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The multi-point Monin–Obukhov similarity (MMO) was recently proposed (Tong
& Nguyen, J. Atmos. Sci., vol. 72, 2015, pp. 4337–4348) to address the issue of
incomplete similarity in the framework of the original Monin–Obukhov similarity
theory (MOST). MMO hypothesizes the following: (1) The surface-layer turbulence,
defined to consist of eddies that are entirely inside the surface layer, has complete
similarity, which however can only be represented by multi-point statistics, requiring a
horizontal characteristic length scale (absent in MOST). (2) The Obukhov length L is
also the characteristic horizontal length scale; therefore, all surface-layer multi-point
statistics, non-dimensionalized using the surface-layer parameters, depend only on the
height and separations between the points, non-dimensionalized using L. However,
similar to MOST, MMO was also proposed as a hypothesis based on phenomenology.
In this work we derive MMO analytically for the case of the horizontal Fourier
transforms of the velocity and potential temperature fluctuations, which are equivalent
to the two-point horizontal differences of these variables, using the spectral forms
of the Navier–Stokes and the potential temperature equations. We show that, for the
large-scale motions (wavenumber k < 1/z) in a convective surface layer, the solution
is uniformly valid with respect to z (i.e. as z decreases from z > −L to z < −L),
where z is the height from the surface. However, for z < −L the solution is not
uniformly valid with respective to k as it increases from k < −1/L to k > −1/L,
resulting in a singular perturbation problem, which we analyse using the method of
matched asymptotic expansions. We show that (1) −L is the characteristic horizontal
length scale, and (2) the Fourier transforms satisfy MMO with the non-dimensional
wavenumber −kL as the independent similarity variable. Two scaling ranges, the
convective range and the dynamic range, discovered for z�−L in Tong & Nguyen
(2015) are obtained. We derive the leading-order spectral scaling exponents for the
two scaling ranges and the corrections to the scaling ranges for finite ratios of the
length scales. The analysis also reveals the dominant dynamics in each scaling range.
The analytical derivations of the characteristic horizontal length scale (L) and the
validity of MMO for the case of two-point horizontal separations provide strong
support to MMO for general multi-point velocity and temperature differences.
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1. Introduction
The Monin–Obukhov similarity theory (MOST) (Obukhov 1946; Monin & Obukhov

1954) is the theoretical foundation for understanding the surface layer of the
atmospheric boundary layer. It hypothesizes that all surface-layer statistics, when
scaled using the surface-layer parameters, depend only on the non-dimensional
parameter z/L, where L=−u3

∗
/(κ(g/Θ)Q), with z, L, u∗, κ , g, Θ and Q the distance

from the surface, the Obukhov length, the friction velocity, the von Kármán constant,
the gravity acceleration, the mean potential temperature and the surface temperature
flux, respectively. Many important surface-layer statistics have been found to follow
MOST, e.g. the non-dimensional mean shear and potential temperature gradients,
turbulent kinetic energy budget, the vertical velocity variance, and the inertial-range
spectrum and cospectrum (e.g. Businger et al. 1971; Wyngaard & Coté 1971;
Wyngaard, Coté & Izumi 1971; Kaimal et al. 1972; Kaimal 1978). However, it
has also been known since the late 1950s that a number of important surface-layer
statistics, such as the horizontal velocity variances and the large-scale horizontal
velocity spectra, do not conform to MOST (e.g. Lumley & Panofsky 1964; Kaimal
et al. 1972; Kaimal 1978; Caughey & Palmer 1979), rendering the surface-layer
similarity in the MOST framework incomplete and raising questions about the
existence of general similarity in the surface layer. The non-MOST behaviour also
suggests that some fundamental physics is missing from our understanding of the
surface layer. In spite of many previous efforts to address this issue (e.g. Betchov
& Yaglom 1971; Zilitinkevich 1971; Kader 1988; Yaglom 1994), a resolution has
proven to be challenging.

To understand the origin of the incomplete similarity in the MOST framework, Tong
& Nguyen (2015) examined the assumptions in MOST: (1) z represents the length
scale of the energy-containing eddies, and (2) L is the characteristic vertical length
scale, ‘the height of the sub-layer of dynamic turbulence’ (Obukhov 1946). Regarding
assumption (1), for turbulence statistics in a near-neutral surface layer and for certain
statistics in a convective surface layer (e.g. the vertical velocity variance), the energy-
containing length scale is of the order of z, which therefore is the appropriate length
scale in MOST. In a convective surface layer, however, the energy-containing scales
for some important statistics (e.g. horizontal velocity variances) are not z (in fact,
the scales of the convective eddies at a height z range from z to zi), and therefore
are not properly represented in MOST, where zi is the boundary layer (inversion)
height. Consequently, the parameter z/L does not characterize the relative influence
of buoyancy and shear effects, and MOST does not provide the correct scaling for
these statistics.

Since the use of z as the eddy length scale in the similarity theory is not always
justified, addressing the issue of incomplete similarity requires that the scales of
turbulent eddies be explicitly included in the similarity theory. To achieve this goal,
multi-point statistics, which are functions of the separations between points, thereby
explicitly containing the scale information, need to be used. Consequently, a general
similarity theory should be formulated in terms of multi-point statistics (Tong &
Nguyen 2015).

To form the similarity variables for multi-point statistics, which in general contain
both horizontal and vertical separations between the points, a horizontal characteristic
length scale is needed (L is the characteristic vertical length scale in MOST). The
geometry of the boundary layer, which is horizontally homogeneous, does not impose
one. Tong & Nguyen (2015) pointed out that the new physical understanding gained in
their AHATS field programme (Nguyen et al. 2013; Nguyen & Tong 2015) provides
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642 C. Tong and M. Ding

this length scale. The results of the investigations on the turbulent (subgrid-scale)
stress budget in the convective surface layer (Nguyen et al. 2013; Nguyen & Tong
2015; Tong & Nguyen 2015) suggest that fluctuations of wavenumber k at the height
z∼ 1/k, where the buoyant production occurs, are coupled to those of k at z� 1/k,
where the production is small, by the convective eddies through the pressure transport
and the pressure–strain-rate correlation; therefore the dynamics of these motions
are influenced by shear and buoyancy productions in a similar way. Thus the new
physics suggests that the Obukhov length is not only the characteristic vertical length
scale in surface-layer similarity, as hypothesized in MOST, but also the characteristic
horizontal length scale (for 1/zi� k� 1/z), and that −kL is another non-dimensional
parameter for the surface-layer similarity (in addition to z/L).

Based on the above considerations, a generalized surface-layer similarity hypothesis,
the multi-point Monin–Obukhov similarity (MMO), was recently proposed (Tong &
Nguyen 2015). It hypothesizes that: (1) complete similarity exists in the surface layer,
but it can only be represented by multi-point statistics; and (2) the Obukhov length is
the characteristic length scale in both horizontal and vertical directions within MMO.
Therefore, all multi-point statistics, non-dimensionalized using the surface-layer
parameters, depend only on the reference height and separations non-dimensionalized
using L.

MMO was formulated in terms of the joint probability density function of velocity
differences, hypothesizing that all multi-point velocity difference statistics have
similarity properties (Tong & Nguyen 2015). Therefore the surface-layer similarity is
complete in the MMO framework, i.e. the similarity properties as hypothesized by
MMO are valid for all multi-point velocity and (transported) scalar statistics. MMO
has been successfully employed to predict turbulence spectra (Tong & Nguyen 2015).

With the establishment of MMO, the similarity properties of one-point statistics can
be derived from their relationships with multi-point statistics. For example, the scale of
the dominant contribution to a velocity variance can be obtained using its spectrum. If
this scale is a surface-layer scale, the variance follows MOST (e.g. the vertical velocity
variance). Otherwise it does not (e.g. the horizontal velocity variances). Therefore,
MOST can be regarded as a special case of MMO.

Similar to MOST, MMO is also proposed as hypotheses, however. Measurements
can only provide support to it, but cannot positively prove it. In the present study,
we use first principles to derive it. Starting from the Navier–Stokes equations and
the potential temperature equation, we employ the method of matched asymptotic
expansions to derive analytically the MMO similarity properties for the two-
dimensional horizontal Fourier transforms of the velocity and potential temperature
in a convective surface layer, which are equivalent to the two-point velocity and
temperature differences. We show that L is indeed a characteristic horizontal length
scale in the convective surface layer and that the Fourier transforms conform to
the MMO scaling. Note that, although we only derive the scaling properties of the
two-point statistics, L as a length scale in both horizontal and vertical directions
can be used to scale other multi-point statistics, thereby providing strong analytical
support to MMO.

The method of matched asymptotic expansions (Van Dyke 1975; Bender & Orszag
1978; Cousteix & Mauss 2007) has been previously employed to derive Kolmogorov’s
hypotheses by Lundgren (2003) who used two-point velocity differences, which are
easier to handle mathematically than Fourier transforms, especially the nonlinear terms
in the Navier–Stokes and temperature equations. We choose to analyse the Fourier
transforms because the differences for the vertical velocity might not have power-law
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Multi-point Monin–Obukhov similarity using matched asymptotic expansions 643

scaling. For a horizontally homogeneous velocity field, ui, we define its horizontal
Fourier transform over a horizontal physical domain of size L×L:

ûi(k)=
1
L2

∫ L

0
ui(x, t)e−ikx dx, (1.1)

where k is the horizontal wavenumber vector. Dividing the usual definition of the
transform by L2 gives the Fourier transform the same dimension as well as the same
scaling properties as the velocity, which is convenient for the scaling analysis. The
Fourier transform of the potential temperature θ̂ is defined similarly.

