Chen & Tong 2006). The trend and magnitude of 〈P d

13|ur
1, u

r
3〉

(figure 13d) are under-predicted. Again, this is due to the poor model prediction of
〈τ33|ur

1, u
r
3〉 as it is also a dominant component in 〈P d

13|ur
1, u

r
3〉 (Chen & Tong 2006).

These results are similar to the a priori tests with the exception that the a posteriori
results for 〈P d

13|ur
1, u

r
3〉 are somewhat better than the a priori test results. The poor

prediction of 〈P d
33|ur

1, u
r
3〉, in particular its asymmetric dependence on ur

3, in both
a priori and a posteriori tests provides further evidence that it is the cause for the
under-prediction of the vertical velocity skewness in the surface layer (figure 2; also
see Chen & Tong 2006).

Chen & Tong (2006) argued that the level of anisotropy of the conditional
SGS stress is very important for understanding the surface layer dynamics and
for SGS modelling. The level of anisotropy of the conditional SGS stress can also
be characterized by the representation in the Lumley triangle as done in Chen &
Tong (2006). Previous results (Chen & Tong 2006) have shown that the anisotropy
is generally weak for negative ur

3 but is much stronger for positive ur
3. For positive

and negative ur
1 values 〈τij |ur

1, u
r
3〉 is close to axisymmetric with one large eigenvalue

and two large eigenvalues respectively, probably reflecting the shear and buoyancy
effects. The level of anisotropy of the conditional SGS stress in LES represented in
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Figure 13. The Smagorinsky model results (a posteriori test) of the conditional SGS stress
and its production rate.

the Lumley triangle is shown in figure 14(a). Similar to the a priori test results, the
data points are generally closer to the origin than the measurements, indicating an
under-prediction of the level of the anisotropy. The qualitative dependence of the
eigenvalue structure on the resolvable-scale velocity is not correctly predicted by LES.
The main reason for the under-prediction of the anisotropy is similar to that in a
priori tests: the strong correlation between the modelled SGS stress and the resolved
strain rate forces the reduction of the magnitude of the anisotropic (deviatoric) SGS
stress when the correct energy transfer rate is maintained.

To study the relationship between the eigenvalue structures of the conditional
SGS stress and its production rate, which is important for understanding the SGS
dynamics and for SGS modelling, we examine the geometric alignment between
〈τ d

ij |ur
1, u

r
3〉 and 〈P a

ij |ur
1, u

r
3〉 (where P a

ij = Pij − Pkkδij/3). We use the same definition
of the measure of the geometric alignment as given in Chen & Tong (2006). The
eigenvalues of the conditional SGS stress tensor 〈τ d

ij |ur
1, u

r
3〉 are denoted as ατ , βτ and

γτ , ordered such that ατ � βτ � γτ , and the corresponding unit eigenvectors as ατ , βτ

and γ τ . Similarly, the eigenvalues of the conditional SGS stress production tensor
〈P a

ij |ur
1, u

r
3〉 are denoted as αP , βP and γP , ordered such that αP � βP � γP , and the

corresponding unit eigenvectors as αP , βP and γ P . Three alignment angles, θ, φ and ξ ,
are defined as θ = cos−1(|γ P · γ τ |) (the angle between γ P and γ τ ), φ = cos−1(|βP · βτ |)
and ξ = cos−1(|αP · ατ |). Chen & Tong (2006) found that 〈τ d

ij |ur
1〉 and 〈P a

ij |ur
1〉 for

array 1 are generally well aligned with the alignment angles less than 10◦ and weakly
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Figure 14. LES results (a posteriori test) of the Lumley triangle representation of the
conditional SGS stress using (a) the Smagorinsky model; (b) the split model; (c) the Kosović
model.

