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The pressure–strain-rate correlation and pressure fluctuations in convective and near
neutral atmospheric surface layers are investigated. Their scaling properties, spectral
characteristics, the contributions from the different source terms in the pressure
Poisson equation and the effects of the wall are investigated using high-resolution
(up to 20483) large-eddy simulation fields and through spectral predictions. The
pressure–strain-rate correlation was found to have the mixed-layer and surface-layer
scaling in the strongly convective and near neutral atmospheric surface layers,
respectively. Its apparent surface-layer scaling in the moderately convective surface
layer is due to the slow variations of the mixed-layer contribution, and is an inherent
problem for single-point statistics in a multi-scale surface layer. In the strongly
convective surface layer the pressure spectrum has an approximate k−5/3 scaling range
for small wavenumbers (kz� 1) due to the turbulent–turbulent contribution, and does
not follow the surface-layer scaling, where k and z are the horizontal wavenumber
and the distance from the surface respectively. The pressure–strain-rate cospectrum
components have a k−1 scaling range, consistent with our prediction using the surface
layer parameters. It is dominated by the buoyancy contribution. Thus the anisotropy in
the surface layer is due to the energy redistribution caused by the density fluctuations
of the large eddies, rather than the turbulent–turbulent (inertial) effects. In the near
neutral surface layer, the turbulent–turbulent and rapid contributions are primarily
responsible for redistribution of energy from the streamwise velocity component to
the vertical and spanwise components, respectively. The pressure–strain-rate cospectra
peak near kz∼1, and have some similarities to those in the strongly convective surface
layer for kz� 1. For the moderately convective surface layer, the pressure–strain-rate
cospectra change signs at scales of the order of the Obukhov length, thereby imposing
it as a horizontal length scale in the surface layer. This result provides strong
support to the multipoint Monin–Obukhov similarity recently proposed by Tong &
Nguyen (J. Atmos. Sci., vol. 72, 2015, pp. 4337–4348). We further decompose the
pressure into the free-space (infinite domain), the wall reflection and the harmonic
contributions. In the strongly convective surface layer, the free-space contribution
to the pressure–strain-rate correlation is dominated by the buoyancy part, and is
the main cause of the surface-layer anisotropy. The wall reflection enhances the
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anisotropy for most of the surface layer, suggesting that the pressure source has a
large coherence length. In the near neutral surface layer, the wall reflection is small,
suggesting a much smaller source coherence length. The present study also clarifies
the understanding of the role of the turbulent–turbulent pressure, and has implications
for understanding the dynamics and structure as well as modelling the atmospheric
surface layer.

Key words: atmospheric flows, turbulent boundary layers, turbulence modelling

1. Introduction
The pressure–strain-rate correlation, Rij = 〈p(∂ui/∂xj + ∂uj/∂xi)〉, is an important

quantity for understanding the dynamics of turbulent flows. Here p and u are the
fluctuating pressure and velocity, respectively, and 〈·〉 denotes ensemble average. It
is responsible for the energy redistribution among the velocity components, and
is often the main sink for the shear components of the Reynolds stress. In the
atmospheric surface layer it is a dominant term in the Reynolds stress transport
equations (Wyngaard & Coté 1971; Wyngaard 1992), and therefore is a key term for
the dynamics of the Reynolds stress. The fluctuating kinematic pressure (referred to
simply as pressure hereafter) in the atmospheric boundary layer is governed by the
Poisson equation:

∇
2p=−2

∂ui

∂xj

∂Uj

∂xi
−
∂2(uiuj − 〈uiuj〉)

∂xi∂xj
− 2εijkΩj

∂uk

∂xi
+ β

∂θ

∂z
, (1.1)

where Uj, εijk, Ωj, β, and θ are the mean velocity, alternating symbol, Earth’s angular
velocity, buoyancy parameter and potential temperature, respectively. The pressure can
be decomposed into five contributions:

p= p(r) + p(t) + p(c) + p(b) + p(h), (1.2)

where p(r), p(t), p(c), p(b), p(h) are the rapid pressure, turbulent–turbulent pressure,
Coriolis pressure, buoyancy pressure and harmonic pressure, respectively. Each
of the first four contributions satisfies (1.1) with the corresponding source term.
The harmonic pressure satisfies the Laplace equation, ∇2p(h) = 0, with the proper
boundary condition such that the boundary conditions for p is satisfied. We denote
the corresponding contributions to Rij as R(r)

ij , R(t)
ij , R(c)

ij , R(b)
ij and R(h)

ij , respectively.
The turbulent–turbulent pressure is often referred to as the slow pressure since it
does not respond instantly to changes in the mean shear. The buoyancy pressure does
not respond instantly to changes in the mean shear or the mean temperature gradient.
However, it responds instantly to changes in the gravitational acceleration, therefore
has similarities to the rapid pressure.

The pressure–strain-rate correlation is usually considered to cause return to
isotropy, i.e. to redistribute energy from the largest velocity component to the other
components. Specifically, this behaviour is associated with the contribution from
the turbulent–turbulent pressure R(t)

ij (e.g. Lumley & Newman 1977). Although it
is unclear whether R(t)

ij always behaves this way, it has traditionally been usually
modelled as such (e.g. Rotta 1951). Recent studies by Nguyen et al. (2013) and
Nguyen & Tong (2015) using the Advection Horizontal Array Turbulence Studies
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(AHATS) data, however, have shown that in the surface layer of a convective
atmospheric boundary layer, the pressure–strain-rate correlation causes anisotropy
in the normal Reynolds stress components, rather than causing return to isotropy:
it redistributes energy from the smaller vertical velocity component to the often
much larger horizontal velocity components, raising questions about its generally
accepted role of causing return to isotropy. While Nguyen et al. (2013) and Nguyen
& Tong (2015) have suggested that the large convective eddies are responsible for this
behaviour, because decomposing the measured pressure into the different contributions
given in (1.2) is not possible, a detailed understanding of the physics is still lacking.
Due to the key role played by the pressure–strain-rate correlation in turbulence
dynamics, this physics has strong implications for our understanding and modelling
of turbulent flows with buoyancy effects.

The pressure–strain-rate correlation couples the budget equations for the variances
of the velocity components, and therefore one might expect it to have the same
scaling properties as the variances. The Kansas measurements (Wyngaard & Coté
1971) and the subsequent studies have suggested that the budget equations follow
the surface-layer (Monin–Obukhov) scaling. In the meantime, the vertical velocity
and the horizontal velocity fluctuations in the convective surface layer have disparate
scales. The former has the surface-layer scaling with a velocity scale of u∗ (or the
local-free-convection scale uf ) and a length scale of z, the height from the surface,
whereas the latter has the mixed-layer scaling with a velocity scale of w∗ and a length
scale of zi, the boundary layer height. Therefore, there is an apparent inconsistency
between the scaling properties of the horizontal velocity variances (mixed-layer
scaling) and their budgets (surface-layer scaling), in which the pressure–strain-rate
correlation is a dominant term. This complex scaling issue is of importance for
understanding and modelling the physical process causing the anisotropy.

The different source terms in the Poisson equation (1.1) correspond to different
physical processes that generate the fluctuating pressure. The turbulent–turbulent
pressure is usually the cause of return to isotropy whereas the rapid pressure can
counter the shear production (Rotta 1951; Crow 1968; Pope 2000). There have been
previous studies on the pressure-gradient–scalar covariance (e.g. Moeng & Wyngaard
1986; Mironov 2001). However, investigations of the effects of the buoyancy term
on the pressure–strain-rate correlation only began recently (Nguyen 2015; Heinze
et al. 2017), although Launder, Reece & Rodi (1975) has proposed a model for
the buoyancy contribution to the pressure–strain-rate correlation, which counters the
effects of the buoyancy production in a similar way to the isotropization of production
model for the rapid pressure–strain-rate correlation.

The wall can also play an important role in the behaviour of the pressure–strain-rate
correlation. In a neutral boundary layer wall blocking of the vertical velocity can
impede return to isotropy. However, the wall also enhances the pressure fluctuations
and the pressure–strain-rate correlation through wall reflection, thereby promoting
return to isotropy. The pressure–strain-rate model of Gibson & Launder (1978) is
based on the latter consideration. In a convective surface layer, the wall blocks the
vertical velocity, and therefore may enhance anisotropy. Thus, investigations of the
effects of the wall can also shed light on the physics of the generation of anisotropy.