The transport equations of the Fourier components of the velocity and potential
temperature, obtained from the Navier–Stokes equations and the potential temperature
equation, are:

∂ ûj(k, t)
∂t

+L2
∫

û3(k′)
∂ ûj(k− k′)

∂x3
dk′ +L2

∫
ik′mûj(k′)ûm(k− k′) dk′

=−ikjp̂−2εjnlΩnûl(k)+ ν
∂2ûj

∂x2
3
− νk2ûj(k), j= 1, 2, m= 1, 2, (1.2)

∂ û3(k, t)
∂t

+L2
∫

û3(k′)
∂ û3(k− k′)

∂x3
dk′ +L2

∫
ik′mû3(k′)ûm(k− k′) dk′

=−
∂ p̂
∂x3
−2εjnlΩnûl(k)+ ν

∂2û3

∂x2
3
− νk2û3(k)+

g
Θ
θ̂, j= 3, m= 1, 2, (1.3)

∂θ̂(k, t)
∂t

+L2
∫

û3(k′)
∂θ̂(k− k′)

∂x3
dk′ +L2

∫
ik′mθ̂ (k

′)ûm(k− k′) dk′

=D
∂2θ̂

∂x2
3
−Dk2θ̂ (k), m= 1, 2, (1.4)

where ν, D, Ω and εjnl are the kinematic viscosity, the thermal diffusivity, the
Earth’s rotation vector and the alternating symbol, respectively. Since the viscous
and diffusion terms are only relevant to the inertial and dissipation-scale fluctuations
(Kolmogorov turbulence), we omit them in the equations hereafter. In the rest of
the paper we first identify the structure of the surface layer, showing that it has a
boundary layer structure in the horizontal wavenumber space, and therefore can be
analysed as a singular perturbation problem. We then perform the method of matched
asymptotic expansions of equations (1.2), (1.3) and (1.4). We show that L is the
horizontal characteristic length scale and that the Fourier transforms are functions of
the non-dimensional wavenumber −kL, proving the MMO hypotheses for two-point
horizontal separation, and thereby providing strong support to MMO for general
multi-point statistics.

We then determine the coefficients in the expansions using the velocity spectra
obtained using large-eddy simulation (LES) and compare the composite expansions
with the LES spectra. We choose to use LES rather than measurements for two
reasons. First, the spectra given by the asymptotic expansions are two-dimensional
spectra and ring-integrated spectra, both depending on the magnitude of the horizontal
wavenumber. For a ring-integrated spectrum with a scaling range less steep than
−1, i.e. the exponent greater than −1 (e.g. the vertical velocity spectrum for
k < 1/z), its one-dimensional counterpart does not have the same scaling exponent
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644 C. Tong and M. Ding

(a one-dimensional spectrum for a horizontally isotropic field cannot have a
positive scaling exponent). To compare such a spectrum with measurements, the
two-dimensional spectrum must be measured. Therefore, MMO presents a challenge
to measurement techniques. In addition, for the streamwise velocity spectrum, to
make proper comparisons with measurements, it is important that the two scaling
ranges are evident, i.e. sufficiently wide (greater than a decade). Such comparisons
would probably require new measurements, which therefore is a project by itself and
is deferred to future work.

The LES code, presented in detail in Moeng (1984), has been well documented
in the literature (Moeng & Wyngaard 1988; Sullivan, McWilliams & Moeng 1994,
1996), and has been later refined by Otte & Wyngaard (2001). We simulate three
cases of atmospheric boundary layer (ABL) flow: (1) a weakly unstable and (2) a
moderately unstable ABL driven by a combination of geostrophic winds and surface
heating, and (3) a nearly free convective ABL driven by a constant surface heat flux
and weak geostrophic winds. The subgrid-scale (SGS) fluxes are parametrized using
the Kosović model (Kosović 1997). The simulations are implemented on a mesh of
10243 and 20483 grid points (only 10243 for weakly unstable case), with a domain size
of 5120 m× 5120 m in the horizontal and 2048 m in the vertical. Tong & Nguyen
(2015) have demonstrated that the scaling of the spectra is not sensitive to the SGS
model employed, although the magnitude might depend on the model.

2. The structure of the surface layer
In this section we examine the structure of the surface layer and identify the

mathematical (singular perturbation) problem. We define a set of non-dimensional
(convective) variables as follows:

û1 =w∗û1c, û3 =w∗û3c, t=
zi

w∗
τ ,

L= ziLc, k=
1
zi

kc, x3 = zix3c, p̂=w2
∗
p̂c,

θ̂ =
Q
w∗
θ̂c,

∂ p̂
∂x3
=

w2
∗

zi

(
∂ p̂
∂x3

)
c

,

∂U
∂x3
=

u′′

zi

(
∂U
∂x3

)
c

,
∂Θ

∂x3
=

Q
w′zi

(
∂Θ

∂x3

)
c

.


(2.1)

Here w∗ = (gQzi/Θ0)
1/3, Q, U and Θ are the mixed-layer (Deardorff) velocity scale,

the surface potential temperature flux, the mean streamwise velocity and the mean
potential temperature, respectively, and u′′ and Q/w′ are the velocity and temperature
scales for ∂U/∂x3 and ∂Θ/∂x3, respectively, which will be determined later in this
paper. The direction of the mean velocity is defined as the x1 direction. The equation
for û1c is

D̄û1c

Dτ
w2
∗

zi
+ z2

i L2
c

∫
û3c
∂ û1c

∂x3c
dk′c

w2
∗

zi

1
z2

i
+ û3c

(
∂U
∂x3

)
c

w∗
u′′

zi
+ z2

i L2
c

∫
û1cik′1cû1c dk′c

w2
∗

zi

1
z2

i

=−ik1cp̂c
w2
∗

zi
−2ε1nlΩnûl(k). (2.2)

The Coriolis term, which scales as fw∗, where f = 2Ω3 is the Coriolis parameter, is
typically an order of magnitude smaller than the dominant (e.g. time-derivative) terms,
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and therefore is neglected. The horizontal derivative of the horizontal velocity scales
differently than the vertical derivative at the large scales, and these are written as
different terms hereafter.

Dividing (2.2) by w2
∗
/zi results in

D̄û1c

Dτ
+L2

c

∫
û3c
∂ û1c

∂x3c
dk′c + εû3c

(
∂U
∂x3

)
c

+L2
c

∫
û1cik′1cû1c dk′c =−ik1cp̂c.

TD CS S N1 P

 (2.3)

The time-derivative and mean advection (−Uikû1) terms have been combined into
a mean substantial derivative (TD) so that the time rate of change reflects the
turbulence time scale rather than the mean advection time scale. The second term on
the left-hand side (LHS) represents convection-induced stress (CS), and is negligible
above the convection-induced-stress layer (Businger 1973; Sykes, Henn & Lewellen
1993; Grachev, Fairall & Zilitinkevich 1997; Zilitinkevich et al. 2006). The last
(nonlinear) term (N1) on the LHS and the pressure-gradient term (P) are the leading
terms, balancing each other. The former scales as w2

∗
/zi; therefore, the latter must be

of the same order of magnitude. There is a small parameter in the term containing
the mean shear (S) in equation (2.3),

ε =
u′′

w∗
, (2.4)

where u′′ will be shown to be u∗ in § 3 (3.11). In the surface layer û3c� 1. However,
û3c(∂U/∂x3)c is of order one since ∂U/∂x3 ∼ u′′/z.

The equation for û3c is

D̄û3c

Dτ
w2
∗

zi
+ z2

i L2
c

∫
û3c
∂ û3c

∂x3c
dk′c

w2
∗

zi

1
z2

i
+ z2

i L2
c

∫
û1cik′1cû3c dk′c

w2
∗

zi

1
z2

i

=−

(
∂ p̂
∂x3

)
c

w2
∗

zi
+

g
Θ

Q
w∗
θ̂c. (2.5)

Dividing (2.5) by w2
∗
/zi results in

D̄û3c

Dτ
+

(
L2

c

∫
û3c
∂ û3c

∂x3c
dk′c +L2

c

∫
û1cik′1cû3c dk′c

)
=−

(
∂ p̂
∂x3

)
c

+ θ̂c.

TD N3 P B

 (2.6)

The continuity equation gives ∂ û3c/∂x3c∼ ∂ û1c/∂x1c=O(1). Therefore û3c∼ x3c� 1 in
the surface layer, and the time-derivative (TD) and nonlinear terms (N3) on the LHS
of (2.6) are of higher order. Since the (dimensional) buoyancy term scales as w2

∗
/zi,

so must ∂ p̂/∂x3, as it is the only other leading-order term. Therefore, the vertical
pressure gradient (P) is of the same order as the buoyancy term (B), rendering the
pressure hydrostatic to the leading order, which is consistent with the dominance of
the buoyancy contribution to the fluctuating pressure (Ding et al. 2018). Thus all the
components of the pressure gradient are of the same order of magnitude.

The equation for θ̂c is

D̄θ̂c

Dτ
Q
w∗

w∗
zi
+ z2

i L2
c

∫
û1cik′1cθ̂c dk′c w∗

1
zi

Q
w∗

1
z2

i
+ û3c

(
∂Θ

∂x3

)
c

w∗
Q

w′zi

+ z2
i L2

c

∫
û3c

∂θ̂c

∂x3c
dk′c w∗

Q
w∗zi

1
z2

i
= 0. (2.7)
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Inner–inner

k

Dynamic range

FIGURE 1. Diagram of the scaling regions, layers and ranges in the convective
atmospheric surface layer.