dependent on ur
1 while 〈τ d

ij |ur
3〉 and 〈P a

ij |ur
3〉 are well aligned for positive ur

3 and less well
aligned for negative ur

3. The measurement results for array 2 are shown in figure 9.
The geometric alignment between 〈τ d

ij |ur
1, u

r
3〉 and 〈P a

ij |ur
1, u

r
3〉 is generally well

predicted in LES by the Smagorinsky model (figure 15a and b) for ur
1 and ur

3 > 0, but
is over-predicted for ur

3 < 0. The generally good alignment for ur
3 > 0 indicates that

the LES reproduces the effects of the quasi-equilibrium dynamics between the SGS
stress production and destruction mechanism in the surface layer. But for ur

3 < 0, the
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Figure 15. The Smagorinsky model results (a posteriori test) of the geometric alignment angles
and eigenvalues of the conditional SGS stress and its production rates (a, b) the geometric
alignment angles; (c, d) the eigenvalues of the conditional SGS stress; (e, f ) the eigenvalue
ratios of the conditional SGS stress to its production rate.

LES erroneously predicts a quasi-equilibrium state when the surface layer is not in
such a state.

The trends of the eigenvalues of 〈τ d
ij |ur

1〉 (figure 15c and d ) are generally well
predicted while the dependencies on ur

3 are generally less well predicted. At the same
time the magnitudes are generally under-predicted, which is consistent with the results
for 〈τ d

ij |ur
1, u

r
3〉. The trends and the magnitude of the eigenvalue ratios of 〈τ d

ij |ur
1〉 to

〈P a
ij |ur

1〉 (figure 15e and f ) are also not well predicted.
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Figure 16. Contraction of the conditional SGS stress and its production rate from the LES
(a posteriori test) and the measurements.

The overall similarity between 〈τ d
ij |ur

1, u
r
3〉 and 〈P a

ij |ur
1, u

r
3〉 can be quantified

using their contraction 〈τ d
ij |ur

1, u
r
3〉 〈P a

ij |ur
1, u

r
3〉 = (〈τ d

ij |ur
1, u

r
3〉〈P a

ij |ur
1, u

r
3〉)/ (|〈τ d

ij |ur
1, u

r
3〉|

|〈P a
ij |ur

1, u
r
3〉|). If the two tensors are perfectly aligned and their eigenvalues are

proportional, the contraction has the value of one. The contraction (figure 16) is
predicted well for ur

3 > 0, but not for ur
3 < 0, consistent with the above eigenvector

alignment and eigenvalue results.
The eigenvalue structure of the conditional SGS stress is studied here in the

context of the resolvable-scale JPDF equation. Previous studies (e.g. Tao et al. 2000;
Higgins, Meneveau & Parlange 2007) have examined the alignment properties of the
eigenvectors of the SGS stress and the resolved strain rate as well as other SGS
and resolved variables. While the alignment of these eigenvectors are not directly
related to the JPDF equation, the eigenvector alignment between SGS stress and
resolvable-scale strain rate and between SGS stress and its production rate are useful
for understanding the trend of the eigenvalue structures of the conditional SGS stress
and the conditional SGS stress production rate. An investigation of the conditional
alignment by the authors is under way and will be published in a separate paper.

The a posteriori results shown above are generally similar to the a priori test results,
suggesting that the LES reproduces reasonably well the conditional resolvable-scale
strain rate because these tests use the measured and LES conditional strain rates.
However, there must be differences between the two types of test results for any
imperfect SGS models as identical results would indicate that the model input (the
resolvable-scale velocity gradient and the SGS kinetic energy, etc.) are perfectly
predicted by LES, which would imply a perfect SGS model. Indeed, the better
prediction of 〈P d

13|ur
1, u

r
3〉 in LES than in the a priori test results indicates that in

certain situations the LES does not correctly reproduce the resolvable-scale stress
and strain rate correlation. Nonetheless, the consistency between the a posteriori test
results and the a priori test results demonstrates the effectiveness of analysing the
conditional SGS stress and its production rate as an approach for identifying specific
model deficiencies and for evaluating SGS model performance in simulations.