In the present study we investigate the physics responsible for behaviours of the
pressure–strain-rate correlation in convective atmospheric surface layers and a near
neutral surface layer, including its scaling properties, its spectral characteristics, the
different contributions from the pressure sources and the wall effects (by analysing the
contributions from the free-space pressure and wall reflection). The investigation will
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provide a clear understanding of the physics responsible for the generating the surface-
layer anisotropy (of the normal components) of the Reynolds stress in the convective
surface layer. It will also provide strong support for the recently proposed multipoint
Monin–Obukhov similarity (MMO), which assumes that a horizontal length scale (the
Obukhov length) is imposed by the pressure–strain-rate correlation. Furthermore, it
will clarify the issue of modelling the turbulent–turbulent contribution of the pressure–
strain-rate correlation as a return to isotropy term.

The decomposition of the pressure into different contributions requires the entire
velocity and temperature field, which no current measurement techniques are capable
of providing; therefore, we use large-eddy simulation (LES) fields to compute the
pressure–strain-rate correlation. The fidelity of the LES fields will be discussed in the
next section. To facilitate the understanding of the pressure–strain-rate correlation we
also examine some related statistics of the pressure fluctuations. The rest of the paper
is organized as follows. In § 2 we outline the LES code, the LES fields obtained and
the solutions of the Poisson equation for obtaining the pressure field. The results are
discussed in § 3, followed by the conclusions in § 4.

2. LES fields and the solution method for the Poisson equation

The LES formulation used is presented in detail in Moeng (1984), and has been
well documented in the literature (Moeng & Wyngaard 1988; Sullivan, McWilliams
& Moeng 1994, 1996), and includes later refinements by Otte & Wyngaard (2001).
The LES code solves the spatially filtered momentum equation for Boussinesq flow
and a transport equation for a filtered conserved scalar, supplemented with a transport
equation for the subgrid-scale turbulent kinetic energy. A pressure Poisson equation,
obtained by applying a numerical divergence operator to the momentum equation,
enforces incompressibility. The numerical scheme is pseudo-spectral in the horizontal
directions and finite difference in the vertical, the latter implemented on a staggered
mesh to maintain tight velocity–pressure coupling. The nonlinear advection terms
are implemented in rotational form, and aliasing errors are eliminated using an
explicit sharp Fourier cutoff of the upper 1/3 wavenumbers (Canuto et al. 1988).
Time stepping is performed using a third-order Runge–Kutta scheme (Spalart, Moser
& Rogers 1991; Sullivan et al. 1996). Consistent with the pseudo-spectral method,
periodic boundary conditions are used on the domain sidewalls.

The surface boundary conditions for LES include specifying the instantaneous local
shear stress at the surface based on the resolved velocity at the first vertical grid level.
Assuming that the mean wind and mean stress follow a log-law profile, we follow
the procedure described by Moeng (1984) and compute the surface friction velocity
u∗ from the horizontal-mean wind speed at the first grid level using Monin–Obukhov
similarity theory. The local stress at each grid point at the surface is then computed
from u∗ based on the procedure described in the appendix of Moeng (1984), where the
wind in the surface drag law is decomposed into mean and fluctuating components. At
the upper boundary, a radiative boundary condition allows for gravity waves to pass
through without reflection (Klemp & Durran 1983). Neumann boundary conditions,
derived from the vertical momentum equation, are used with the pressure Poisson
equation.

We simulate a series of atmospheric boundary layer (ABL) flow: (i) a (nearly)
neutrally stratified ABL driven by a constant large-scale pressure gradient correspond-
ing to geostrophic wind components (Ug, Vg) = (10, 0) m s−1 (due to the stably
stratified inversion at the top, the boundary layer is slightly stable even with zero
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Stability Ug Q Resolution SGS model −L zi u∗ w∗
(m s−1) (K m s−1) (m) (m) (m s−1) (m s−1)

Neutral 10 0 5123 Smagorinsky — 988 0.45 0
10243 Kosović — 984 0.52 0

Smagorinsky — 981 0.45 0

Moderately 10 0.12 10243 Kosović 104 1031 0.55 1.59
convective Smagorinsky 84 1032 0.51 1.59

20483 Kosović 108 971 0.55 1.56

Strongly 1 0.24 10243 Kosović 4.02 1074 0.23 2.02
convective Smagorinsky 4.14 1076 0.24 2.02

20483 Kosović 4.48 1020 0.24 1.99

Strongly 1 0.06 5123 Kosović 4.08 1022 0.15 1.26
convective 0.12 3.94 1060 0.18 1.60

0.16 3.92 1064 0.20 1.76
0.20 3.92 1111 0.22 1.92
0.24 3.71 1076 0.23 2.02

TABLE 1. Large-eddy simulation parameters. All the simulations are implemented with a
domain size of 5120 m× 5120 m in the horizontal directions and 2048 m in the vertical
direction. The grid sizes (∆x, ∆y, ∆z) for 5123, 10243 and 20483 resolutions are (10 m,
10 m, 4 m), (5 m, 5 m, 2 m) and (2.5 m, 2.5 m, 1 m), respectively.

surface heat flux), thus the x axis is aligned with the geostrophic wind; (ii) a
moderately unstable ABL driven by a combination of geostrophic winds and surface
heating; (iii) a nearly free-convective ABL driven by a constant surface heat flux
(Q = 0.24 K m s−1) and weak geostrophic winds (Ug, Vg) = (1, 0) m s−1; (iv) a
series of nearly free-convective ABL. To minimize the possible influence of the
subgrid-scale (SGS) model on the pressure results, we employ two SGS models
in order to compare the effects of the SGS parametrization on the results. For
cases (i)–(iii), the subgrid-scale (SGS) fluxes are parametrized using the Smagorinsky
model (Smagorinsky 1963; Lilly 1967; Moeng 1984) and the Kosović model (Kosović
1997), which adds a nonlinear term to the eddy-viscosity formulation to account for
backscatter effects. The parameters and the SGS models employed are summarized in
table 1. All the simulations are implemented with a domain size of 5120 m× 5120 m
in the horizontal directions and 2048 m in the vertical direction. The grid sizes
(∆x, ∆y, ∆z) for 5123, 10243 and 20483 resolutions are (10 m, 10 m, 4 m), (5 m,
5 m, 2 m) and (2.5 m, 2.5 m, 1 m), respectively. We prescribe a surface roughness
of z0 = 0.1 m, Coriolis parameter f =Ω sin φ = 1× 10−4 s−1, and an initial capping
inversion at zi = 1024 m, where Ω and φ are the magnitude of the Earth’s angular
velocity and latitude respectively. The simulations are carried forward for 25τ , where
τ = zi/w∗ (or u∗ for the neutral case) defines one large-eddy turnover time and
w∗(= (βQzi)

1/3) value is calculated using the initial zi and the prescribed temperature
flux. Statistics are averaged from 10τ − 25τ .

While previous studies (e.g. Moeng & Wyngaard 1986) have shown that LES fields
can be used to satisfactorily predict turbulence statistics in the mixed layer, near the
surface, especially at the first few grid points, the influence of the LES resolution,
SGS model and the boundary conditions on energy-containing-scale statistics can
be significant. The pressure–strain-rate correlation is an energy-containing statistic,
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and therefore, is similarly affected by the LES resolution. We take steps similar to
those in Tong & Nguyen (2015) to evaluate and minimize such influences. First,
as we mentioned above, we employ two SGS models with the same boundary
conditions so that the sensitivity of the pressure statistics to the SGS model can
be assessed. We found that, although there are quantitative differences between the
two model results, the scaling properties of the results are the same. Second, we
calculate the vertical profile of the pressure–strain-rate correlation and evaluate the
pressure–strain-rate cospectra, Cij, i.e. the cospectra between the pressure and the
strain rate, sij = 1/2(∂ui/∂xj + ∂uj/∂xi), and the pressure spectrum, φp, obtained at
several heights (8, 16, 20 and 30 m) to assess the sensitivity to the SGS model, the
extent of resolution, and the boundary conditions, since they play a greater role near
the surface. We found that the pressure–strain-rate correlation is approximately 80 %
resolved at the tenth grid point for the near neutral surface layer, the most difficult
case to resolve (see § 3.1). The forms of the spectra and cospectra below the eighth
grid point begin to depart from those at greater heights, while the latter largely agree
among themselves. Third, we perform LES at several high resolutions (5123–20483),
which are higher than previous studies using LES fields (e.g. Sullivan & Patton
2011; Stevens, Wilczek & Meneveau 2014) and help us further reduce and assess the
sensitivity of the results to the resolution. We found that the variability of the results
is small compared to the magnitudes of the results. Sullivan & Patton (2011) found
that for LES employing the Smagorinsky model, the majority of the lower-order
statistics become grid independent when zi/(Cs∆f ) > 310, where Cs and ∆f are the
Smagorinsky constant and the filter cutoff scale. In their LES of a strongly convective
boundary layer (−zi/L = 500), which is very close to our strongly convective case,
zi/(Cs∆f ) values of 314, 630 and 1272 were achieved for 2653, 5123 and 10243

resolutions, respectively. Stevens et al. (2014) simulated a neutral boundary layer
using a resolution of 2048× 1024× 577, and the results agree well with wind tunnel
measurements. Therefore, the LES resolutions in the present study are sufficiently
high for analysing the scaling properties of the pressure–strain-rate correlation. Our
finding is also consistent with that of Miles, Wyngaard & Otte (2004) who showed
that the LES resolution effects on the pressure spectrum are small. We note that
in the first few (∼10) grid points the non-dimensional mean shear typically has an
overshoot for LES employing the Smagorinsky model, which could potentially cause
an overestimation of the rapid contribution to the pressure–strain-rate correlation.
Brasseur & Wei (2010) proposed a method to eliminate the overshoot. However, due
to the under-resolution of the fluctuating strain rate there, the rapid pressure–strain-rate
is not overestimated. In addition, the Kosović model does not have this overshoot (see
§ 3.4 for more discussions). These results indicate that the overshoot does not affect
the validity of the results obtained. Thus we do not attempt to adapt the procedure
of Brasseur & Wei (2010) in the present study.