The first and second terms are the time rate of change and horizontal transport and
scale as Q/zi. The (third) term containing the mean temperature gradient is a leading
term with a scale of (w∗/zi)(Q/w′) (w′ = u∗ for −z/L� 1 and w′ = uf for −z/L� 1,
where uf is the local free convection velocity scale), and is the production rate of
θ̂c due to the large-scale vertical velocity acting on the mean potential temperature
gradient, which is of order Q/(w′z). With the mixed-layer time scale, zi/w∗, this term
would result in large-scale θ̂ fluctuations of the order of Q/u∗, which is larger than
the largest θ̂ fluctuations (Q/w∗) that can exist with the flux Q and the velocity scale
w∗. The last term is the only one balancing the third term. For k∼ 1/zi, it represents
the effects of û3 and θ̂ at scales ranging from z to zi on the θ̂ fluctuations at scales
of order zi, reducing θ̂ by transferring the θ̂ fluctuations from the latter scales to the
former. The scale of this term can be rewritten as

w∗
w′

Q
zi
=w′

Q
w′z

z/w′

zi/w∗
, (2.8)

indicating that the temperature gradient produced at the scale z due to the vertical
velocity (of similar scales) acting on θ̂ fluctuations at the scale zi is of order
(Q/w′z)(z/w′)/(zi/w∗). The vertical gradient of θ̂ at the scale zi therefore is also of
order (Q/w′z)(z/w′)/(z/w∗), which can be interpreted as a reduction of the gradient
that would have been produced (Q/w′z) by a factor of (z/w′)/(z/w∗). Physically,
mixing due to eddies of scale z reduces the gradient by the ratio of their time scale
(z/w′) to that of the production time scale (zi/w∗). Therefore, the combination of the
mean gradient production (third) term and the last term (reduction) (MR) produces θ̂
fluctuations of order Q/w∗ and also have mixed-layer scaling (Q/zi), the same as the
time-derivative (TD) and horizontal transport (HT) terms:

D̄θ̂c

Dτ
+L2

c

∫
û1cik′1cθ̂c dk′c +

(
w∗
w′

û3c

(
∂Θ

∂x3

)
c

+L2
c

∫
û3c

∂θ̂c

∂x3c
dk′c

)
= 0.

TD HT MR

 (2.9)
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Multi-point Monin–Obukhov similarity using matched asymptotic expansions 647

For z�−L and k . 1/z (the convective layer in the Monin–Obukhov (M-O) region
in figure 1), equations (2.3), (2.6) and (2.9) have the mixed-layer scaling and have
leading-order solutions of the form

û1c = û1c(kc, x3c), û3c = û3c(kc, x3c), θ̂c = θ̂c(kc, x3c), (2.10a−c)

since the mean-shear term in (2.3) and the terms on the LHS of (2.6) are small. The
spectra in this layer have been predicted by Yaglom (1994). When kc increases in
the convective layer (with x3c fixed), we enter the Kolmogorov region (this will be
addressed in a separate study). In the present study we derive the MMO scaling in
the convective–dynamic layer (−z/L � 1). We note that when reducing the height
from z>−L to a height z= h�−L, the term containing the small parameter in (2.3)
becomes of order u∗/w∗ because ∂U/∂x3 ∼ u∗/z (see (3.11) and the discussion there;
it approaches u∗/z(−z/L)−1/3 for −z/L� 1 (e.g. Wyngaard et al. 1971; Tong & Ding
2018)), indicating that this (the mean-shear) term remains a higher-order term as z
becomes smaller than −L (for the given kc<−1/L). The scaling of (2.3) also remains
the same, indicating that the effects of the mean shear on the large scales remain small.
Therefore the leading-order solution (2.10), which has the mixed-layer scaling, is still
valid (i.e. uniformly valid, vertical arrows in figure 1) for z � −L (the convective
range). Thus the (higher-order) effects of the mean shear on the solutions û1c, û3c

and θ̂c (for the given kc < −1/L) can be treated as a regular perturbation problem.
Therefore, the starting point of (inputs into) our singular perturbation analysis is that
in the convective–dynamic layer there exist the mixed-layer scaling with the velocity,
temperature and length scales w∗, Q/w∗ and zi, respectively, and the stress- and flux-
carrying scaling with the friction velocity u∗, Q/w∗, and z as the velocity, temperature
and length scales, respectively. The two scales are effectively the outer scale and one
of the inner scales of the problem.

In the convective–dynamic layer, when k increases from the convective range
(horizontal arrow in figure 1), at a fixed height, the mean-shear term in (1.2) increases
with k as

û3
∂U
∂x3
∼ uf zk

u∗
z
= uf u∗k∼

( g
Θ

Q
)1/3

u∗k2/3, (2.11)

where uf x3k is the magnitude of the vertical velocity fluctuations at scale k, while the
buoyancy term in (1.3) increases with k as

g
Θ
θ̂ ∼

g
Θ

Q
uf
∼

( g
Θ

Q
)2/3

k1/3, (2.12)

indicating that the mean-shear term becomes increasingly important. It eventually
becomes a leading-order term when equalling the buoyancy term:( g

Θ
Q
)1/3

u∗k2/3
∼

( g
Θ

Q
)2/3

k1/3, i.e. k∼
g
Θ

Qu−3
∗
∼−

1
L
. (2.13)

Since the mean-shear term has the (neutral) surface-layer scaling, the solution (2.10)
is not valid when the mean-shear term is a leading-order term in (2.3), i.e. when the
effect of the mean shear is important or dominant. This leads to a non-uniformly valid
(outer) solution for kc > 1, resulting in a singular perturbation problem. Therefore, the
solution (2.10) is uniformly valid with respect to x3c (for kc < 1), but not uniformly
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648 C. Tong and M. Ding

valid with respect to k (e.g. as kc> 1 for −z/L� 1). The non-uniformly valid solution
indicates that there are two scaling ranges in which different physics dominates.

In the following we analyse the singular perturbation problem and û1, û3 and θ̂ as
functions of k for a fixed z= h�−L. (Therefore, h is a parameter in the perturbation
problem hereafter.) For convenience, we redefine the non-dimensional variables as
outer variables as follows:

û1 =w∗û1o, û3 =w∗
h
zi

û3o, t=
zi

w∗
τ ,

L= ziLo, k=
1
zi

ko, x3 = hx3o, p̂=w2
∗
p̂o,

θ̂ =
Q
w∗
θ̂o,

∂ p̂
∂x3
=

(
∂ p̂
∂x3

)
o

w2
∗

h
,

∂U
∂x3
=

u′′

h

(
∂U
∂x3

)
o

,
∂Θ

∂x3
=

Q
u∗h

(
∂Θ

∂x3

)
o

.


(2.14)

Here the non-dimensional forms of û3 and x3 are of order one. Following equations
(2.3), (2.6) and (2.9), we can write the outer equations as

D̄û1o

Dτ
+L2

o

∫
û3o
∂ û1o

∂x3o
dk′o + εû3o

(
∂U
∂x3

)
o

+L2
o

∫
û1oik′1oû1o dk′o =−ik1op̂o,

TD CS S N1 P


(2.15)

h
zi

D̄û3o

Dτ
+

h
zi

(
L2

o

∫
û3o
∂ û3o

∂x3o
dk′o +L2

o

∫
û1oik′1oû3o dk′o

)
=−

zi

h

(
∂ p̂
∂x3

)
o

+ θ̂o,

TD N3 P B


(2.16)

D̄θ̂o

Dτ
+L2

o

∫
û1oik′1oθ̂o dk′o +

(
w∗
u∗

û3o

(
∂Θ

∂x3

)
o

+L2
o

∫
û3o

∂θ̂o

∂x3o
dk′o

)
= 0.

TD HT MR


(2.17)

Although there is a parameter zi/h in the pressure-gradient term in (2.16), this term
is of order one. There is a small parameter in the time-derivative and nonlinear terms
(N3) in the vertical velocity equation (2.16),

ε1ε
3
=

h
zi
=

h
L

L
zi
=−

h
L
ε3, (2.18)

where ε1 = −h/L, indicating that the LHS is of higher order. The small parameters
ε and ε1 in (2.15) and (2.16) indicate that there are two inner ranges with different
length scales (see (3.10)–(3.12)), resulting in a nested boundary layer problem in the
spectral space. We call the ranges with the larger and smaller length scales the inner–
outer range and the inner–inner range, respectively. We note that the terms containing
the small parameter ε1 in (2.16) are not the source of non-uniformity of (2.10) since
they remain higher-order terms as ko increases from ko < 1 to ko > 1.

In the following analysis, we derive MMO for the horizontal Fourier transforms of
the velocity and potential temperature, which are equivalent to the two-point velocity
and temperature differences, without invoking the hypothesis in MMO.
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Multi-point Monin–Obukhov similarity using matched asymptotic expansions 649

1
1

1
1

FIGURE 2. Structure of the different scales in the surface layer including the dominant
dynamic processes (terms). The arrows indicate the directions in which the terms
containing the parameters change from small terms to order-one terms.

3. Matched asymptotic expansions
3.1. The outer expansions

The solution of equations (2.15), (2.16) and (2.17) can be written as series (outer)
expansions in the powers of ε:

û1o(ko, x3o)= û1o,1 + εû1o,2 +O(ε2),

û3o(ko, x3o)= û3o,1 + εû3o,2 +O(ε2),

θ̂o(ko, x3o)= θ̂o,1 + εθ̂o,2 +O(ε2).

 (3.1)

As discussed above, the second-order terms are of order ε because they arise due to
the mean-shear (production) term in (2.15). To illustrate more clearly the dynamic
processes and the sources of non-uniformly valid solution, figure 2 provides a
summary of the terms in (2.15), (2.16) and (2.17), and the terms containing small
parameters. The arrows indicate the directions in which the terms containing the
parameters change from small terms to order-one terms, i.e. the physics represented
by the terms becomes dominant. The largest parameter ε rather than ε1ε is used in
the second-order correction terms in the outer expansions (the latter corresponds to
higher-order expansions).