4.2. The split model

Table 2 shows that the LES results for the mean SGS stresses using the split model are
essentially the same as those of the Smagorinsky model except the mean SGS shear
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Figure 17. The split model results (a posteriori test) of the conditional SGS stress and its
production rate.

stress component 〈τ13〉. The LES results for the conditional means for the two models
are also similar except 〈τ d

13|ur
1, u

r
3〉 (figure 17a). The dependence of 〈τ d

13|ur
1, u

r
3〉 on ur

1

is under-predicted by the split model. The magnitude is also under-predicted and is
smaller than that of the Smagorinsky model. The deviation of the a posteriori test
results from the a priori tests and the measurements indicates that the dependencies
of the flow statistics such as the strain rate on the resolvable-scale velocity are not
correctly reproduced.
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The LES conditional SGS stress production rate for the split model is less similar to
that of the Smagorinsky model. The production component 〈P split

11 |ur
1, u

r
3〉 (not shown)

has a similar trend to that of the Smagorinsky model, but with a smaller magnitude
due to the smaller magnitude of the predicted τ d

13. The magnitude of 〈P split
33 |ur

1, u
r
3〉

(figure 17b) is slightly smaller than that of the Smagorinsky model. The magnitude of
〈P split

13 |ur
1, u

r
3〉 (figure 17c) is also slightly smaller than that of the Smagorinsky model.

These differences further highlight the importance of the SGS stress production rate
(Chen et al. 2003).

The Lumley triangle representation of the conditional SGS stress is shown in
figure 14(b). Similar to the a priori test results, the data points are closer to the origin
than the measurements, indicating an under-prediction of the level of the anisotropy.
The geometric alignment (not shown) between the conditional SGS stress and the
conditional SGS stress production rate is generally similar to that of the Smagorinsky
model except that the alignment angle θ and ξ are approximately 5◦ larger. The
good tensorial alignment indicates that the simulation reproduces the effects of the
quasi-equilibrium dynamics between the SGS stress production and destruction rates
in the surface layer for ur

3 > 0. However, the model also over-predicts the alignment
for ur

3 < 0 when the surface layer is not in quasi-equilibrium, i.e. when there is an
imbalance between the SGS stress production and destruction rates.

The eigenvalues and the eigenvalue ratios for the split model (not shown) are also
similar to those of the Smagorinsky model, but with slightly smaller values. The
tensorial contraction (figure 16) is also similar to that of the Smagorinsky model, but
with slightly larger magnitudes.

These a posteriori results are similar to the a priori test results, not qualitatively
different from that of the Smagorinsky model. Therefore, while the split model
provides improvements over the Smagorinsky for some statistics, such as the mean
shear and the streamwise velocity variance profile, it may be expected to have similar
performance to the Smagorinsky model for other statistics.

4.3. The Kosović model

In LES the Kosović model predicts the overall trends of 〈τ d
ij |ur

1, u
r
3〉 and 〈P d

ij |ur
1, u

r
3〉

(figure 18) well. The magnitude of 〈τ d
ij |ur

1, u
r
3〉 is under-predicted while that of

〈P d
ij |ur

1, u
r
3〉 is better predicted. The trend of 〈τ d

11|ur
1, u

r
3〉 (not shown) is generally

well predicted, but the magnitude is under-predicted, similar to the a priori test
results (Chen & Tong 2006). The trend and magnitude of 〈τ d

22|ur
2, u

r
3〉 (not shown)

are well predicted while the magnitude of 〈τ d
33|ur

1, u
r
3〉 (figure 18a) is slightly under-

predicted. The trend of 〈τ d
33|ur〉 is generally well predicted but the dependence on ur

3 is
over-predicted due to the over-prediction of the dependence on ur

3 of the conditional
vertical gradient, 〈∂ur

3/∂x3|ur
3〉. The magnitude of 〈τ d

13|ur
1, u

r
3〉 (figure 18b) is under-

predicted by a factor of two. Its dependence on ur
1 is generally well predicted, but the

dependence on ur
3 is under-predicted.