In the present study, the pressure fields in the analysis are obtained using LES fields.
Since we use the resolvable-scale velocity and the (modelled) SGS stress to compute
source terms and the boundary condition of the Poisson equation, only the resolvable-
scale pressure field can be obtained. The Poisson equation for this pressure is

∇
2pr
=−2

∂ui
r

∂xj

∂Uj

∂xi
−
∂2(ui

ruj
r
− 〈ui

ruj
r
〉)r

∂xi∂xj
−

∂2τ ′ij

∂xi∂xj
− 2εijkΩj

∂ur
k

∂xi
+ β

∂θ r

∂z
, (2.1)

where a superscript r denotes a resolvable-scale variable and τij = (uiuj)
r
− (ui

ruj
r)r

is the subgrid-scale stress. For convenience, we omit the superscript for the resolved
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pressure hereafter. The pressure solver is based on those of Moeng & Wyngaard
(1986) and Sullivan et al. (1996). The lower boundary condition for pressure derived
from the vertical momentum equation (Moeng & Wyngaard 1986) is

∂p
∂z
=−

∂τ13
′

∂x
−
∂τ ′23

∂y
at z= 0, (2.2)

where τ ′ij is the fluctuating SGS stress. The upper boundary condition is ∂p/∂z= 0.
To understand the role of the wall in causing the behaviours of the pressure–strain-

rate correlation, we also decompose the pressure into free-space (infinite domain), wall
reflection and harmonic contributions. The free-space solution satisfies

∇
2pf = S, z > 0, (2.3)

∇
2pf = 0, z< 0, (2.4)

with the boundary condition at infinity (z→−∞)

p∝
1
|z|
, z→−∞, (2.5)

which is a result of the Green’s function for the three-dimensional Poisson equation
with a finite-size source, where S represents the right-hand side of (1.1). The wall
reflection satisfies the Laplace equation

∇
2pw = 0, (2.6)

with the boundary condition

∂pw

∂n

∣∣∣∣
z=0

= −
∂pf

∂n

∣∣∣∣
z=0

, (2.7)

i.e. the normal derivative of the pressure due to the wall reflection is the opposite to
that due to the free-space pressure at the boundary.

Numerical solution of the free-space pressure with the boundary condition at infinity
is difficult due to the large domain size needed. In this work a technique overcoming
this difficulty developed by the physics community (James 1977; Balls & Colella
2002) will be employed. It decomposes the free-space solution into two parts that can
be obtained by using boundary conditions at the wall. The first part is the solution of
the Poisson equation with the Dirichlet boundary condition:

∇
2pD
= S, z > 0, (2.8)

pD
= 0, z= 0. (2.9)

For z < 0, pD is specified to be identically zero, which is equivalent to adding a
boundary source at z= 0 that results in a discontinuity in the wall-normal derivative
∂pD/∂n.

The second part is the pressure caused by the boundary source, which is
concentrated in a single layer (z = 0). It causes a discontinuity in the wall-normal
derivative. The jump in the derivative is the negative of that of ∂pD/∂n, and therefore,
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when combined with pD, results in a continuous wall-normal derivative, ∂p/∂n. This
pressure is obtained as

pB(x)=
∫

z>0
µ(y(s))G(x− y(s)) ds, (2.10)

µ(y(s))=
∂pD(y(s))

∂n

∣∣∣∣
z=0+

. (2.11)

The sum of the two pressures, p= pD
+ pB, is identically equal to the solution of the

following equations in the upper half-space z > 0:

∇
2p=

∂2p
∂x2
+
∂2p
∂y2
+
∂2p
∂z2
= S(x, y, z), (2.12)

p=−
R

4π|x|
+ o(1), z→−∞, R=

∫
z>0

S(x) dx. (2.13a,b)

The derivatives in the x and y directions are obtained using Fourier transform
whereas those in the z direction are approximately using finite differences as follows:

µj =
1
h

(
25
12

pD
j − 4pD

jx,jy,jz−1 + 3pD
jx,jy,jz−2 −

4
3

pD
jx,jy,jz−3 +

1
4

pD
jx,jy,jz−4

)
=
∂pD

∂z
(xj)+O(h4). (2.14)

The reflected pressure is due to the reflection of the source terms in the entire
boundary layer; therefore, it is similarly affected by the near-wall resolution to
the free-space pressure. The harmonic pressure is likely more affected. However, its
magnitude is generally much smaller than the other contributions combined. Therefore
the effects are less consequential.

3. Results
In this section we first present the results on the scaling properties and spectral

characteristics of the pressure fluctuations and the pressure–strain-rate correlation
in the convective and near neutral surface layer. We then discuss the results on the
contributions to these statistics from the different source terms in the pressure Poisson
equation, including the turbulent–turbulent, buoyancy and shear contributions. Finally
we discuss the effects of the wall reflection on these statistics.

3.1. Scaling properties
We first examine the scaling of the pressure–strain-rate correlation and the pressure
fluctuations. The vertical profiles of the pressure variance, σ 2

p , for several convective
surface layers with different surface temperature flux values are shown in figure 1(a,b).
The variance scales with w4

∗
, as expected. Figure 1(a) also compares results obtained

from 5123, 10243 and 20483 LES. The differences among the different resolutions
are relatively small, and are likely mainly due to the statistical uncertainties of the
results. For the near neutral surface layer it appears to scale with u4

∗
(figure 1c), also

as expected. There appears to be only slight attenuation for z/zi<0.02, consistent with
the observation of Miles et al. (2004) that the pressure variance near the surface is
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FIGURE 1. Profiles of the non-dimensional pressure variance in (a) the strongly convective
boundary layer from 5123 LES using the Kosović model (dotted), 10243 LES using
the Smagorinsky model (solid), the Kosović model (dash-dot) and 20483 LES using the
Kosović model (dashed), (b) a series of convective boundary layers from 5123 LES using
the Kosović model (left to right: Q= 0.24, 0.06, 0.12, 0.20, 0.16) and (c) the nearly neutral
boundary layer from 10243 LES using the Smagorinsky model (solid) and the Kosović
model (dashed).

not significantly affected by the LES resolution, perhaps because pressure is a non-
local variable. Figure 2 shows the vertical profile of the normal components of the
pressure–strain-rate tensor, Rαα (no summation for α), non-dimensionalized by w3

∗
/zi,

obtained in the strongly convective boundary layer. (The LES resolution is 10243 here
and hereafter unless otherwise noted.) Consistent with the results obtained using the
AHATS data (Nguyen et al. 2013), R11 is positive, opposite to the results in a neutral
boundary layer (see figure 4). The numerical values at z/zi = 0.0069 are within 25 %
of the those obtained using AHATS data (Nguyen et al. 2013). It decreases with
increasing height, but appears to approach a constant value in the mixed layer. The
magnitude is of order one, consistent with the mixed-layer scaling. To further examine
the scaling property, we compute Rαα for essentially the same zi but a range of surface
temperature flux (different w∗) using a series of LES with 5123 resolution (figure 3).
The profiles, when scaled using the mixed-layer parameters (figure 3b), essentially
collapse, further indicating that Rαα has the mixed-layer scaling.

Figures 1 and 2 show some differences between the Smagorinsky and Kosović
models. However, the results also show that the scaling properties are not sensitive to
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FIGURE 2. Profiles of the non-dimensional pressure–strain-rate correlation in the strongly
convective boundary layer from LES using (a) the Smagorinsky model and (b) the Kosović
model (20483). The lines represent R11 (solid), R22 (dotted) and R33 (dashed). The LES
resolution is 10243 here and hereafter unless otherwise noted. The predicted logarithmic
profiles (3.2) agree well with the LES results for z/zi = 0.02.
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FIGURE 3. Profiles of the pressure–strain-rate correlation in a series of convective
boundary layers from 5123 LES using the Kosović model: (a) dimensional (inside to
outside: Q = 0.06, 0.12, 0.16, 0.20, 0.24); (b) non-dimensionalized using the mixed-layer
scales. The lines represent R11 (solid), R22 (dotted) and R33 (dashed).

the model inaccuracies, providing further evidence that the scaling properties obtained
are not affected by the model inaccuracies.