3.2. The inner expansion
As discussed above, when the scale decreases (ko increases from ko ∼ 1), the
(small) mean-shear term in (2.15) will eventually become of order one, i.e. the
shear production becomes important. Therefore, the outer expansions are no longer
valid. New (inner) scales and non-dimensional (inner) variables are needed to obtain
valid expansions. We define the non-dimensional inner variables as

û1 = u′û1in, û3 = u′
h
δ

û3in, L= δLin,

k=
1
δ

kin, x3 = hx3in(x3in = x3o), p̂= u′2p̂in,

θ̂ =
Q
u′
θ̂in,

∂ p̂
∂x3
=

u′2

h

(
∂ p̂
∂x3

)
in

,
∂U
∂x3
=

u′′

h

(
∂U
∂x3

)
in

,
∂Θ

∂x3
=

Q
u∗h

(
∂Θ

∂x3

)
in

,


(3.2)
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650 C. Tong and M. Ding

where u′ and δ are the inner velocity and length scales, respectively, all yet to be
determined. Substituting these variables into the horizontal velocity equation results
in

D̄û1in

Dτ
u′

w∗
zi
+ δ2L2

in

∫
û3in

∂ û1in

∂x3in
dk′in u′

h
δ

u′

h
1
δ2
+ û3in

(
∂U
∂x3

)
in

u′
h
δ

u′′

h

+ δ2L2
in

∫
û1inik′1inû1in dk′in u′2

1
δ3
=−ik1inp̂in

u′2

δ
. (3.3)

Dividing this equation by u′2/δ gives

w∗
u′
δ

zi

D̄û1in

Dτ
+L2

in

∫
û3in

∂ û1in

∂x3in
dk′in +

u′′

u′
û3in

(
∂U
∂x3

)
in

+L2
in

∫
û1inik′1inû1in dk′in =−ik1inp̂in. (3.4)

At the inner scale k ∼ 1/δ (kin ∼ 1), the mean shear must be a leading-order term,
along with the pressure-gradient terms in (3.4),

û3
∂U
∂x3
∼−ik1p̂, (3.5)

resulting in u′′ = u′. Thus the mean-shear term has the same velocity scale as the
fluctuating velocity.

The inner vertical velocity equation becomes

D̄û3in

Dτ
u′

h
δ

w∗
zi
+ δ2L2

in

∫
û3in

∂ û3in

∂x3in
dk′in u′2

h2

δ2

1
h

1
δ2
+ δ2L2

in

∫
û1inik′1inû3in dk′in u′2

h
δ

1
δ3

=−

(
∂ p̂
∂x3

)
in

u′2

h
+

g
Θ

Q
u′
θ̂in. (3.6)

Again dividing by u′2/δ results in

w∗
u′

h
zi

D̄û3in

Dτ
+

h
δ

(
L2

in

∫
û3in

∂ û3in

∂x3in
dk′in +L2

in

∫
û1inik′1inû3in dk′in

)
=−

δ

h

(
∂ p̂
∂x3

)
in

+
g
Θ

Q
u′3
δθ̂in. (3.7)

Again, the pressure-gradient term in (3.7) is of order one. The inner temperature
equation becomes

D̄θ̂in

Dτ
Q
u∗

w∗
zi
+ δ2L2

in

∫
û1inik′1inθ̂in dk′in u∗

1
δ

Q
u∗

1
δ2
+ û3in

(
∂Θ

∂x3

)
in

u∗
h
δ

Q
u∗h

+ δ2L2
in

∫
û3in

∂θ̂in

∂x3in
dk′in u∗

h
δ

Q
u∗h

1
δ2
= 0. (3.8)

Similarly dividing by Q/δ results in

w∗
u∗

δ

zi

D̄θ̂in

Dτ
+L2

in

∫
û1inik′1inθ̂in dk′in + û3in

(
∂Θ

∂x3

)
in

+L2
in

∫
û3in

∂θ̂in

∂x3in
dk′in = 0. (3.9)
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Multi-point Monin–Obukhov similarity using matched asymptotic expansions 651

Determination of δ from (3.7) requires the notion of distinguished limit, which
involves a dominant-balance argument. There are two possibilities to consider:

(1)
h
δ
∼ 1,

(2)
g
Θ

Q
u′3
δ ∼ 1.

 (3.10)

In the first case (δ= h), the nonlinear terms on the LHS of (3.7) are of order one,
balancing the pressure gradient ∂ p̂/∂x3. Since the shear-stress-carrying eddies have
length and velocity scales of h and u∗, respectively, from (3.2) we have

u′(= u′′)= u∗, (3.11)

and thus the mean velocity gradient ∂U/∂x3 scales as u∗/h. The buoyancy term θ̂ is
a second-order term in this case, i.e. the buoyancy effects are small. We define this
scale as the inner–inner scale.

In the second case (δ = u′3/(gQ/Θ)), to the leading order, ∂ p̂/∂x3 and θ̂ balance
each other; therefore the LHS of (3.7) is of second order. Since ∂U/∂x3 scales as
u∗/h, the velocity scale u′′(= u′)= u∗, the same as in the first case, which leads to

δ = u3
∗
/(gQ/Θ)∼−L, (3.12)

i.e. the inner length scale is the Obukhov length, which is a result of the buoyancy
force balancing the pressure force. This result is of key importance and provides an
analytical proof that L is not only a vertical length scale, as in the MOST (Obukhov
1946; Monin & Obukhov 1954; Tong & Ding 2018), but also a horizontal length
scale, as hypothesized in MMO (Tong & Nguyen 2015). We define this scale as the
inner–outer scale. For scales with k<−1/L, buoyancy and pressure gradient dominate,
whereas for k>−1/L, shear and pressure gradient dominate.

3.3. The inner–outer expansion
With u∗ and L being the velocity and length scales for the inner–outer range, we write
the non-dimensional velocity and temperature equations as

ε2 D̄û1io

Dτ
+L2

io

∫
û3io

∂ û1io

∂x3io
dk′io + û3io

(
∂U
∂x3

)
io

+L2
io

∫
û1ioik′1ioû1io dk′io =−ik1iop̂io,

TD CS S N1 P


(3.13)

ε1ε
2 D̄û3io

Dτ
+ ε1

(
L2

io

∫
û3io

∂ û3io

∂x3io
dk′io +L2

io

∫
û1ioik′1ioû3io dk′io

)
=−

1
ε1

(
∂ p̂
∂x3

)
io

+ θ̂io,

TD N3 P B


(3.14)

ε2 D̄θ̂io

Dτ
+L2

io

∫
û1ioik′1ioθ̂io dk′io + û3io

(
∂Θ

∂x3

)
io

+L2
io

∫
û3io

∂θ̂io

∂x3io
dk′io = 0,

TD HT M VT


(3.15)
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652 C. Tong and M. Ding

where the terms denoted as M and VT are the mean gradient production and
the vertical transport, respectively. Note that at a height h � 1/k, although the
buoyancy force is of the same order of magnitude as the pressure gradient
((g/Θ)(Q/uf ) ∼ u2

f k), the buoyancy production is smaller than the pressure–strain
rate correlation ((g/Θ)(Q/uf )uf hk� u3

f k).
There are two sets of inner–outer expansions, with the same first-order terms. One

is the ‘inner’ expansions to be matched with the outer expansions:

û1io(kio, x3io)= û1io,1 + ε
2û1io,2 +O(ε4),

û3io(kio, x3io)= û3io,1 + ε
2û3io,2 +O(ε4),

θ̂io(kio, x3io)= θ̂io,1 + ε
2θ̂io,2 +O(ε4).

 (3.16)

The second-order terms are due to the time-derivative terms (order ε2), D̄û1io/Dτ
and D̄θ̂io/Dτ , which become order-one terms as k→ 1/zi, i.e. the external influences
(e.g. unsteadiness) become important. The other set of inner–outer expansions is the
‘outer’ expansions to be matched with the inner–inner expansions (discussed in the
following):

û1io(kio, x3io)= û1io,1 + ε1û′1io,2 +O(ε2
1),

û3io(kio, x3io)= û3io,1 + ε1û′3io,2 +O(ε2
1),

θ̂io(kio, x3io)= θ̂io,1 + ε1θ̂
′

io,2 +O(ε2
1).

 (3.17)

Here the second-order terms arise due to the nonlinear terms (order ε1) in the û3io

equation (3.14), and represent spectral transfer of the û3 fluctuations from scales h
to smaller scales, and become of order one as k→ 1/h. The leading-order terms in
the expansions in (3.16) and (3.17) are only functions of the inner–outer wavenumber
kio =−kL. This is a key result, proving the main hypothesis of MMO for two-point
horizontal separations.

3.4. The inner–inner expansion
With u∗ and h being the velocity and length scales for the inner–inner range, we write
the non-dimensional velocity and temperature equations as

ε1ε
2 D̄û1ii

Dτ
+L2

ii

∫
û3ii
∂ û1ii

∂x3ii
dk′ii + û3ii

(
∂U
∂x3

)
ii

+L2
ii

∫
û1iiik′1iiû1ii dk′ii =−ik1iip̂ii,

TD CS S N1 P


(3.18)

ε1ε
2 D̄û3ii

Dτ
+

(
L2

ii

∫
û3ii
∂ û3ii

∂x3ii
dk′ii +L2

ii

∫
û1iiik′1iiû3ii dk′ii

)
=−

(
∂ p̂
∂x3

)
ii

+ ε1θ̂ii,

TD N3 P B


(3.19)

ε1ε
2 D̄θ̂ii

Dτ
+L2

ii

∫
û1iiik′1iiθ̂ii dk′ii + û3ii

(
∂Θ

∂x3

)
ii

+L2
ii

∫
û3ii

∂θ̂ii

∂x3ii
dk′ii = 0.

TD HT M VT

 (3.20)
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Multi-point Monin–Obukhov similarity using matched asymptotic expansions 653

The inner–inner expansions therefore are

û1ii(kii, x3ii)= û1ii,1 + ε1û1ii,2 +O(ε2
1),

û3ii(kii, x3ii)= û3ii,1 + ε1û3ii,2 +O(ε2
1),

θ̂ii(kii, x3ii)= θ̂ii,1 + ε1θ̂ii,2 +O(ε2
1).

 (3.21)

The second-order terms arise due to the buoyancy terms (order ε1) in (3.19), which
become of order one as k→−1/L, representing the deviation to the scaling in the
dynamic range due to buoyancy.

3.5. Matching between the outer and inner–outer expansions
We now perform asymptotic matching between the outer and inner–outer ranges to
obtain the leading-order terms in the overlapping region of the two ranges. The inner–
outer expansion of the outer expansion of û1 is

û1 = w∗
(

û1o,1

(
−

zi

L
kio

)
+ εû1o,2

(
−

zi

L
kio

)
+O(ε2)

)
∼ u∗

(
−

zi

L

)1/3
û1o,1

(
−

zi

L
kio

)
, as ε→ 0,with kio fixed,

∼ u∗
(
−

zi

L

)1/3 (
−

zi

L
kio

)α 1
(LLio)/zi

, as kio→∞, (3.22)

keeping only one term. Note that in the last step 1/Lo= 1/(LLio/zi) is included in the
power-law dependence because a two-dimensional Fourier transform is proportional to
(1k11k2)

1/2
∼ 1/L (Monin & Yaglom 1975).