The magnitude of 〈P d
11|ur

1, u
r
3〉 (not shown) is under-predicted by a factor of two

due to the under-prediction of the magnitude 〈τ13|ur
1, u

r
3〉. The trend of 〈P d

11|ur
1, u

r
3〉 is

generally well predicted and the magnitude of 〈P d
33|ur

1, u
r
3〉 (figure 18c) is generally well

predicted, although the dependence on ur
3 is over-predicted because the dependence

of 〈τ d
33|ur

1, u
r
3〉 on ur

3 is over-predicted. The magnitude and trend of 〈P d
13|ur

1, u
r
3〉 (fig-

ure 18d) are well predicted, but the dependence on ur
3 is over-predicted due to the

over-prediction of the dependence of 〈τ33|ur
1, u

r
3〉 on ur

3 . These results are also similar
to the a priori test results.
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Figure 18. The Kosović model results (a posteriori test) of the conditional SGS stress and its
production rate.

We note that in spite of the improved prediction of 〈P d
33|ur

3〉 by the Kosović model
in both a priori and a priori tests, the vertical velocity skewness is under-predicted in
LES (figure 2), suggesting that other SGS components (e.g. the pressure terms) may
be causing the poor prediction. Therefore, while in most cases (e.g. the Smagorinsky
model) the model predictions of 〈τij |ur

1, u
r
3〉 and 〈Pij |ur

1, u
r
3〉 correspond well with LES

results, there are exceptions. This result points to the need for further investigations
of the JPDF equation, especially those that can lead to analytical results on the
relationship between the SGS stress and the JPDF.

The Lumley triangle representation of the conditional SGS stress, shown in
figure 14(c), is different from the measurements but is similar to the a priori test
results. There are more data points close to η = − ξ (axisymmetric with two large
eigenvalues) than to η = ξ (axisymmetric with one large eigenvalue), which comes from
the over-prediction of the magnitude of 〈τ d

22|ur
1, u

r
3〉. Again, the over-prediction of the

magnitude of 〈τ d
22|ur

1, u
r
3〉 is expected to have little consequence on the resolvable-

scale statistics in a horizontally homogeneous boundary layer, but may result in
inaccuracies in other flows where τ22 is important.

The geometric alignment angles between 〈τ d
ij |ur

1, u
r
3〉 and 〈P a

ij |ur
1, u

r
3〉 are shown in

figures 19(a) and 19(b). The alignment is generally well predicted for ur
1 and ur

3 > 0.
The dependencies for ur

3 < 0 are less well predicted, but show improvements over the
Smagorinsky model and the split model.

The dependencies of the eigenvalues of 〈τ d
ij |ur

1, u
r
3〉 on ur

1 and ur
3 (figures 19c and

19d) are generally well predicted but their magnitudes are under-predicted. The trends
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Figure 19. The Kosović model results (a posteriori test) of the geometric alignment angles
and eigenvalues of the conditional SGS stress and its production rate: (a, b) the geometric
alignment angles; (c, d) the eigenvalues of the conditional SGS stress; (e, f ) the eigenvalue
ratios of the conditional SGS stress to its production rate.

and the magnitudes of the eigenvalue ratios (figures 19e and 19f) are not predicted
correctly. The magnitude and the trend of the contraction between 〈τ d

ij |ur
1〉 and

〈P a
ij |ur

1〉 shown in figure 16 are very close to the measurements and show significant
improvements over the Smagorinsky model and the split model. These alignment
results are similar to the a priori test results.
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5. Conclusions
In this study a new a posteriori test approach is developed and employed to study

SGS model performance. The approach compares the means of the LES-generated
SGS stress and the SGS stress production rate conditional on the resolvable-scale
velocity with measurements. These statistics must be reproduced by the SGS model
for LES to correctly predict the one-point resolvable-scale velocity joint probability
density function.