The increase of Rαα approaching the surface can be explained using Townsend’s
attached-eddy model (Townsend 1976). He argued that eddies directly influenced by
the presence of a wall are ‘attached’ to the wall. The large-scale motions near the
wall can be considered as a superposition of the velocities of such eddies, which
have different scales but similar velocity distributions. We extend the model to Rαα by
considering it as a superposition of the contributions from attached convective eddies
of different scales:

Rαα(z)=
∫ zi

z
N(za)Iαα

(
z
za

)
dza

za
, (3.1)
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FIGURE 4. Profiles of the non-dimensional pressure–strain-rate correlation in the nearly
neutral boundary layer from LES using (a) the Smagorinsky model and (b) the Kosović
model. The lines represent R11 (solid), R22 (dotted), R33 (dashed) and R13 (dash-dot).
Profiles with symbols were obtained using 5123 LES.

where za, N(za), and Iαα are the centre location of the eddies of scale za, the intensity
of the contributions and the functional form of the contributions from these eddies
at height z. Here za is also the scale of the eddies centred at za since the eddies
are attached to the surface. For convective eddies N = u3

f /za, where uf = (βQza)
1/3

is the local-free-convection velocity scale (Wyngaard, Coté & Izumi 1971). Here Iαα
approaches a non-zero value near the wall since p and sαα are non-zero. The integral
in (3.1) leads to

Rαα = βQ
[

c1 + c2 log
zi

z

]
, (3.2)

where c1 and c2 are coefficients that are independent of the flow parameters, which
are determined here by plotting the Rαα profiles in the linear–log scales and fitting
a straight line to the logarithmic portion. The predicted logarithmic behaviour is
consistent with the Rαα profiles shown in figure 2. These results show that the
pressure–strain-rate correlation in the strongly convective surface layer is almost
unaffected by the near-wall resolution, at least for the resolutions used in the present
study.

Figure 4 shows the vertical profile of Rij, non-dimensionalized by u3
∗
/z, obtained

using the LES fields of the near neutral boundary layer. Between 30 and 70 m
(z/zi = 0.03–0.07), they have relatively constant values, with R11 being negative and
R22 and R33 being positive, consistent with the surface-layer scaling and its role of
causing return to isotropy. The decrease (the departure from the expected surface-layer
scaling) below z/zi = 0.03 (the 15th grid point) is due to the under-resolution of the
strain rate by LES, since the pressure fluctuations are not significantly under-resolved
(figure 1c) (also see the results for the pressure–strain-rate cospectra for more details).
At the tenth grid point, approximately 80 % of the pressure–strain-rate correlation is
resolved compared to the highest values, e.g. R11 at z/zi= 0.02 and 0.06 have values
of approximate 0.8, and 1.0 respectively, the latter being considered well resolved.
The extent of resolution is similar to the vertical velocity variance. The results for
the 5123 LES show a similar trend, again with the pressure–strain-rate correlation
well resolved at the 15th grid point. The off-diagonal component R13 is positive, also
consistent with return to isotropy (the shear stress is negative).
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FIGURE 5. Profiles of the non-dimensional pressure–strain-rate correlation in the
moderately convective boundary layer from LES using (a) the Smagorinsky model and (b)
the Kosović model (20483). The lines represent R11 (solid), R22 (dotted) and R33 (dashed).
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FIGURE 6. Pressure spectrum in the strongly convective boundary layer from LES using
(a) the Smagorinsky model and (b) the Kosović model (20483), non-dimensionalized by
Cp = w2

∗
(κβQ)2/3z5/3

i (see § 3.2 for details). The lines represent heights of 16 m (solid),
20 m (dashed) and 30 m (dotted).

The pressure–strain-rate correlation profiles for the moderately convective surface
layer (figure 5) for −z/L > 1 have similar trends to the strongly convective surface
layer. They are similar to the neutral surface layer for small −z/L values (<0.5–0.7),
with R11 being negative. However, R33 is moving toward positive values as z
decreases but still has not crossed the zero value, likely due to the under-resolution
near the surface. Similar to the near neutral surface layer, R13 is also positive
(not shown). These results suggest that the pressure–strain-rate correlation contains
multiple scales.

3.2. Spectral characteristics
To examine the contributions to Rij from the different length scales, we investigate
the pressure spectrum and the pressure–strain-rate cospectra at scales greater than z
(kz< 1). The pressure spectrum in the convective surface layer (figure 6) has a scaling
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FIGURE 7. Pressure spectrum in a series of convective boundary layers at 16 m from
5123 LES using the Kosović model: (a) dimensional; (b) non-dimensionalized by Cp =

w2
∗
(κβQ)2/3z5/3
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FIGURE 8. Pressure spectrum in the nearly neutral surface layer from LES using the
Smagorinsky model, non-dimensionalized by Cp = u4

∗
zi. The lines represent 16 m (solid),

20 m (dashed) and 30 m (dotted).

exponent close to −5/3. If we use the parameters for a free-convective surface layer,
the buoyancy parameter β, the surface temperature flux Q, and the wavenumber k, the
pressure spectrum for kz� 1 is predicted as

φp(k)= (βQ)4/3k−7/3. (3.3)

The predicted scaling exponent is inconsistent with the LES results, suggesting that
the spectrum cannot be determined entirely by the surface-layer parameters. Figure 7
shows that the pressure spectra obtained using the series of 5123 LES of convective
surface layers collapse when scaled using a combination of mixed-layer and surface-
layer scales. This scaling will be further discussed in § 3.3. For the neutral ABL, the
prediction using the surface-layer parameters is

φp(k)= u4
∗
k−1, (3.4)

which is consistent with the results shown in figure 8.
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We now predict the scaling exponents of the pressure–strain-rate cospectra for
different −z/L ranges. For kz � 1 in a free convective surface layer, using the
parameters β, Q and k, the cospectra are predicted to have the form

C′αα(k)= βQk−1. (3.5)

Interestingly, equation (3.5) can also be written as

kC′αα(k)= βQ∼ u3
f k. (3.6)

This expression suggests that the pressure–strain-rate correlation at wavenumber k
is determined by the convective eddies of scale 1/k. In § 3.2 we will address the
fact that the scaling exponent of pressure spectrum in the strongly convective surface
layers is not consistent with the prediction using the free-convection parameters but
the pressure–strain-rate cospectra are.

For the near neutral surface layer, the parameters are u∗ and k, resulting in a
cospectrum of the form

C′αα(k)= u3
∗
. (3.7)

Thus the cospectra are independent of k.
For the moderately convective surface layer, the cospectra for −z/L > 1 (termed

the convective layer in Tong & Nguyen (2015)) are similar to those in the convective
surface layer. For −z/L < 1 (the convective–dynamic layer), using the multi-point
Monin–Obukhov similarity (MMO) (Tong & Nguyen 2015) we predict that for
−kL < 1 (the convective range), they are similar to those in the convective surface
layer. For −kL > 1 (the dynamic range) they are similar to those in the neutral
surface layer. However, the signs of the cospectra can be different for the two
ranges. The qualitatively different behaviours of the cospectra in the different scaling
ranges suggest that the pressure–strain-rate correlation contains multiple scales that
correspond to different physical processes.

The pressure–strain-rate cospectra for the strongly convective surface layer at
several different heights from the surface are shown in figure 9. The non-dimensional
cospectra largely collapse in the scaling range with a k−1 scaling exponent, consistent
with our prediction (3.5). The cospectra obtained using the 10243 and 20483 LES
are essentially identical, indicating that they are well resolved and are insensitive to
the resolution. They peak near kzi = 1, indicating that the eddies of scales from z to
zi have similar contributions to Rαα, resulting in the logarithmic profile (figure 4).
Therefore in this case the pressure–strain-rate correlation has the same scaling as the
horizontal velocity variances.

