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In the present study we investigate three-scalar mixing in a turbulent coaxial jet.
In this flow a centre jet and an annular flow, consisting of acetone-doped air and
ethylene respectively, are mixed with the co-flow air. A unique aspect of this study
compared to previous studies of three-scalar mixing is that two of the scalars (the
centre jet and air) are separated by the third (annular flow); therefore, this flow
better approximates the mixing process in a non-premixed turbulent reactive flow.
Planar laser-induced fluorescence and Rayleigh scattering are employed to measure
the mass fractions of the acetone-doped air and ethylene. The results show that the
most unique aspects of the three-scalar mixing occur in the near field of the flow.
The mixing process in this part of the flow are analysed in detail using the scalar
means, variances, correlation coefficient, joint probability density function (JPDF),
conditional diffusion, conditional dissipation rates and conditional cross-dissipation
rate. The diffusion velocity streamlines in scalar space representing the conditional
diffusion generally converge quickly to a manifold along which they continue at a
lower rate. A widely used mixing model, interaction through exchange with mean,
does not exhibit such a trend. The approach to the manifold is generally in the
direction of the ethylene mass fraction. The difference in the magnitudes of the
diffusion velocity components for the two scalars cannot be accounted for by the
difference in their dissipation time scales. The mixing processes during the approach
to the manifold, therefore, cannot be modelled by using different dissipation time
scales alone. While the three scalars in this flow have similar distances in scalar space,
mixing between two of the scalars can occur only through the third, forcing a detour
of the manifold (mixing path) in scalar space. This mixing path presents a challenging
test for mixing models since most mixing models use only scalar-space variables and
do not take into account the spatial (physical-space) scalar structure. The scalar JPDF
and the conditional dissipation rates obtained in the present study have similarities
to those of mixture fraction and temperature in turbulent flames. The results in the
present study provide a basis for understanding and modelling multiscalar mixing in
reactive flows.
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1. Introduction
Turbulent mixing of scalar quantities is of great importance for a range of

engineering and environmental applications such as combustion, industrial chemical
production, and pollutant dispersion in the atmosphere. These applications depend on
turbulence to mix scalar quantities rapidly, often at rates orders of magnitude higher
than in laminar flows. It is, therefore, of interest to understand the physics of turbulent
mixing, and to predict the mixing processes. In some applications, such as pollutant
dispersion, a single scalar is mixed with a background flow. The mixing process is
binary in nature and has been studied extensively. In many other applications, such as
reactive flows, at least three scalars are involved. Thus the mixing process is inherently
multiscalar, and is more complex. In spite of its importance, multiscalar mixing has
received much less attention. In the present study, we investigate several important
aspects of three-scalar mixing.

Much of our understanding of turbulent mixing is based on binary (two-scalar)
mixing. Many experimental and numerical studies focused on the basic statistics
characterizing the evolution of scalar fields, such as the mean scalar, the scalar
variance, and the scalar dissipation time scale in various flows (e.g. Warhaft &
Lumley 1978; Sreenivasan et al. 1980; Antonopoulos-Domis 1981; Ma & Warhaft
1986; Eswaran & Pope 1988; Jayesh & Warhaft 1992; Overholt & Pope 1996).
A number of other works studied the scalar probability density function (PDF) and
the PDF transport equation (e.g. Eswaran & Pope 1988; Tong & Warhaft 1995). The
scalar PDF is important for characterizing scalar mixing in many applications, such as
pollutant dispersion, where in addition to the scalar mean and variance, the probability
for the pollutant concentration to exceed a given level (e.g. a threshold) must be
known for environmental and health concerns. The scalar PDF is also important for
studying and modelling turbulent reactive flows because reaction rates generally have
highly nonlinear dependences on species concentrations.

The mixing process that evolves the PDF, fφ , of a scalar variable, φ, can be studied
using the PDF transport equation (Pope 1985),

∂fφ
∂t
+ ∂

∂xi
[fφ(Ui + 〈ui | φ̂〉)] = − ∂

∂φ̂
{fφ[〈D∇2φ | φ̂〉 + S(φ̂)]}

= D∇2fφ − 1
2
∂2

∂φ̂2
(fφ〈χ | φ̂〉)− ∂

∂φ̂
[fφS(φ̂)], (1.1)