The measurement results represented in the Lumley triangle show that the Reynolds
stress and the mean resolvable-scale stress are close to axisymmetric with two large
eigenvalues, which is due to the influence of large convective eddies. The mean SGS
stress is close to axisymmetric with one large eigenvalue in surface layer, a result of
the filter near the surface removing the contribution of these eddies. The mean SGS
stress production rate has a similar structure to the mean SGS stress, consistent with
the good alignment and tensorial contraction between the conditional SGS stress and
its production rate (Chen & Tong 2006).

The Lumley triangle representations of the LES mean SGS stress for all models
are close to axisymmetric with two large eigenvalues, consistent with the a priori test
results, but are different from the measured mean SGS stress eigenvalue structure.
However, the LES Reynolds stress and the mean resolvable-scale stress using the split
model and the Kosović model compare well with measurements. The predicted level
of anisotropy of the Reynolds stress using the Smagorinsky model is slightly lower
than the measurements, but that of the resolvable-scale mean stress is slightly higher
than the measurements. The reasonably accurate prediction of the Reynolds stress
structure is probably a result of the relatively weak influence of the SGS motions on
the large convective eddies.

The magnitudes of the conditional SGS stress and the conditional SGS stress
production rate are generally under-predicted in LES using the Smagorinsky model.
The LES can reproduce the trends of some shear stress components but not those of
the normal components, and can reproduce the trends of some normal components
of the conditional SGS stress production rate, but not those of the off-diagonal
components. The anisotropy of the conditional SGS stress is under-predicted. The
geometric alignment and contraction between the conditional SGS stress and its
production rate are generally reproduced for ur

3 > 0, but not for ur
3 < 0. The predictions

of the trend of the conditional SGS stress using the dynamic Smagorinsky model
and its variants are unlikely to be fundamentally different as they still assume
proportionality between the SGS stress and the resolvable-scale strain rate. However,
these models are not designed to provide the correct level of dissipation rate, therefore
can result in LES statistics different from those of the Smagorinsky model. For
example, the energy transfer rate from the resolvable to the subgrid scales due to the
standard dynamic Smagorinsky model is lower than the correct level near the surface
(e.g. Porté-Agel et al. 2000b), resulting in excessive resolvable-scale kinetic energy
and shear stress. Consequently, the mean shear and the SGS shear stress are reduced
so that the correct total shear stress is maintained as required by the large-scale
conditions. Conceivably, there exists a value of the model constant that will produce
the correct mean shear, but the model is unlikely to predict the correct level of energy
transfer rate, resulting in inaccuracies in other resolvable-scale statistics such as the
kinetic energy.

The results using the split model are similar to the a priori test results, and are
not qualitatively different from that of the Smagorinsky model except the SGS shear
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component τ13. Therefore, the split model is expected to provide improvements over
the Smagorinsky model for some LES statistics and to have similar performance for
other statistics. The results using the Kosović model are similar to the a priori test
results and show improvements over the Smagorinsky model.

We note that in the present study we use top-hat filters to approximate the LES filter.
We also examined the sensitivity of the conditional SGS stress and the conditional
SGS stress production rate to the filter shape. The results show that the conditional
statistics vary typically by less than 5%–10 % of their values, much smaller than the
differences between the measurements and the SGS models. Nonetheless, it would be
useful to further explore the issue of LES filter and the optimal filter shape needed
to obtain the measured SGS statistics for comparison with LES statistics.

The a posteriori test results discussed are generally consistent with the a priori test
results. The strengths and deficiencies of the models observed here are also similar
to those identified in our previous statistical a priori tests analysing the conditional
statistics (Chen & Tong 2006). For example, the results provide further evidence
that the over-predictions of the mean vertical shear and the streamwise velocity
variance are a result of the under-prediction of the anisotropy of the SGS stress and
that the under-prediction of the vertical velocity skewness is caused by the under-
prediction of the asymmetry of the conditional production rate of the vertical normal
SGS stress.