It is interesting to compare these cospectra with those in a neutral boundary layer
(figure 10), where R11 is negative. Near kz = 1, C11 is negative while C22 and
C33 are positive, indicating return to isotropy due to the shear production of the u
fluctuations. For kz � 1, C33 becomes negative and C22 is still positive, indicating
redistribution of energy from the w to the v component. Interestingly, C11 now has
very small magnitudes (although still negative), indicating that the u component does
not exchange significant amounts of energy with the other components, likely because
the u component is still receiving energy from the production associated with the
large eddies, although at a very small rate, estimated as u2

∗
kz∂U/∂z ∼ u3

∗
k. These

results are consistent with the attached-eddy model of Townsend and the ‘inactive
motion’ description of Bradshaw (1967). These eddies are produced at the height
z∼ 1/k by the mean shear there. Their energy is then transported toward the surface
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FIGURE 9. Pressure–strain-rate cospectra in the strongly convective boundary layer from
LES using (a) the Smagorinsky model and (b) the Kosović model (20483). The lines
represent heights of (a) 16 m (solid), 20 m (dashed) and 30 m (dotted), (b) 8 m (solid),
16 m (dashed) and 30 m (dotted). Here Cαα = C′αα/(w

3
∗
z/zi). For clarity, C11 has been

multiplied by 0.05 in (a) and (b), and C33 has been multiplied by 20 in (a) and 5 in (b).

by irrotational pressure fluctuations, and redistributed from the w to v component.
This redistribution of energy is in some way similar to that in a convective surface
layer. However, in a convective surface layer, the large convective eddies are much
more energetic than the large neutral eddies (uf versus u∗), thereby reversing the sign
of C11. Since R13 is positive C13 is also positive and peaks near kz= 1, as expected.
In all cases, the peaks of the cospectra are quite well resolved.

The cospectra for the moderately convective surface layer at three heights from
the surface are shown in figure 11. According to MMO, in this surface layer L is
also an important horizontal length scale. Thus we use −kL as the non-dimensional
wavenumber. Near kz = 3 (equivalent to −kL ≈ 20 at z = 16 m), C11 is negative
while C22 and C33 are positive, consistent with return to isotropy. For −kL< 1, C33 is
negative while C22 and C11 are positive, resulting in anisotropy. Thus, there are two
distinct redistribution processes, one at scales of order z and one beyond −L. The
cospectra largely collapse for −kL < 1 when scaled using −L. The scaling for C22

and C33 is consistent with k−1 (not shown). For C11 the scaling exponent is greater
than −1, perhaps related to the change of sign at a smaller −kL values and thus
the smaller scaling range. According to MMO, there should also be a scaling range
between −kL > 1 and kz < 1. However, this scaling range may require a very large
separation of scales (z, −L and zi), as suggested by the results for the neutral surface
layer. Due to the limited scale separation (−L and zi) for the ABL simulated, the
scaling range is not observed here. The sign change from kz ∼ 1 to −kL < 1 and
the collapse of the cospectra indicate that L is indeed a key horizontal length scale.
MMO assumes that it is imposed on the horizontal motions by the pressure–strain-rate
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FIGURE 10. Pressure–strain-rate cospectra in the nearly neutral surface layer from LES
using (a) the Smagorinsky model and (b) the Kosović model. The lines represent heights
of 16 m (solid), 20 m (dashed) and 30 m (dotted). Here Cαα =C′αα/u

3
∗
. For clarity, some

of the cospectra have been shifted vertically. Each horizontal line represents the zero value
for the corresponding cospectrum.

correlation. The results in the present study therefore provide important support to
MMO.

3.3. Further discussions on the scaling properties
As mentioned in the Introduction, previous studies (e.g. Wyngaard et al. 1971) have
suggested that the Rij has the surface-layer scaling, which is inconsistent with the
mixed-layer scaling of the horizontal velocity variances. To explain this apparent
contradiction, we consider the surface-layer similarity in terms of MMO, according to
which, turbulent statistics in the wavenumber space depend on the similarity variables
kL and z/L. Since the pressure–strain-rate cospectra and the horizontal velocity
spectra both follow MMO as shown above and in Tong & Nguyen (2015), there
is no inconsistency in spectral scaling. The inconsistency arises when the velocity
variances and the pressure–strain-rate correlation, which are the integrated velocity
spectra and the pressure–strain-rate cospectra, are considered in term of the (original)
Monin–Obukhov similarity. We examine this issue in the following.

The similarity properties of the pressure–strain-rate correlation and the horizontal
velocity variances can be obtained from the MMO scaling properties of the
pressure–strain-rate cospectra and the velocity spectra. For −z/L � 1, at the
horizontal scales of order zi and z, the pressure–strain-rate cospectra scale as w3

∗
/zi

and u3
f /z respectively, which are effectively the same scale. In the meantime, the

horizontal velocity variances, σ 2
h , are dominated by the zi scales. Therefore, the

pressure–strain-rate correlation actually has the same scaling as σ 2
h . For −z/L values

of order one, the pressure–strain-rate correlation contains both the mixed-layer scales
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FIGURE 11. Pressure–strain-rate cospectra in the moderately convective surface layer from
LES using (a) the Smagorinsky model and (b) the Kosović model (20483). The lines
represent heights of (a) 16 m (solid), 20 m (dashed) and 30 m (dotted), (b) 8 m (solid),
16 m (dashed) and 30 m (dotted). Here Cαα =C′αα/u

3
∗
. For clarity, some of the cospectra

have been shifted vertically.

and the surface-layer scales. Here we provide an explanation for the apparent
surface-layer scaling (z and u∗) by hypothesizing that the pressure–strain-rate
correlation consists of the neutral and convective contributions, u3

f /zf (z/zi) and
u3
∗
/zφs(z/L) respectively, where a dimensionless function φs is included to represent

the effects of convective eddies (e.g. altering the mean shear) on the neutral
contribution. The normal components of the pressure–strain-rate correlation therefore
can be (symbolically) estimated as

w3
∗

zi
f (z/zi)+

u3
∗

z
φs(z/L)=

u3
∗

z

{
w3
∗

u3
∗

z
zi

f (z/zi)+ φs(z/L)
}
=

u3
∗

z

{
−

z
κL

f (z/zi)+ φs(z/L)
}
.

(3.8)
We have absorbed the coefficients for the terms into the non-dimensional function f
and φs. The function f (z/zi) varies slowly (e.g. logarithmically as suggested by (3.2))
as z/zi → 0; therefore so does the convective contribution, leading to the apparent
scaling of Rαα with z/L. We emphasize that this apparent surface-layer scaling does
not require the convective contribution to be small, only that it varies slowly near
the surface. However, equation (3.2) suggests that zi/L influences the value of f (L/zi).
Therefore, different zi/L values will lead to scatters in the similarity function obtained
in the surface layer.

The above discussions suggest that the budget equations of σ 2
h also have both the

surface-layer and mixed-layer contributions with the latter leading to the mixed-layer
scaling of σ 2

h . Therefore, the apparent inconsistency between the scaling properties
of the velocity variances and their budgets is a result of the multi-scale nature of
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the surface layer. The horizontal velocity variances are dominated by the mixed-layer
contributions; however, their time rate of changes can be contain significant surface-
layer contributions or even be dominated by them. As pointed out by Tong & Nguyen
(2015), according to MMO, full surface-layer similarity is achieved only for multi-
point statistics. Thus, analysis of the spectral dynamics is necessary to investigate the
surface-layer physics. One-point statistics and their budget equations do not necessarily
obey the original Monin–Obukhov similarity. Investigation of the MMO properties of
the spectral equations is a topic of our future research.

3.4. Contributions to Rαα from the source terms in the Poisson equation
To investigate the sources and the physical processes for the observed behaviours
of the pressure–strain-rate correlation, we decompose the pressure according to the
source terms in the Poisson equation for the fluctuation pressure. We solve the Poisson
equation using each of the source terms on the right-hand side of (2.1). For example,
the rapid pressure contribution is solved as

∇
2p(r) =−2

∂ui

∂xj

∂Uj

∂xi
, (3.9)

with the boundary condition
∂p(r)

∂n

∣∣∣∣
z=0

= 0. (3.10)

The effects of the boundary condition and wall reflection will be examined in § 3.3.
Figure 12 shows the contributions to the pressure variance. For the strongly

convective surface layer, the turbulent–turbulent contribution dominates except near
the surface (z/zi<0.02) where it has a similar magnitude to the buoyancy contribution.
For the near neutral surface layer, the turbulent–turbulent and rapid contributions are
of similar magnitudes.

Figure 13 shows the contributions to the pressure–strain-rate correlation from the
individual source terms for the strongly convective case. The significant contributions
are turbulent–turbulent (R(t)

αα) and buoyancy (R(b)
αα), with the latter being the dominant

source, indicating that the pressure–strain-rate correlation is largely caused by the
temperature (hence density) variations associated with the convective eddies, while
the contributions from the dynamic pressure (R(t)

αα and R(r)
αα) is relatively small. The

prediction of the turbulent–turbulent contribution using Rotta’s model,

R(t)
αα =−

〈uαuα〉 − 1
3 〈ukuk〉

τ
, (3.11)

is shown in figure 14. Two choices of the time scale were used: τ = k/ε, which is a
traditional choice, and τ = zi/w∗. In both cases, the model over-predicts the magnitude,
suggesting that the model is not appropriate for strongly convective surface layers.
This issue will be further discussed later in this section.