where Ui, ui and S are the mean and fluctuating velocities and the reaction rate,
respectively. The left-hand side is the time rate of change of the PDF and transport of
the PDF in physical space by turbulent velocity. The right-hand side gives two forms
of the mixing term. They involve the conditional scalar diffusion, 〈D∇2φ | φ = φ̂〉,
and the conditional scalar dissipation, 〈χ | φ = φ̂〉 = 〈2D(∂φ/∂xi)(∂φ/∂xi) | φ = φ̂〉,
respectively, where the angle brackets denote an ensemble average. For convenience
we omit the sample space variable φ̂ hereafter. The mixing term represents the effects
of turbulent mixing on the evolution of the scalar PDF and is unclosed. The last term
is the reaction source term and is closed. The success of PDF methods (Pope 1985),
which solve the scalar PDF transport equation, in predicting reactive flows comes from
exact treatment of the reaction rate term. In homogeneous scalar fields, the terms
containing spatial derivatives of statistics vanish, but the conditional diffusion or scalar
dissipation does not. It is, therefore, of importance to study the physics of turbulent
mixing in terms of the PDF equation.
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Passive scalar PDFs have been studied in various types of flows. A range of PDF
forms have been observed, including bimodal (e.g. Eswaran & Pope 1988; Dahm &
Dimotakis 1990), near Gaussian and quasi- (or skewed) Gaussian (e.g. Venkataramani,
Tutu & Chevray 1975; Sreenivasan & Antonia 1978; Venkataramani & Chevray 1978;
Lockwood & Moneib 1980; Tavoularis & Corrsin 1981; Drake, Pitz & Shyy 1986;
Tong & Warhaft 1995), and exponential tails (e.g. Jayesh & Warhaft 1991, 1992;
Pumir, Shraiman & Siggia 1991; Holzer & Pumir 1993; Shraiman & Siggia 1994;
Kerstein & McMurtry 1994; Jaberi et al. 1996a). Various models such as the ‘clipped
Gaussian’ (Lockwood & Naguib 1975), the beta model (e.g. Rhodes 1975; Janicka &
Kollmann 1979), and the composite model of Effelsberg & Peters (1983) have been
used to approximate the scalar PDF.

The conditional scalar dissipation, 〈χ | φ〉, has been shown in general to be
dependent on the value of φ. In direct numerical simulation (DNS) of homogeneous
binary scalar mixing, the conditional dissipation was found to be generally bell-shaped
(Eswaran & Pope 1988; Gao 1991; O’Brien & Jiang 1991; Miller et al. 1993).
Measurements of Jayesh & Warhaft (1991, 1992) in isotropic grid turbulence with
a constant mean scalar gradient, on the other hand, found concave upward conditional
dissipation. Analytical works (e.g. Sinai & Yahkot 1989; O’Brien & Jiang 1991; Miller
et al. 1993; Pope & Ching 1993; Sahay & O’Brien 1993; Sabel’nikov 1998) have
linked the conditional dissipation in homogeneous scalar fields to the scalar PDF. In
inhomogeneous flows the dependence is more complex. Measurements in turbulent jets
(e.g. Kailasnath, Sreenivasan & Saylor 1993; Mi, Antonia & Anselmet 1995; Tong &
Warhaft 1995) and in turbulent wakes and boundary layers (e.g. Kailasnath et al. 1993)
showed that the conditional dissipation is strongly dependent on the flow type as well
as the position of the measurement location in the flow.

The conditional scalar diffusion 〈D∇2φ | φ〉 in DNS with homogeneous scalar
fluctuations was found to be linear in φ at large times (Leonard & Hill 1991;
Miller et al. 1993; Overholt & Pope 1996; Yeung 1998) but S-shaped at small
times (Miller et al. 1993). Jaberi, Miller & Givi (1996b) showed that for scalar
fields with zero mean gradient, this linear dependence can be derived from self-similar
scalar PDFs. For a constant scalar gradient, Sabel’nikov (1998) showed that for self-
similar PDFs the conditional diffusion has a linear dependence on both the scalar and
the conditional velocity, 〈uj|φ〉. Measurements in inhomogeneous shear flows showed
that the conditional diffusion is approximately linear near the centreline of a wake
(Kailasnath et al. 1993) and a jet (Tong & Warhaft 1995), and is approximately
piecewise linear off the jet centreline (Tong & Warhaft 1995). Thus, the large-scale
structures in shear flows have a strong influence on the conditional diffusion.