The outer expansion of the inner–outer expansion of û1 is

û1 = u∗

(
û1io,1

(
−

L
zi

ko

)
+ ε2û1io,2

(
−

L
zi

ko

)
+O(ε4)

)
∼ w∗

(
−

L
zi

)1/3

û1io,1

(
−

L
zi

ko

)
, as ε2

→ 0,with ko fixed,

∼ u∗(kio)
α 1
Lio
, as ko→ 0, (3.23)

also keeping only one term.
Matching (3.22) and (3.23) results in α =−4/3. Thus,

û1o,1 ∼ k−4/3
o

1
Lo
, (3.24)

and therefore the two-dimensional spectrum is

φ1o,1 =L2
o〈û1o,1û∗1o,1〉 ∼ k−8/3

o . (3.25)

The spectrum integrated over a ring |ko| = ko has a k−5/3
o dependence, the same as the

MMO prediction (Tong & Nguyen 2015).
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654 C. Tong and M. Ding

The inner–outer expansion of the outer expansion of û3 is

û3 = w∗
h
zi

(
û3o,1

(
−

zi

L
kio

)
+ εû3o,2

(
−

zi

L
kio

)
+O(ε2)

)
∼ u∗

(
−

zi

L

)1/3 h
zi

û3o,1

(
−

zi

L
kio

)
, as ε→ 0,with kio fixed,

∼ u∗
(
−

zi

L

)1/3 h
zi

(
−

zi

L
kio

)β 1
(LLio)/zi

, as kio→∞, (3.26)

keeping only one term.
The outer expansion of the inner–outer expansion of û3 is

û3 = u∗
h
L

(
û3io,1

(
−

L
zi

ko

)
+ ε2û3io,2

(
−

L
zi

ko

)
+O(ε4)

)
∼ w∗

(
−

L
zi

)1/3 h
L

û3io,1

(
−

L
zi

ko

)
, as ε2

→ 0,with ko fixed,

∼ u∗
h
L

kβio
1
Lio
, as ko→ 0, (3.27)

also keeping only one term.
Matching (3.26) and (3.27) results in β =−1/3. Thus

û3o,1 ∼ k−1/3
o

1
Lo
,

φ3o,1 =L2
o〈û3o,1û∗3o,1〉 ∼ k−2/3

o .

 (3.28)

The ring-integrated spectrum has a k1/3
o dependence.

The inner–outer expansion of the outer expansion of θ̂ is

θ̂ =
Q
w∗

(
θ̂o,1

(
−

zi

L
kio

)
+ εθ̂o,2

(
−

zi

L
kio

)
+O(ε2)

)
∼

Q
u∗

(
−

zi

L

)−1/3
θ̂o,1

(
−

zi

L
kio

)
, as ε→ 0,with kio fixed,

∼
Q
u∗

(
−

zi

L

)−1/3 (
−

zi

L
kio

)γ 1
(LLio)/zi

, as kio→∞, (3.29)

keeping only one term.
The outer expansion of the inner–outer expansion of θ̂ is

θ̂ =
Q
u∗

(
θ̂io,1

(
−

L
zi

ko

)
+ ε2θ̂io,2

(
−

L
zi

ko

)
+O(ε4)

)
∼

Q
w∗

(
−

zi

L

)1/3
θ̂io,1

(
−

L
zi

ko

)
, as ε2

→ 0,with ko fixed,

∼
Q
u∗

kγio
1
Lio
, as ko→ 0, (3.30)

also keeping only one term.
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Matching (3.29) and (3.30) results γ =−2/3. Thus,

θ̂o,1 ∼ k−2/3
o

1
Lo
,

φθo,1 =L2
o〈θ̂o,1θ̂

∗

o,1〉 ∼ k−4/3
o .

 (3.31)

The ring-integrated spectrum has a k−1/3
o dependence. The overlapping region of the

outer and inner–outer ranges is the convective range (figure 1).

3.6. Matching between the inner–outer and inner–inner expansions
We now perform asymptotic matching between the inner–outer and inner–inner ranges
to obtain the leading-order terms in the overlapping region of the two ranges. The
inner–inner expansion of the inner–outer expansion of û1 is

û1 = u∗

(
û1io,1

(
−

L
h

kii

)
+ ε1û′1io,2

(
−

L
h

kii

)
+O(ε2

1)

)
∼ u∗û1io,1

(
−

L
h

kii

)
, as ε1→ 0,with kii fixed,

∼ u∗

(
−

L
h

kii

)α′ 1
(hLii)/L

, as kii→∞. (3.32)

The inner–outer expansion of the inner–inner expansion of û1 is

û1 = u∗

(
û1ii,1

(
−

h
L

kio

)
+ ε1û1ii,2

(
−

h
L

kio

)
+O(ε2

1)

)
∼ u∗û1ii,1

(
−

h
L

kio

)
, as ε1→ 0,with kio fixed,

∼ u∗(kii)
α′ 1
Lii
, as kio→ 0. (3.33)

Matching (3.32) and (3.33) results in α′ =−1. Thus

û1ii,1 ∼ k−1
ii

1
Lii
,

φ1ii,1 =L2
ii〈û1ii,1û∗1ii,1〉 ∼ k−2

ii .

 (3.34)

The inner–inner expansion of the inner–outer expansion of û3 is

û3 = u∗
h
L

(
û3io,1

(
−

L
h

kii

)
+ ε1û′3io,2

(
−

L
h

kii

)
+O(ε2

1)

)
∼ u∗

h
L

û3io,1

(
−

L
h

kii

)
, as ε1→ 0,with kii fixed,

∼ u∗
h
L

(
−

L
h

kii

)β ′ 1
(hLii)/L

, as kii→∞. (3.35)
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656 C. Tong and M. Ding

The inner–outer expansion of the inner–inner expansion of û3 is

û3 = u∗

(
û3ii,1

(
−

h
L

kio

)
+ ε1û3ii,2

(
−

h
L

kio

)
+O(ε2

1)

)
∼ u∗û3ii,1

(
−

h
L

kio

)
, as ε1→ 0,with kio fixed,

∼ u∗(kii)
β ′ 1
Lii
, as kio→ 0. (3.36)

Matching (3.35) and (3.36) results β ′ = 0. Thus

û3ii,1 ∼ k0
ii

1
Lii
,

φ3ii,1 =L2
ii〈û3ii,1û∗3ii,1〉 ∼ k0

ii.

 (3.37)

The inner–inner expansion of the inner–outer expansion of θ̂ is

θ̂ =
Q
u∗

(
θ̂io,1

(
−

L
h

kii

)
+ ε1θ̂

′

io,2

(
−

L
h

kii

)
+O(ε2

1)

)
∼

Q
u∗
θ̂io,1

(
−

L
h

kii

)
, as ε1→ 0,with kii fixed,

∼
Q
u∗

(
−

L
h

kii

)γ ′ 1
(hLii)/L

, as kii→∞, (3.38)

keeping only one term.
The inner–outer expansion of the inner–inner expansion of θ̂ is

θ̂ =
Q
u∗

(
θ̂ii,1

(
−

h
L

kio

)
+ ε1θ̂ii,2

(
−

h
L

kio

)
+O(ε2

1)

)
∼

Q
u∗
θ̂ii,1

(
−

h
L

kio

)
, as ε1→ 0,with kio fixed,

∼
Q
u∗

kγ
′

ii
1
Lii
, as kio→ 0, (3.39)

also keeping only one term.
Matching (3.38) and (3.39) results in γ ′ =−1. Thus,

θ̂ii,1 ∼ k−1
ii

1
Lii
,

φθ ii,1 =L2
ii〈θ̂ii,1θ̂

∗

ii,1〉 ∼ k−2
ii .

 (3.40)

The overlapping region of the inner–outer and inner–inner ranges is the dynamic range
(figure 1).

3.7. Second-order corrections to the leading-order solution in the convective range
To obtain the second-order corrections in the expansions, the scaling exponents of
nonlinear terms similar to that in (1.2) are needed. Equations (2.15), (2.16) and (2.18)
show that (∂ p̂/∂x3)o,1, ik1op̂o,1 and the nonlinear term L2

o

∫
û1oik′1oû1o dk′o have the same
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Multi-point Monin–Obukhov similarity using matched asymptotic expansions 657

wavenumber dependence (power law) as θ̂o,1. It is also useful to obtain the scaling
exponents of the nonlinear terms using asymptotic matching. In the matching region,

L2
∫

ik′1û1(k′)û1(k− k′) dk′ =
w2
∗

zi
L2

o

∫
û1oik′1oû1o dk′o

(
=

w2
∗

zi
No(ko)

)
= −

u2
∗

L
L2

io

∫
û1ioik′1ioû1io dk′io

(
=−

u2
∗

L
Nio(kio)

)
,

(3.41)

with

−
u2
∗

L
Nio(kio)∼−

u2
∗

L
kp

io
1
Lio
,

w2
∗

zi
No(ko)∼

w2
∗

zi
kp

o
1
Lo
.