The dominance of the buoyancy contribution to the pressure–strain-rate correlation
in the strongly convective surface layer is in sharp contrast to the large turbulent–
turbulent contribution to the pressure variance. To examine this issue, we compute
the contributions of the sources terms to the pressure spectrum and the pressure–
strain-rate cospectra. The buoyancy contribution to the pressure spectrum (figure 15)
has a scaling exponent close to −7/3, consistent with the prediction using the
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FIGURE 12. Profiles of the different source term contributions to the pressure variance
in the strongly convective surface layer from LES using (a) the Smagorinsky model
and (b) the Kosović model; the nearly neutral surface layer from LES using (c) the
Smagorinsky model and (d) the Kosović model. The lines represent buoyancy (dashed),
turbulent–turbulent (dotted) and rapid (dash-dot) terms. The total is represented by a solid
line.

local-free-convection parameters (3.5). The turbulent–turbulent contribution has one
close to −5/3, approximately the same as the total pressure spectrum. Its magnitude
is larger, thereby dominating the pressure spectrum.

The pressure–strain-rate cospectra (figure 16), on the other hand, are dominated
by the buoyancy contribution. Therefore, the local-free-convection parameters are
the correct scales for predicting the cospectra. These results indicate that the
turbulent–turbulent pressure fluctuations, while large in magnitude, are not well
correlated with the strain rate. The effects of these pressure fluctuations on the
velocity field will be further investigated in a future study. The behaviours of the
turbulent–turbulent contribution to the cospectra are more complex. It causes return
to isotropy at scales near kz∼ 0.1, but reverses sign at and causes anisotropy at larger
scales, up to those near zi, again suggesting that Rotta’s model may be inappropriate
for such a convective surface layer.

The scaling exponent of −5/3 of the pressure spectrum (dominated by the
turbulent–turbulent contribution) suggests that the pressure fluctuations are primarily
caused by the (zi scale) large convective eddies sweeping the smaller convective
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FIGURE 13. Profiles of different contributions to Rαα in the strongly convective surface
layer from LES: the (a) turbulent–turbulent and (b) buoyancy terms using the Smagorinsky
model; the (c) turbulent–turbulent and (d) buoyancy terms using the Kosović model. The
lines represent R11 (solid), R22 (dotted) and R33 (dashed).
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FIGURE 14. Profiles of Rotta’s model prediction of the turbulent–turbulent term
contribution to Rαα in the strongly convective surface layer. The Reynolds stress is
obtained from LES using the Kosović model: (a) τ = κ/ε, (b) τ = zi/w∗. The lines
represent R11 (solid), R22 (dotted) and R33 (dashed).
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FIGURE 15. Pressure spectra of the turbulent–turbulent (−5/3 slope) and buoyancy term
(−7/3 slope) contributions in the strongly convective surface layer from LES using (a)
the Smagorinsky model and (b) the Kosović model, normalized by Cp = w2

∗
(κβQ)2/3z5/3

i .
The lines represent heights of 16 m (solid), 20 m (dashed) and 30 m (dotted).

-8

-6

-4

-2

0

2

4

6

8

-8

-6

-4

-2

0

2

4

6

8

10-1

kz
100 10-1

kz
100

C11

C22

C33

C11

C22

C33

(b)(a)

FIGURE 16. Pressure–strain-rate cospectra of source term contributions in the strongly
convective surface layer at 16 m from LES using (a) the Smagorinsky model and (b) the
Kosović model. The lines represent total (solid), buoyancy (dashed) and turbulent–turbulent
(dotted) terms. Here Cαα = C′αα/(w

3
∗
z/zi). For clarity, some of the cospectra have been

shifted vertically.

eddies of scale 1/k, resulting in the same scaling exponent as the velocity spectrum.
The pressure spectrum therefore can be predicted as

φp(k)∝w2
∗
u2

f (k)k
−1
=w2

∗
(βQk−1)2/3k−1

=w2
∗
(βQ)2/3k−5/3. (3.12)
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FIGURE 17. Pressure spectra of the (a) turbulent–turbulent and (b) rapid term
contributions in the nearly neutral surface layer from LES using the Smagorinsky model,
normalized by Cp = u4

∗
zi. The lines represent heights of 16 m (solid), 20 m (dashed) and

30 m (dotted).

For k= 1/zi, φpk is of the order of w4
∗
. Therefore, the predicted pressure spectrum is

also consistent with the scaling of the pressure variance.
For the near neutral surface layer, the turbulent–turbulent and rapid contributions to

the pressure spectrum are of similar magnitudes (figure 17), consistent with the results
in figure 18, which show that, R(t)

αα and R(r)
αα are of similar magnitudes and are both

important to Rαα. The non-dimensional profiles are nearly constant in the surface
layer, consistent with the neutral surface-layer scaling. Here R(t)

αα have the same signs
as Rαα, causing energy redistribution from the u to v and w components, consistent
with return to isotropy. However, the energy redistribution to v is small. The rapid
contributions R(r)

11 and R(r)
22 are negative and positive respectively. However, R(r)

33 is
negative, impeding return to isotropy, although its magnitude is small. Thus R(t)

αα and
R(r)
αα are primarily responsible for redistributing energy from the streamwise to the

vertical components and from the streamwise to the spanwise components respectively.
Within the first few grid points, the non-dimensional mean shear typically shows an
overshoot for the Smagorinsky model (figure 19). However, R(r)

αα (figure 18b) shows no
sign of such a behaviour, most likely because the fluctuating strain rate is somewhat
under-resolved there. The mean shear for the Kosović model (figure 19) has no
overshoot, and R(r)

αα is resolved to a somewhat lesser extent than the Smagorinsky
model.

The pressure–strain-rate cospectra for the near neutral surface layer at 16 m and the
contributions from the source terms are shown in figure 20. For kz≈ 1, the turbulent–
turbulent contributions to C11, C22 and C33 have the same signs as R(t)

11, R(t)
22 and R(t)

33
shown in figure 18(a) (the contribution to C22 changes sign for kz� 1). The rapid
pressure contribution to C11 also has the same sign as R(r)

11 , R(r)
22 and R(r)

33 shown in
figure 18(b), Thus while w receives energy through the turbulent–turbulent contribution
at these scales, the v component does so primarily through the rapid contribution. Both
the turbulent–turbulent and rapid contributions to C13 are positive, causing return to
isotropy.

For larger scales (kz < 0.3), the turbulent–turbulent contributions to C11 and C33
reverse signs, and are positive and negative respectively, while the contribution to
C22 still has the same sign as for kz ≈ 1. Thus, energy is redistributed from w
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FIGURE 18. Profiles of different contributions in the nearly neutral surface layer from
LES: the (a) turbulent–turbulent and (b) rapid terms using the Smagorinsky model; the
(c) turbulent–turbulent and (d) rapid terms using the Kosović model. The lines represent
R11 (solid), R22 (dotted), R33 (dashed) and R13 (dash-dot).

to u and v, thereby causing anisotropy at these scales, which is similar to the
buoyancy contribution in the convective surface layer. The rapid contribution to C11
is still negative. Interestingly, the rapid contribution to C33 is now positive. The
contribution to C22 also reverses sign, although at a smaller wavenumber. Thus the
rapid contributions cause energy redistribution from u and v to w, opposite to the
turbulent–turbulent contributions. The turbulent–turbulent contribution to C13 also
appears to reverse sign, resulting in anisotropy. The rapid contribution still positive,
causing return to isotropy.

For the moderately convective surface layer, the buoyancy contributions to the
pressure–strain-rate cospectra (figure 21) have the same signs as those for the
strongly convective surface layer. The turbulent–turbulent contributions near kz = 1
have the same signs as Rαα. Similar to those for the strongly convective and near
neutral surface layers, they also change signs as the scale increases. Thus, there
are two redistribution processes for the turbulent–turbulent contribution, one at
scales of order z and one at larger scales. Figures 16, 20 and 21 indicate that
the relative magnitudes of the contributions at these scales and therefore the total
turbulent–turbulent contributions vary with the stability condition (zi/L and z/L).
Thus Rotta’s model is likely to be inappropriate as a general model for all stability
conditions.
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FIGURE 19. Profiles of the mean velocity gradient in the nearly neutral surface layer
from LES using the Smagorinsky model (solid), Kosović model (dashed) and Smagorinsky
model (5123) (dotted).
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FIGURE 20. Pressure–strain-rate cospectra of the source term contributions in the
nearly neutral surface layer at 16 m from LES using (a) the Smagorinsky model
and (b) the Kosović model. The lines represent the total (solid), rapid (dash-dot) and
turbulent–turbulent (dotted) contributions. Here Cαα = C′αα/u

3
∗
. For clarity, some of the

cospectra have been shifted vertically.