The a priori and a posteriori tests conducted in the present study are based on the
necessary conditions for the one-point resolvable-scale velocity JPDF given by Chen
et al. (2003). However, the consistency of the two types of test results observed in the
present study suggests strongly that there is a close relationship between the a priori
and a posteriori tests, which may be a result of the dynamics of turbulent flows. The
strong empirical evidence of consistency also suggests that the a priori tests may be
a good indicator of the a posteriori results and the model performance in LES, i.e.
good a priori test results may be sufficient for good model performance in LES while
poor a priori performance generally leads to poor a posteriori performance. Using the
test results one can identify SGS model components that need improvements. For
the models tested in the present study, the predictions of τ11, τ13, τ33 and P33 need
to be improved. Therefore, while mathematically the conditions given by Chen et al.
(2003) are necessary conditions, in the flows studied they also appear to be quite
sufficient, further demonstrating the effectiveness of the approach for analysing the
conditional SGS stress and its production rate to test SGS models and to understand
SGS physics.

The consistency between the a priori and a posteriori test results observed here
is partly a consequence of the fact that both types of tests are based on the SGS
terms in the velocity JPDF equation. By contrast the traditional a priori tests have no
direct relationship to a posteriori tests because the former compare the instantaneous
modelled and measured SGS stress and the latter compare the LES and measured
statistics profiles. Our new analysis approach also provides direct tests of models for
which the modelled SGS stress is not determined by the current resolved fields, such
as transport-equation-based models (Hatlee & Wynngard 2007). For these models the
SGS stress is often not available a priori, making a priori tests impractical. However,
the present a posteriori test approach can still be performed, allowing identification of
specific model deficiencies and evaluation of SGS model performance in simulations.
The present study demonstrates that analyses based on the conditional SGS stress
and the conditional SGS stress production rate allow more meaningful comprehensive
model testing. It also provides impetus for further analytical study of the JPDF
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equation, which will greatly enhance our understanding of the relationship between
LES statistics and SGS models.

This work was supported by the National Science Foundation through grant
nos. ATM-0222421 and ATM-0638392.

REFERENCES

Bardina, J., Ferziger, J. H. & Reynolds, W. C. 1980 Improved subgrid scale models for large
eddy simulation. AIAA Paper 80-1357 .

Businger, J. A., Wynngard, J. C., Izumi, Y. & Bradley, E. F. 1971 Flux-profile relationships in
the atmospheric surface layer. J. Atmos. Sci. 28, 181–189.

Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid
Dynamics . Springer-Verlag.

Chen, Q. 2006 Investigation of the effects of subgrid-scale turbulence on resolvable-scale statistics.
PhD dissertation, Clemson University, Department of Mechanical Engineering.

Chen, Q. & Tong, C. 2006 Investigation of the subgrid-scale stress and its production rate in a
convective atmospheric boundary layer using measurement data. J. Fluid Mech. 547, 65–104.

Chen, Q., Wang, D., Zhang, H. & Tong, C. 2005 Effects of subgrid-scale turbulence on resolvable-
scale velocity-scalar statistics. J. Turbul. 6, 36.

Chen, Q., Zhang, H., Wang, D. & Tong, C. 2003 Subgrid-scale stress and its production rate:
conditions for the resolvable-scale velocity probability density function. J. Turbul. 4, 027.

Clark, R. A., Ferziger, J. H. & Reynolds, W. C. 1979 Evaluation of subgrid-models using an
accurately simulated turbulent flow. J. Fluid Mech. 91, 1–16.

Deardorff, J. W. 1980 Stratocumulus-capped mixed layers derived from a three-dimensional model.
Bound. Layer Met. 18, 495–527.

Domaradzki, J. A., Liu, W. & Brachet, M. E. 1993 An analysis of subgrid-scale interactions in
numerically simulated isotropic turbulence. Phys. Fluids A 5, 1747–1759.

Edsall, R. M., Thomson, D. W., Wyngaard, J. C. & Peltier, L. J. 1995 A technique for
measurement of resolvable-scale flux budgets. In 11th Symposium on Boundary Layers and
Turbulence, pp. 15–17. American Meteor Society.

Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity
model. Phys. Fluids A 3, 1760–1765.
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