 (3.42)

Thus

−
u2
∗

L
kp

io
1
Lio
=

w2
∗

zi

(
−

zi

L

)1/3
kp

o

(
−

zi

L

)−p 1
Lo

(
−

zi

L

)−1
=

w2
∗

zi
kp

o
1
Lo

(
−

zi

L

)1/3−p−1
, (3.43)

leading to p=−2/3. In general, for a ratio of the outer to inner scales of (−zi/L)q,
the scaling exponent of the nonlinear term can be obtained in a similar way to (3.43)
by

p= q− 1. (3.44)

It is also useful to relate the ratio of the outer to inner–outer scales of the nonlinear
term to the exponent in the power law of û1o(ko) (or û1io(kio)) as follows:

w2
∗

zi
L2

o

∫
ik′1oû1o(k′o)û1o(ko − k′o) dk′o =−

u2
∗

L
L2

io

∫
ik′1ioû1io(k′io)û1io(kio − k′io) dk′io, (3.45)

−
u2
∗

L
L2

io

∫
ik′1iok′rio

1
Lio
(kio − k′io)

r 1
Lio

dk′io

∼
w2
∗

zi

(
−

zi

L

)1/3
∫

ik′1o

(
−

zi

L

)−1
k′ro
(
−

zi

L

)−r
(ko − k′o)

r
(
−

zi

L

)−r
dk′o
(
−

zi

L

)−2

∼
w2
∗

zi
L2

o

∫
ik′1ok′ro

1
Lo
(ko − k′o)

r 1
Lo

dk′o
(
−

zi

L

)1/3−1−r−r−2
, (3.46)

leading to

1
3 − 1− r− r− 2= 0, r=− 4

3 . (3.47)

The scaling exponent is the same as in (3.24), obtained through matching. Similarly,
the scaling exponents of the Fourier transforms of the velocity components, r and s,
which can be different, satisfy

q− (r+ s)− 3= 0. (3.48)
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658 C. Tong and M. Ding

From equations (3.44) and (3.48),

p= r+ s+ 2. (3.49)

This relationship will be used to obtain the scaling exponents of the terms in the
second-order corrections in the expansions.

Substituting the outer expansions (3.1) into the outer equations (2.15) and (2.16)
and collecting the terms of order ε, we obtain the second-order equations for the outer
variables û1o,2, û3o,2 and θ̂o,2:

D̄û1o,2

Dτ
+L2

o

∫
û3o,1

∂ û1o,2

∂x3o
dk′o +L2

o

∫
û3o,2

∂ û1o,1

∂x3o
dk′o + û3o,1

(
∂U
∂x3

)
o

+L2
o

∫
û1o,1ik′1oû1o,2 dk′o +L2

o

∫
û1o,2ik′1oû1o,1 dk′o =−ik1op̂o,2, (3.50)

0=−
(
∂ p̂
∂x3

)
o,2

+ θ̂o,2. (3.51)

The mean-shear term scales as (using (3.28))

û3o,1

(
∂U
∂x3

)
o

∼ k−1/3
o

1
Lo
. (3.52)

Balancing this term and the nonlinear term in (3.50) results in

k−1/3
o

1
Lo
∼L2

o

∫
û1o,1ik′1oû1o,2 dk′o ∼L2

o

∫
kr

o
1
Lo

ik′1o(ko − k′o)
s 1
Lo

dk′o. (3.53)

Thus, using (3.49), p=−1/3, r=−4/3 (3.24), we obtain s=−1,

û1o,2 ∼ k−1
o

1
Lo
. (3.54)

Using the continuity equation

û3o,2 ∼ k0
o

1
Lo
. (3.55)

Balancing the buoyancy, pressure-gradient and mean-shear terms in (3.50) and (3.51)
results in

θ̂o,2 ∼

(
∂ p̂
∂x3

)
o,2

∼ ik1op̂o,2 ∼ û3o,1

(
∂U
∂x3

)
o

∼ k−1/3
o

1
Lo
. (3.56)

The outer expansions are

û1o(ko, x3o)= A1k−4/3
o

1
Lo
+ εB1k−1

o
1
Lo
+ · · ·,

û3o(ko, x3o)= A3k−1/3
o

1
Lo
+ εB3k0

o
1
Lo
+ · · ·,

θ̂o(ko, x3o)= Aθk−2/3
o

1
Lo
+ εBθk−1/3

o
1
Lo
+ · · ·.


(3.57)

The second-order terms reflect the influence of the mean shear as k→−1/L.
The time-derivative term D̄û1io,2/Dτ will be large as kio → ∞, and therefore is

the source of the departure from the convective scaling. Substituting the inner–outer
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Multi-point Monin–Obukhov similarity using matched asymptotic expansions 659

expansions (3.16) into the inner–outer equations (3.13) and (3.14) and collecting the
terms of order ε2, we obtain the second-order equations for the inner–outer variables:

D̄u1io,1

Dτ
+L2

io

∫
û3io,1

∂ û1io,2

∂x3io
dk′io +L2

io

∫
û3io,2

∂ û1io,1

∂x3io
dk′io + û3io,2

(
∂U
∂x3

)
io

+L2
io

∫
û1io,1ik′1ioû1io,2 dk′io +L2

io

∫
û1io,2ik′1ioû1io,1 dk′io =−ik1iop̂io,2, (3.58)

0=−
(
∂ p̂
∂x3

)
io,2

+ θ̂io,2 . (3.59)

Balancing the time-derivative term with the nonlinear term in (3.58) results in
(using (3.24))

k−4/3
io

1
Lio
∼L2

io

∫
û1io,1ik′1ioû1io,2 dk′io ∼L2

io

∫
kr

io
1
Lio

ik′1io(kio − k′io)
s 1
Lio

dk′io. (3.60)

Thus, using (3.49), p=−4/3, r=−4/3 (3.24), we obtain s=−2,

û1io,2 ∼ k−2
io

1
Lio
. (3.61)

Using the continuity equation

û3io,2 ∼ k−1
io

1
Lio
. (3.62)

Balancing the buoyancy, pressure-gradient and mean-shear terms in (3.58) and (3.59)
results in

θ̂io,2 ∼

(
∂ p̂
∂x3

)
io,2

∼ ik1iop̂io,2 ∼ û3io,2

(
∂U
∂x3

)
io

∼ k−4/3
o

1
Lio
. (3.63)

The inner–outer expansions therefore are

û1io(kio, x3io)= A1κ
−1/3k−4/3

io
1
Lio
+ ε2C1k−2

io
1
Lio
+ · · · ,

û3io(kio, x3io)= A3κ
−1/3k−1/3

io
1
Lio
+ ε2C3k−1

io
1
Lio
+ · · · ,

θ̂io(kio, x3io)= Aθκ1/3k−2/3
io

1
Lio
+ ε2Cθk

−4/3
io

1
Lio
+ · · · .


(3.64)

The second-order terms reflect the effects of the time derivative as k→ 1/zi.
Matching (3.22) and (3.23) up to the second order results in additional leading-

order and second-order terms. Combining the additional terms in (3.57) and (3.64),
we obtain the composite solution in the convective range as

û1 = w∗

(
A1k−4/3

o
1
Lo
+C1κ

1/3k−2
o

1
Lo
+ εB1k−1

o
1
Lo
+ εD1k−5/3

o
1
Lo
+ · · ·

)
= u∗

(
A1κ

−1/3k−4/3
io

1
Lio
+ B1κ

−1/3k−1
io

1
Lio
+ ε2C1k−2

io
1
Lio
+ ε2D1κ

−1/3k−5/3
io

1
Lio
+ · · ·

)
,

(3.65)
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660 C. Tong and M. Ding

û3 = w∗
h
zi

(
A3k−1/3

o
1
Lo
+C3κ

1/3k−1
o

1
Lo
+ εB3k0

o
1
Lo
+ εD3k−2/3

o
1
Lo
+ · · ·

)
= −u∗

h
L

(
A3κ

−1/3k−1/3
io

1
Lio
+ B3κ

−1/3k0
io

1
Lio
+ ε2C3k−1

io
1
Lio

+ ε2D3κ
−1/3k−2/3

io
1
Lio
+ · · ·

)
,

(3.66)

θ̂ =
Q
w∗

(
Aθk−2/3

o
1
Lo
+Cθκ

−1/3k−4/3
o

1
Lo
+ εBθk−1/3

o
1
Lo
+ εDθk−1

o
1
Lo
+ · · ·

)
=

Q
u∗

(
Aθκ1/3k−2/3

io
1
Lio
+ Bθκ1/3k−1/3

io
1
Lio
+ ε2Cθk

−4/3
io

1
Lio
+ ε2Dθκ

1/3k−1
io

1
Lio
+ · · ·

)
.

(3.67)

We can write the spectra obtained from the composite expansions for the convective
range as

φ11 = w2
∗
z2

i ( A2
1k−8/3

o + 2A1C1κ
1/3k−10/3

o + ε ( 2A1B1k−7/3
o + 2B1C1κ

1/3k−3
o

+ 2A1D1k−3
o + 2C1D1κ

1/3k−11/3
o )+ · · · )

= u2
∗
L2 ( A2

1κ
−2/3k−8/3

io + 2A1B1κ
−2/3k−7/3

io

+ ε2 ( 2A1C1κ
−1/3k−10/3

io + 2B1C1κ
−1/3k−3

io

+ 2A1D1κ
−2/3k−3

io + 2B1D1κ
−2/3k−8/3

io )+ · · ·), (3.68)
φ33 = w2

∗
h2 ( A2

3k−2/3
o + 2A3C3κ

1/3k−4/3
o + ε ( 2A3B3k−1/3

o + 2B3C3κ
1/3k−1

o

+ 2A3D3k−1
o + 2C3D3κ

1/3k−5/3
o )+ · · ·)

= u2
∗
h2 ( A2

3κ
−2/3k−2/3

io + 2A3B3κ
−2/3k−1/3

io

+ ε2 ( 2A3C3κ
−1/3k−4/3

io + 2B3C3κ
−1/3k−1

io

+ 2A3D3κ
−2/3k−1

io + 2B3D3κ
−2/3k−2/3

io )+ · · ·), (3.69)

φθ =
Q2

w2
∗

z2
i ( A2

θk
−4/3
o + 2AθCθκ

−1/3k−2
o + ε ( 2AθBθk−1

o + 2BθCθκ
−1/3k−5/3

o

+ 2AθDθk−5/3
o + 2CθDθκ

−1/3k−7/3
o )+ · · · )

=
Q2

u2
∗

L2 ( A2
θκ

2/3k−4/3
io + 2AθBθκ2/3k−1

io + ε
2 ( 2AθCθκ

1/3k−2
io + 2BθCθκ

1/3k−5/3
io

+ 2AθDθκ
2/3k−5/3

io + 2BθDθκ
2/3k−4/3

io )+ · · ·).