3.5. Effects of wall reflection
In this subsection we examine the effects of the wall on the pressure–strain-rate
correlation. As mentioned in the Introduction, the pressure is decomposed into
the free-space pressure, pf , the wall reflection, pw, ((2.3) and (2.6) respectively)
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FIGURE 21. Pressure–strain-rate cospectra of the source term contributions in the
moderately convective surface layer at 16 m from LES using (a) the Smagorinsky model
and (b) the Kosović model. The lines represent the total (solid), buoyancy (dashed) and
turbulent–turbulent (dotted) contributions. Here Cαα = C′αα/u

3
∗
. For clarity, some of the

cospectra have been shifted vertically.
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FIGURE 22. Profiles of the (a) free-space and (b) wall reflection contributions to the
pressure variance from the different source terms in the strongly convective surface
layer from LES using the Smagorinsky model: buoyancy (dashed) and turbulent–turbulent
(dotted). The total is represented by a solid line.

and the harmonic pressure, ph. We first examine the variances of pf and pw as
well as the contributions from the different sources. For the strongly convective
surface layer, the free-space pressure variance, σ 2

pf
, increases with z, primarily due

to the turbulent–turbulent source (figure 22). The wall reflection σ 2
pw

decreases nearly
exponentially with increasing z, with the 1/e point at approximately z/zi = 0.1. The
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FIGURE 23. Profiles of the (a) free-space and (b) wall reflection contributions to the
pressure variance from the different source terms in the nearly neutral surface layer from
LES using the Smagorinsky model: rapid (dash-dot) and turbulent–turbulent (dotted). The
total is represented by a solid line.

1/e points for the buoyancy and turbulent–turbulent contributions are approximately at
z/zi = 0.13 and 0.04 respectively. Since the depth of influence of the wall reflection
depends on the coherence length of the (reflected) pressure source terms, these
results suggest that the dominant length scale of the source terms is of the order of
0.1zi, and that the turbulent–turbulent source has a much smaller coherence length.
For the near neutral surface layer, σ 2

pf
decreases somewhat with increasing z, with

the turbulent–turbulent source having the larger contribution (figure 23). The wall
reflection σ 2

pw
decreases to the 1/e point at approximately z/zi = 0.04, faster than in

the strongly convective surface layer. The rapid and turbulent–turbulent contributions
to σ 2

pw
have approximately the same magnitude, in contrast to their contributions to

σ 2
pf

, indicating that the rapid source has a larger coherence length.
Figure 24 shows the free-space contribution, Rfαα, the wall reflection, Rwαα, and

the harmonic contribution, Rhαα, to Rαα for the strongly convective surface layer.
Throughout the surface layer Rfαα varies slowly, except very close to the wall, which
is due to the logarithmic behaviour discussed in § 3.1. It has the same sign as Rαα,
indicating that the root cause of the surface-layer anisotropy lies in the pressure source
terms, not the wall reflection or the harmonic pressure. This behaviour is because the
flow is driven in the vertical direction by buoyancy, thereby having the tendency to
redistribute energy from the vertical velocity component to the horizontal components.
By definition Rwαα equals Rfαα on the surface and decays with increasing z, as
expected. It is most significant for z/zi < 0.1, indicating that the wall reflection
enhances the anisotropy in this region. The 1/e point is at approximately z/zi = 0.02,
smaller than the value (0.1) for the pressure variance, likely due to the decrease of
the correlation between the reflected pressure and the strain rate with increasing z.
Figure 24 shows that Rhαα is relatively small.

To further understand the free-space and wall reflection contributions, we compute
the buoyancy and turbulent–turbulent parts (figures 25 and 26 respectively). For z/zi<

0.1, Rfαα is dominated by the buoyancy part, R(b)
fαα, whereas above z/zi = 0.1 the

turbulent–turbulent part, R(t)
fαα, dominates. It is interesting that for z/zi < 0.04, R(t)

fαα

has the opposite signs to Rfαα. However, Rwαα is dominated by R(b)
wαα. The 1/e point

is approximately at z/zi = 0.04, larger than Rwαα, due to the larger coherence of the
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FIGURE 24. Profiles of the (a) free-space, (b) wall reflection and (c) harmonic
contributions to Rαα in the strongly convective surface layer from LES using the
Smagorinsky model. The lines represent R11 (solid), R22 (dotted) and R33 (dashed).

reflected buoyancy source. The results suggest that the length scales of the motions
contributing to R(t)

wαα are small, resulting in smaller wall reflection.
For the near neutral surface layer (figure 27), Rfαα varies slowly except for z/zi <

0.02 where it decreases with z, due to the under-resolution of the strain rate by the
LES near the surface. For most of the surface layer Rwαα is much smaller than the
free-space contribution, due to the under-resolution of the strain rate very close to
the wall and the fast decreases of the reflected pressure and its correlation with the
strain rate (note that the wall reflection contribution does not increase for z/zi > 0.02
where the strain rate are better resolved, as figure 27a shows). The wall reflection
contribution to R13 is also small (not shown).

The results in this subsection can help us understand the effects of the wall on the
pressure–strain-rate correlation in convective and neutral surface layers. In a neutral
surface layer, the redistribution occurs due to the shear production injecting energy
into the streamwise component, rendering it the largest. The wall is not essential for
the energy redistribution that causes return to isotropy, i.e. it can occur without a
wall, as in the case of a homogeneous shear flow. The presence of the wall has two
opposing effects: wall reflection of the pressure source enhances the process, while
wall blocking of the vertical velocity impedes it.

In a convective surface layer, buoyancy and pressure transport drive the flow in
the vertical direction. Therefore the flow naturally redistributes energy from the
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FIGURE 25. Profiles of the (a) free-space and (b) wall reflection contributions to Rαα

from the turbulent–turbulent source term in the strongly convective surface layer from
LES using the Smagorinsky model. The lines represent R11 (solid), R22 (dotted) and R33
(dashed).
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FIGURE 26. Profiles of the (a) free-space and (b) wall reflection contributions to Rαα

from the buoyancy source term in the strongly convective surface layer from LES using
the Smagorinsky model. The lines represent R11 (solid), R22 (dotted) and R33 (dashed).

vertical component to the horizontal components. This is consistent with the results
that the free-space pressure contribution to the pressure–strain-rate correlation (from
the source term in the Poisson equation) has the opposite sign to that in a neutral
surface layer. In the meantime, wall blocking restricts the vertical velocity fluctuations,
making the vertical component the smallest of the three. The energy redistribution and
the restriction of the vertical fluctuations together result in surface-layer anisotropy.
Therefore, the wall is not necessary for the redistribution but is essential to the
anisotropy. On the other hand, wall reflection of the pressure source, while enhancing
the energy redistribution (similar to the neutral surface layer), is not the root cause
of the anisotropy. From the modelling point of view, if a model for the source
term contribution does not have the correct sign (one that leads to anisotropy),
modelling the wall reflection will not give the pressure–strain-rate correlation the
correct behaviour. Therefore, accurate modelling of the contribution from the source
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FIGURE 27. Profiles of the (a) free-space and (b) wall reflection contributions to Rαα

in the nearly neutral surface layer from LES using the Smagorinsky model. The lines
represent R11 (solid), R22 (dotted) and R33 (dashed).

term is essential for modelling the pressure–strain-rate correlation and the generation
of anisotropy.

4. Discussion and conclusions
In the present work we studied the pressure fluctuations and the pressure–strain-rate

correlation in convective and near neutral atmospheric surface layers. Their scaling
properties, the spectral characteristics, the contributions from the different pressure
sources and the wall reflection were investigated using high-resolution (from 5123

to 20483) LES and through spectral predictions. The understanding gained helped
address three important issues: it elucidates the physical mechanism for generating the
anisotropy in convective surface layers, provides strong support to MMO and clarifies
the issue of modelling the turbulent–turbulent contribution as a return-to-isotropy term
(Rotta’s model).

A number of steps were taken to ensure that the results, especially the scaling
properties, are not affected by the SGS model and the LES resolutions near the
surface. Two SGS models, the Smagorinsky model and the Kosović model were
employed and the results obtained were consistent. The pressure variance, the
pressure–strain-rate correlation and the pressure–strain-rate cospectra in the convective
surface layer are found to be sensitive to the LES resolution, consistent with the
observation of Miles et al. (2004). The pressure–strain-rate correlation in the neutral
surface layer is approximately 80 % resolved at the tenth grid point from the surface.
The overshoot of the non-dimensional mean shear within the first few grid points for
the Smagorinsky model does not result in an over-prediction of the rapid contribution
of the pressure–strain-rate correlation, due to the under-resolution of the strain rate
there.

For the strongly convective surface layer, the pressure–strain-rate correlation was
found to have the mixed-layer scaling (w3

∗
/zi), with R11, R22 and R13 being positive

and R33 being negative, consistent with the results of Nguyen et al. (2013) and
Nguyen & Tong (2015), indicating that the normal components cause anisotropy in
the velocity variances. Near the surface, they vary logarithmically, which can be
predicted by extending Townsend’s attached-eddy model to the pressure–strain-rate
correlation or using the pressure–strain-rate cospectra predicted (3.5). For the neutral
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surface layer, the pressure–strain-rate scales with u3
∗
/z, with R11 being negative and

R22, R33 and R13 being positive, consistent with its usual role of causing return to
isotropy. In the convective–dynamic layer of a moderately convective surface layer
(−z/L∼ 1), it has both mixed-layer and surface-layer contributions, but has apparent
surface-layer scaling, inconsistent with the mixed-layer scaling of the horizontal
velocity variances. This inconsistency is an inherent problem for single-point statistics
in this multi-scale phenomenon. As pointed out by Tong & Nguyen (2015), general
surface-layer similarity therefore needs to be considered for multi-point statistics in
the framework of MMO similarity instead of the original Monin–Obukhov similarity.

A decomposition of the pressure into different sources contributions shows that
the behaviour of the pressure–strain-rate correlation in the strongly convective
surface layer is primarily due to the buoyancy contribution. The turbulent–turbulent
contribution, while significant, plays only a minor role. In the near neutral surface
layer, both the turbulent–turbulent and rapid contributions are important, and are
responsible for redistributing energy from the streamwise to the vertical components
and from the streamwise to the cross-stream components, respectively.

The pressure variance has the mixed-layer scaling (w4
∗
) in both strongly and

moderately convective surface layers, similar to the horizontal velocity variances. It
is dominated by the turbulent–turbulent contribution. In the near neutral surface layer,
it scales with u4

∗
, with both the turbulent–turbulent and rapid contributions being

important.
The pressure spectrum at the large scales (kz< 1) in the strongly convective surface

layer has an approximate k−5/3 scaling range, different from the prediction of k−7/3

scaling using the surface-layer parameters. It is dominated by the turbulent–turbulent
contribution, which involves both the mixed-layer and local-free-convection scales:
The large convective eddies sweep the smaller, local convective eddies, resulting an
approximate k−5/3 scaling range. Therefore it does not appear to follow the MMO
similarity. The buoyancy contribution has a k−7/3 scaling range, consistent with
our prediction, and follows MMO. Thus the pressure spectrum is not completely
determined by the surface-layer parameters.

The pressure–strain-rate cospectra in the convective surface layer are dominated
by the buoyancy contribution, not the turbulent–turbulent (inertial) contribution,
in contrast to the pressure spectrum, and thus have the local-free-convection
(surface-layer) scaling, consistent with our prediction of a k−1 scaling range. The
different scaling properties of the pressure spectrum and the pressure–strain-rate
cospectra result from the their different dominant contributions. The former is
dominated by the turbulent–turbulent contribution, which involves both mixed-layer
and surface-layer scales, whereas the latter is dominated by the buoyancy contribution.
The different scaling properties also indicate that only the buoyancy contribution
of the pressure fluctuations are well correlated with the strain rate, whereas
the turbulent–turbulent contribution is not, and consequently does not contribute
significantly to the redistribution of energy. Therefore, buoyancy effects associated
with the large convective eddies are largely responsible for causing the surface-layer
anisotropy in the velocity variances as suggested by Nguyen et al. (2013) and Nguyen
& Tong (2015).

A physical picture of the generation of the anisotropy in the normal components of
the Reynolds stress tensor in convective surface layers emerges from our analysis. The
buoyancy production injects energy into the vertical velocity, at scales that increases
with the height from the surface (in the mixed layer most of the energy is at scales
of order zi). The energy then flows towards the surface through the pressure transport.
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The pressure–strain-rate correlation, which is primarily due to the buoyancy (stacking)
effects generated by the density (temperature) fluctuations in the convective eddies,
subsequently redistributes the energy to the horizontal components, at scales ranging
from −L to zi, resulting in anisotropy. The turbulent–turbulent (inertial) contribution,
e.g. downward flow impinging on the surface, only plays a minor role, that is, the
pressure responsible for most of the energy redistribution is not the dynamic pressure.

For the neutral surface layer, both the turbulent–turbulent and rapid contributions to
the pressure spectrum have a k−1 scaling range, consistent with our prediction using
the surface-layer parameters. The pressure–strain-rate cospectra near kz= 1 dominate
the contribution to Rαα, with a negative C11 and positive C33 and C22, causing energy
redistribution from the u component to the v and w components and return to isotropy.
These behaviours are primarily due to the turbulent–turbulent contribution. The rapid
contribution causes redistribution of energy from u and w to v, for which the physics
responsible is unclear. The cospectrum C13 near kz= 1 is positive and also dominates
R13, with both the turbulent–turbulent and rapid contributions being important. For
larger scales (kz< 1), however, C33 becomes negative while C11 is nearly zero. This
behaviour is primarily due to the turbulent–turbulent contribution, which redistributes
energy from w to u and v. These results indicate that the large eddies in the neutral
surface layer redistribute energy among the velocity components in a way somewhat
similar to the convective eddies, thus having the tendency to cause anisotropy. The
rapid contribution redistributes energy from u and v to w, opposite to the turbulent–
turbulent contribution. The turbulent–turbulent contribution to R13 also reverses sign,
causing anisotropy.

In the convective–dynamic layer of a moderately convective surface layer (−z/L<
1), the mean shear is strong near the surface. For −kL� 1 the pressure strain-rate
cospectra are similar to those in a strongly convective surface layer, with C11 being
positive and C33 being negative. For −kL� 1 (but kz< 1) they have a similar scaling
range as those in a neutral surface layer, with C11 being negative and C33 being
positive, causing return to isotropy, similar to a neutral surface layer. Thus, there are
two redistribution processes occurring at two distinct scale ranges, one near z and one
beyond. They do not appear to interact directly, although the former can be modified
by the latter when the mean shear is altered from the neutral limit.

The change of sign of the pressure–strain-rate cospectra near −kL∼ 1 indicates that
−L is imposed on the horizontal directions as a length scale by the pressure–strain-rate
correlation. Therefore, turbulence spectra and other multipoint statistics depend on kL
and have different scaling ranges for −kL> 1 and −kL< 1, providing strong support
for MMO.

To examine the role of the source terms in the Poisson equation and the wall
reflection, we decomposed the pressure into free-space, wall reflection and harmonic
pressures and obtained their contributions to the pressure–strain-rate correlation. The
free-space contribution has the same sign as the total, indicating that the source terms
are the root cause of the behaviours of the pressure–strain-rate correlation, and thus
the anisotropy of the velocity covariances in the convective surface layer. The wall
reflection is significant for z/zi < 0.1 in the convective surface layer, thus enhancing
anisotropy there. This result also indicates that the coherence length of the source is
of the order of 0.1zi, the approximate height of the surface layer. The wall reflection
contribution comes primarily from the buoyancy source, due to its large-scale nature.
In the near neutral surface layer the wall reflection contribution is small, mainly due
to the smaller coherence length of the pressure source, although the under-resolution
of the strain rate near the surface by LES may play a minor role.
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The present study can help clarify the common practice of modelling the turbulent–
turbulent contribution to the pressure–strain-rate correlation as a return-to-isotropy
term. In a decaying turbulent velocity field without external influences energy is
redistributed from the larger to the smaller component at a rate determined by the
anisotropy and the integral time scale. Rotta’s model is therefore appropriate. In a
turbulent flow with anisotropic forcing (production), the situation is more complex. In
a neutral boundary layer it causes return to isotropy, since the streamwise component,
which is forced, is the largest component. In a convective surface layer there are two
forcing mechanisms (shear and buoyancy production). Their contributions therefore
depend on the stability condition. In weakly and moderately surface layers it causes
return to isotropy, similar to the neutral surface layer. In strongly convective surface
layers, it has small magnitudes, although the signs are consistent with return to
isotropy. Rotta’s model, on the other hand, predicts a large energy redistribution
(return to isotropy) due to the large difference between the vertical and horizontal
velocity variances, inconsistent with our results. As a result, Rotta’s model is
appropriate for decaying turbulence and neutral boundary layers (in the log layer),
but not for the convective surface layer.

The results in the present study, especially the pressure–strain-rate cospectra,
also have potential implications on understanding the dynamics of the surface-layer
structure. For example, the sign changes of the pressure–strain-rate cospectra at
kz� 1 may have implications on the large-scale dynamics, e.g. the long streaks that
have received much attention in the literature. The dynamics of such a structure are
expected to be strongly influenced by the interaction between the pressure and the
strain rate at large scales.
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