(3.70)

The non-dimensional coefficients (the values summarized in table 1) in the
convective range are determined using LES of the ABL (Moeng 1984; Tong &
Nguyen 2015). However, due to the accuracy of LES necessary to determine the
coefficients D1, D3 and Dθ , we do not attempt to determine them in this work and do
not include these terms in the comparison with LES results. First, the non-dimensional
spectra at z = 30 m obtained using the strongly (zi = 1076 m, −L = 4 m) and
moderately (zi = 971 m, −L = 108 m) convective cases (Tong & Nguyen 2015),
as functions of kzi and non-dimensionalized using the outer scales, were used to
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Multi-point Monin–Obukhov similarity using matched asymptotic expansions 661

A B C A′ B′ C′

φ11 0.70 0.03 0.49 0.90 0.04 0.02
φ33 0.72 0.01 0.29 0.82 0.23 0.15
φθ 0.90 0.02 0.23 0.82 0.04 0.20

TABLE 1. Values of the non-dimensional coefficients for the composite expansions in the
convective and dynamic ranges.

determine the values of A and C. The use of LES for −L= 4 m is justified because,
according to the analysis in § 2, the convective-range expansions are uniformly valid
with respect to z, i.e. the z dependence of the spectra in the convective range is
only in the form of z/zi, not −z/L. By fitting the leading terms in the composite
expansions of outer variables (3.68), (3.69) and (3.70) to the non-dimensional spectra
in the outer regions, we obtained the values of A and C, as shown in table 1. We
then used the non-dimensional spectra obtained in the moderately convective case,
as functions of −kL and non-dimensionalized using the inner–outer scales. In the
inner–outer region, fitting the composite expansions of inner–outer variables (3.68),
(3.69) and (3.70) to the non-dimensional spectra, we obtained the values of B. The
composite expansions are shown in figure 3 for a range of −zi/L values. Figure 4
shows the comparisons of the composite expansions with the spectra at z = 30 m
obtained using LES.

3.8. Second-order corrections to the leading-order solution in the dynamic range
The nonlinear terms on the LHS of (3.14) will be of order one as kio → 0, and
therefore is the source for the departure from the dynamic range scaling. Substituting
the inner–outer expansions (3.17) into the inner–outer equations (3.13), (3.14) and
(3.15) and collecting the terms of order ε1, we obtain the second-order equations for
inner–outer variables as

L2
io

∫
û3io,1

∂ û′1io,2

∂x3io
dk′io +L2

io

∫
û′3io,2

∂ û1io,1

∂x3io
dk′io

+ û′3io,2

(
∂U
∂x3

)
io

+L2
io

∫
û1io,1ik′1ioû′1io,2 dk′io

+L2
io

∫
û′1io,2ik′1ioû1io,1 dk′io =−ik1iop̂io,2, (3.71)

L2
io

∫
û3io,1

∂ û3io,1

∂x3io
dk′io +L2

io

∫
û1io,1ik′1ioû3io,1 dk′io =−

(
∂ p̂
∂x3

)
io,2

+ θ̂ ′io,2, (3.72)

L2
io

∫
û1io,1ik′1ioθ̂

′

io,2 dk′io +L2
io

∫
û′1io,2ik′1ioθ̂io,1 dk′io

+ û′3io,2

(
∂Θ

∂x3

)
io

+L2
io

∫
û3io,1

∂θ̂ ′io,2

∂x3io
dk′io

+L2
io

∫
û′3io,2

∂θ̂io,1

∂x3io
dk′io = 0. (3.73)
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−1
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10-2 10-1 101 102100

10-2 10-1 101 102100

-kL

10-2

10-1

kƒ
œ/

(-
T2 *L

)

100

10-1

kƒ
33

/(
-

u *2 z
2 /

L)

100

101

10-2

kƒ
11

/(
-

u *2 L
)

100

102

(a)

(b)

(c)

FIGURE 3. Composite expansions of (a) the horizontal velocity, (b) the vertical velocity
and (c) the potential temperature spectra for ε = 0.46, 0.41, 0.37, 0.32, 0.27, 0.22
(corresponding −zi/L = 10, 15, 20, 30, 50, 100 respectively), and ε1 = −h/L = 0.5, 0.4,
0.3, 0.2, 0.1, ordered in the directions of the arrows. The dashed lines represent the
leading-order solutions. The temperature scale is written as T∗ =Q/u∗.

Balancing the pressure-gradient and the nonlinear terms in (3.71) and (3.72),
using (3.49), we obtain

L2
io

∫
û1io,1ik′1ioû′1io,2 dk′io ∼−ik1iop̂io,2 ∼−

(
∂ p̂
∂x3

)
io,2

∼L2
io

∫
û1io,1ik′1ioû3io,1 dk′io, (3.74)

k−1+s+2
io = k−1+0+2

io , s= 0, (3.75)
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10-1
10-2

10-1

100

10-1

10-1

10-2

100

100

101

101100

10-1 101100

10-1 101100

kƒ
œ/

(-
T2 *L

)
kƒ

33
/(

-
u *2 z

2 /
L)

kƒ
11

/(
-

u *2 L
)

(a)

(b)

(c)

-kL

FIGURE 4. Comparisons of the composite expansions (solid) of (a) the horizontal velocity,
(b) the vertical velocity and (c) the potential temperature spectra with the spectra (z =
30 m) obtained using LES in 2048 (dashed, zi = 971 m, −L = 108 m) and 1024 (dash-
dotted, zi = 1031 m, −L= 104 m) resolutions. The temperature scale is written as T∗ =
Q/u∗.

û′1io,2 ∼ k0
io

1
Lio
. (3.76)

Using the continuity equation, we have

û′3io,2 ∼ k1
io

1
Lio
. (3.77)
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664 C. Tong and M. Ding

Balancing the nonlinear term and mean-shear term in (3.73), using (3.49), we obtain

L2
io

∫
û1io,1ik′1ioθ̂

′

io,2 dk′io ∼ û′3io,2

(
∂Θ

∂x3

)
io

, (3.78)

k−1+s+2
io = k1

io, s= 0, (3.79)

θ̂ ′io,2 ∼ k0
io

1
Lio
. (3.80)

The inner–outer expansions are

û1io(kio, x3io)= A′1k−1
io

1
Lio
+ ε1B′1k0

io
1
Lio
+ · · · ,

û3io(kio, x3io)= A′3k0
io

1
Lio
+ ε1B′3k1

io
1
Lio
+ · · · ,

θ̂io(kio, x3io)= A′θk
−1
io

1
Lio
+ ε1B′θk

0
io

1
Lio
+ · · · .


(3.81)

The buoyancy term ε1θ̂ii in (3.19) will be of order one as kii →∞, and therefore
is the source of departure from the dynamic range scaling. Substituting the inner–
inner expansions (3.21) into the inner–inner equations (3.18), (3.19) and (3.20) and
collecting the terms of order ε1, we obtain the second-order equations for inner–inner
variables as

L2
ii

∫
û3ii,1

∂ û1ii,2

∂x3ii
dk′ii +L2

ii

∫
û3ii,2

∂ û1ii,1

∂x3ii
dk′ii + û3ii,2

(
∂U
∂x3

)
ii

+L2
ii

∫
û1ii,1ik′1iiû1ii,2 dk′ii

+L2
ii

∫
û1ii,2ik′1iiû1ii,1 dk′ii =−ik1iip̂ii,2, (3.82)

L2
ii

∫
û3ii,1

∂ û3ii,2

∂x3ii
dk′ii +L2

ii

∫
û3ii,2

∂ û3ii,1

∂x3ii
dk′ii +L2

ii

∫
û1ii,1ik′1iiû3ii,2 dk′ii

+L2
ii

∫
û1ii,2ik′1iiû3ii,1 dk′ii =−

(
∂ p̂
∂x3

)
ii,2

+ θ̂ii,1, (3.83)

L2
ii

∫
û1ii,1ik′1iiθ̂ii,2 dk′ii +L2

ii

∫
û1ii,2ik′1iiθ̂ii,1 dk′ii + û3ii,2

(
∂Θ

∂x3

)
ii

+L2
ii

∫
û3ii,1

∂θ̂ii,2

∂x3ii
dk′ii

+L2
ii

∫
û3ii,2

∂θ̂ii,1

∂x3ii
dk′ii = 0. (3.84)

Balancing the pressure-gradient terms, the nonlinear terms and the buoyancy term
(θ̂ii,1 ∼ k−1

ii /Li) in (3.82) and (3.83), using (3.49), we obtain

L2
ii

∫
û1ii,1ik′1iiû1ii,2 dk′ii ∼−ik1iip̂ii,2 ∼−

(
∂ p̂
∂x3

)
ii,2

∼ θ̂ii,1, (3.85)

k−1+s+2
ii = k−1

ii , s=−2, (3.86)

û1ii,2 ∼ k−2
ii

1
Lii
. (3.87)
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Using the continuity equation, we have

û3ii,2 ∼ k−1
ii

1
Lii
. (3.88)

Balancing the nonlinear term and mean-shear term in (3.84), using (3.49), we obtain

L2
ii

∫
û1ii,1ik′1iiθ̂ii,2 dk′ii ∼ û3ii,2

(
∂Θ

∂x3

)
ii

, (3.89)

k−1+s+2
ii = k−1

ii , s=−2, (3.90)

θ̂ii,2 ∼ k−2
ii

1
Lii
. (3.91)

The inner–inner expansions are

û1ii(kii, x3ii)= A′1k−1
ii

1
Lii
+ ε1C′1k−2

ii
1
Lii
+ · · · , (3.92)

û3ii(kii, x3ii)= A′3k0
ii

1
Lii
+ ε1C′3k−1

ii
1
Lii
+ · · · , (3.93)

θ̂ii(kii, x3ii)= A′θk
−1
ii

1
Lii
+ ε1C′θk

−2
ii

1
Lii
+ · · · . (3.94)

Matching (3.32) and (3.33) up to the second order results in additional leading-
order and second-order terms. Combining the additional terms in (3.81) and (3.94),
we obtain the composite solutions in the dynamic range as

û1 = u∗

(
A′1k−1

io
1
Lio
+C′1k−2

io
1
Lio
+ ε1B′1k0

io
1
Lio
+ ε1D′1k−1

io
1
Lio
+ · · ·

)
= u∗

(
A′1k−1

ii
1
Lii
+ B′1k0

ii
1
Lii
+ ε1C′1k−2

ii
1
Lii
+ ε1D′1k−1

ii
1
Lii
+ · · ·

)
, (3.95)

û3 = −u∗
h
L

(
A′3k0

io
1
Lio
+C′3k−1

io
1
Lio
+ ε1B′3k1

io
1
Lio
+ ε1D′3k0

io
1
Lio
+ · · ·

)
= u∗

(
A′3k0

ii
1
Lii
+ B′3k1

ii
1
Lii
+ ε1C′3k−1

ii
1
Lii
+ ε1D′3k0

ii
1
Lii
+ · · ·

)
, (3.96)

θ̂ =
Q
u∗

(
A′θk

−1
io

1
Lio
+C′θk

−2
io

1
Lio
+ ε1B′θk

0
io

1
Lio
+ ε1D′θk

−1
io

1
Lio
+ · · ·

)
=

Q
u∗

(
A′θk

−1
ii

1
Lii
+ B′θk

0
ii

1
Lii
+ ε1C′θk

−2
ii

1
Lii
+ ε1D′θk

−1
ii

1
Lii
+ · · ·

)
. (3.97)

We can write the spectra obtained from the composite expansions for the dynamic
range as

φ11 = u2
∗
L2
(
A′21 k−2

io + 2A′1C′1k−3
io + ε1 ( 2A′1B′1k−1

io + 2B′1C′1k−2
io

+ 2A′1D′1k−2
io + 2C′1D′1k−3

io )+ · ··
)

= u2
∗
h2 ( A′21 k−2

ii + 2A′1B′1k−1
ii + ε1 ( 2A′1C′1k−3

ii + 2B′1C′1k−2
ii

+2A′1D′1k−2
ii + 2B′1D′1k−1

ii )+ · · · ), (3.98)
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φ33 = u2
∗
h2 ( A′23 k0

io + 2A′3C′3k−1
io + ε1 ( 2A′3B′3k1

io + 2B′3C′3k0
io

+ 2A′3D′3k0
io + 2C′3D′3k−1

io )+ · · · )

= u2
∗
h2 ( A′23 k0

ii + 2A′3B′3k1
ii + ε1 ( 2A′3C′3k−1

ii + 2B′3C′3k0
ii

+ 2A′3D′3k0
ii + 2B′3D′3k1

ii )+ · · · ), (3.99)

φθ =
Q2

u2
∗

L2 ( A′2θ k−2
io + 2A′θC

′

θk
−3
io + ε1 ( 2A′θB

′

θk
−1
io + 2B′θC

′

θk
−2
io

+ 2A′θD
′

θk
−2
io + 2C′θD

′

θk
−3
io )+ · · · )

=
Q2

u2
∗

h2 ( A′2θ k−2
ii + 2A′θB

′

θk
−1
ii + ε1 ( 2A′θC

′

θk
−3
ii + 2B′θC

′

θk
−2
ii

+ 2A′θD
′

θk
−2
ii + 2B′θD

′

θk
−1
ii )+ · · · ) . (3.100)

To determine the values of the non-dimensional coefficients in the dynamic range,
we used the weakly (zi = 1015 m, −L= 331 m) and moderately (zi = 971 m, −L=
108 m) convective cases of LES, and then employed the same fitting process as for the
convective range. Again, we do not attempt to determine the D′1, D′3 and D′θ terms and
do not include the terms in the comparison with LES results. First, the spectra at z=
30 m obtained in these two different convective cases were non-dimensionalized using
the inner–inner scales, as functions of kz. In the inner–inner regions, fitting the leading
terms in the composite expansions of inner–inner variables (3.98), (3.99) and (3.100),
we obtained the values of A′ and B′. Then, the spectra were non-dimensionalized
using the inner–outer scales, as functions of −kL. Using the values of A′ and B′
obtained above, the values of C′ are then obtained by fitting the composite expansions
of inner–outer variables to the non-dimensional spectra in the inner–outer regions. The
values are given in table 1. The composite expansions and comparisons of them with
spectra obtained by LES are also shown in figures 3 and 4.

4. Conclusions and discussion
In the present work we derived analytically the MMO similarity for the case of two-

point statistics with horizontal separations by deriving the surface-layer similarity of
the horizontal Fourier transforms of the velocity and potential temperature fluctuations,
which are equivalent to the two-point horizontal differences of these variables. We also
derived the scaling exponents and the second-order corrections to the leading-order
solutions.

The Navier–Stokes equations and the potential temperature equation in the Fourier
space were employed in the analysis. We showed that for wavenumbers k< 1/z in a
convective surface layer, the solution (the Fourier transforms, e.g. û1(k, z)) is uniformly
valid with respect to z, i.e. as z decreases from z>−L to z<−L, the scaling of the
solution does not change. However, for z<−L the solution is not uniformly valid with
respect to k, i.e. as k increases from k<−1/L to k>−1/L, the scaling changes due
to the mean-shear term in the û1 equation, thereby resulting in a singular perturbation
problem, which we analyse using the method of matched asymptotic expansions.

With w∗, Q/w∗ and zi as the outer-scale velocity, potential temperature and
horizontal length scales of the problem, respectively, the outer expansions were
obtained with the small parameter, ε = (−zi/L)−1/3, in the mean-shear term. Two
inner scales were obtained using the distinguished limits of the inner equations. The
first (inner–outer scale) has velocity, temperature and horizontal length scales of u∗,
Q/u∗ and −L, respectively. Therefore, −L is obtained analytically as the characteristic
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horizontal length scale, proving a key hypothesis of MMO. The second (inner–inner
scale) has velocity, temperature and horizontal length scales of u∗, Q/u∗ and z,
respectively, the same as the stress- and flux-carrying scales.

The two new scaling ranges discovered in Tong & Nguyen (2015) were shown to be
located between the outer and two inner length scales: the convective range between
the outer and inner–outer scales, and the dynamic range between the inner–outer and
inner–inner scales. Therefore, there are two sets of inner–outer expansions, one as the
‘inner’ expansions to be matched with the outer expansions, and the other as the ‘outer’
expansions to be matched with the inner–inner expansions. The leading-order inner–
outer expansions were shown to be functions of the non-dimensional wavenumber
−kL, the independent similarity variable, thereby providing a proof of MMO for the
case of two-point statistics.

The asymptotic analysis also reveals the dominant dynamics in each scaling range.
The balance for the leading-order terms in the convective range for the streamwise
velocity is between the nonlinear and the pressure-gradient terms, whereas for vertical
velocity it is between the buoyancy and pressure-gradient terms. For the potential
temperature, the balance is between the horizontal and vertical transport. In the
dynamic range, the balance for the streamwise velocity is between the mean-shear,
nonlinear and pressure-gradient terms, whereas for the vertical velocity it is the same
as the convective range. For the potential temperature, it is between the mean gradient
production and horizontal and vertical transport.

We derived the leading-order scaling exponents for the two scaling ranges and
the corrections to the scaling ranges for finite ratios of the length scales (−zi/L and
−h/L) using matched asymptotic expansions. The second-order corrections for the
outer expansions are due to the mean shear (order ε). The corrections for the first
set of the inner–outer expansions are due to the time derivatives (order ε2). The
second-order corrections for the second set are due to the nonlinear terms in the
vertical velocity equation (order ε1). The corrections for the inner–inner expansions
are due to the buoyancy term (also order ε1).

The present study proves a key hypothesis of MMO that L is the horizontal length
scale. It also proves the validity of the MMO hypotheses for the case of two-point
horizontal separations, providing strong support to MMO for general multi-point
velocity and potential temperature differences.

As a general theoretical framework for surface-layer turbulence, MMO establishes
universal complete surface-layer similarity. The ABL is a multi-scale problem. As a
whole it does not have universal similarity, because the large scales are subjected to
external influences, such as unsteadiness and mesoscale inhomogeneity, etc. As the
inner layer of the ABL, the surface layer is expected to have universal similarity,
which should hold in any surface layer. MMO establishes that multi-point statistics
have universal complete similarity. Because length scales are explicitly included in
multi-point statistics, MMO is a reflection of the similarity of surface-layer eddies,
defined as eddies that are entirely inside the surface layer (k� 1/zi), but excluding
inertial-scale eddies (1/z � k). Note that spectra at k ∼ 1/zi do not have universal
similarity, as zi is not a surface-layer scale. Furthermore, motions with k ∼ 1/zi
originate outside of (at heights above) the surface layer, and are dominated by
processes at these heights. Therefore, complete surface-layer similarity should be
defined as that of the surface-layer eddies. MMO indicates that this similarity is
universal and complete, and can only be represented by multi-point statistics. On the
other hand, one-point statistics do not always scale with the surface-layer parameters
L and u∗ (e.g. the horizontal velocity variances), because non-surface-layer eddies (e.g.
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mixed-layer eddies) can dominate these statistics. Consequently, one-point statistics
do not always reflect the similarity of the surface-layer eddies. The lack of universal
complete surface-layer similarity of one-point statistics, therefore, does not contradict
the universal complete surface-layer similarity.

MMO also has implications for a number of research areas where the scaling
properties of the surface-layer turbulence play an important role. For example, in a
two-particle relative dispersion problem, the horizontal growth rate of a particle cloud
depends on the scaling of the horizontal velocity differences. The newly discovered
convective and dynamic ranges would result in different growth rates. Dispersion
models therefore need to include these scaling ranges. Mixing of chemical species
in the surface layer is also influenced by the scaling of velocity differences. MMO
therefore has implications for atmospheric chemistry. The wind turbine aerodynamic
loading also depends on the scaling of the horizontal velocity differences. Here, both
the horizontal and vertical velocity differences are likely to be important. In addition,
MMO also has implications for understanding wave propagation and interference in
the surface layer. Further research into the multi-point difference joint probability
density function will be important for addressing these issues.
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