In reactive flows there are often at least three scalars involved, e.g. two reactants and
one product. It is, therefore, of importance to study multiscalar mixing, the simplest
case being three-scalar mixing. In contrast to the large number of studies on two-scalar
mixing, there are few previous studies on three-scalar mixing. Warhaft (1981) extended
the study of Warhaft & Lumley (1978) to three scalars using two mandolines to
study the evolution of the correlation coefficient between the two scalars, and found
that it is initially high (positive) and decays downstream. Sirivat & Warhaft (1982)
conducted a three-scalar experiment in decaying grid turbulence where two scalars
were injected into the background air flow (the third scalar). The scalar r.m.s. decays
faster with decreasing initial scalar length scales. They also measured the correlation
coefficient between the two scalars. The evolution of the correlation depends on the
way the scalars were introduced. The asymptotic values range from close to negative
one to positive one. Warhaft (1984) used two line sources to introduce two scalars
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into decaying grid turbulence. He measured the correlation coefficient between the
two scalars and found that it starts from close to zero and becomes negative further
downstream before approaching unity eventually. Tong & Warhaft (1995) extended
this experiment to a turbulent jet, finding a similar evolution of the correlation
coefficient. Extending the study by Eswaran & Pope (1988) to three scalars arranged
symmetrically in scalar space and physical space, Juneja & Pope (1996) studied the
mixing in statistically stationary, homogeneous, and isotropic turbulence. They found
that the early mixing is between pairs of blobs. The scalar joint PDF (JPDF) later
becomes uniform before finally taking a shape close to Gaussian at large times.

In three-scalar mixing problems, the arrangement of the initial scalar configuration
is important. In Sirivat & Warhaft (1982), Warhaft (1984) and Tong & Warhaft (1995),
two of the scalars were introduced into a background scalar (air), whereas in Juneja
& Pope (1996) the three scalars were arranged symmetrically. To understand better
the mixing scenario in turbulent non-premixed reactive flows, we study three-scalar
mixing in a coaxial jet emanating into co-flow air. In this flow the scalar from the
centre jet (φ1) and the co-flow air at the jet exit plane are separated by the scalar
from the annulus (φ2). As a result, initially there is direct mixing between φ1 and φ2

and between φ2 and air but not between φ1 and air. Mixing between φ1 and air must
involve φ2. This mixing configuration represents better the mixing process in turbulent
non-premixed reactive flows where mixing between reactants generally must involve
the product.

The present work aims to gain an understanding of the physics of three-scalar
mixing. Measurements in a turbulent coaxial jet are made using planar laser
induced fluorescence (PLIF) and planar laser Rayleigh scattering. We present the
basic statistics characterizing the mixing process, such as the scalar means, r.m.s.
fluctuations, cross-correlation coefficient, segregation parameter and scalar dissipation
rates. We also analyse the scalar JPDF and the mixing terms evolving the JPDF. To
aid model development, the results are contrasted with the IEM (interaction through
exchange with the mean) mixing model to highlight the important aspects of the
mixing process and the deficiencies of the model. Previous works on a coaxial jet
(e.g. Buresti, Petagna & Talamelli 1998; Villermaux & Rehab 2000; Balarac et al.
2007) only studied mixing of a single scalar introduced into either the centre jet or
the annular flow; therefore, the mixing problem is still binary in nature. The rest of
the paper is organized as follows. Section 2 describes the experimental setup and data
analysis procedures. Section 3 presents the results followed by the conclusions and
Appendix.

2. Experimental facilities and data analysis procedures
2.1. Flow facilities and measurement system

The coaxial jet in the present study consisted of a centre tube and an annulus
(figure 1). The jet tubes have ends with 90◦ corners produced by a shape cut.
Both tubes have sufficient lengths such that the flows at their exits were close to
fully developed pipe and annular flows, respectively. Thus the downstream flow is
not expected to be sensitive to the geometrical details of the tubes. Both streams
issued into co-flow air with a velocity of ≈0.4 m s−1. The co-flow has a diameter
of 150 mm, sufficiently large that the ambient air does not interact with the jet for
the downstream locations studied. The flow was exhausted by a collection hood at
≈100 annulus diameters downstream of the jet. The centre jet flow was air seeded
with ≈7 % of acetone by volume and the annulus stream was ethylene. The densities
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FIGURE 1. Schematic of the coaxial jet. The scalar values are normalized at the jet exit. The
different stages of the evolution of the scalar fields are shown qualitatively. The approximate
downstream locations, at which detailed results are given in § 3, are indicated by solid circles.

of the acetone-doped air and ethylene were ≈1.07 and 0.966 times the air density.
These differences are sufficiently small for the scalars to be considered dynamically
passive. The jet dimensions and velocities are listed in table 1. The Reynolds
numbers are obtained as Rej = UjbDji/νair and Rea = Uab(Dai − (Dji + 2δj))/νeth, where
νair = 1.56×10−5 m2 s−1 and νeth = 0.86×10−5 m2 s−1 (Prausnitz, Poling & O’Connell
2001) are the kinematic viscosities of air and ethylene respectively. The acetone mass
concentration is normalized by its value at the jet exit, so φ1, which represents
the scalar from the centre jet, has a value of unity at the exit. The normalized
concentration of ethylene (φ2) at the annulus exit is also unity since this stream is pure
ethylene.

The source of the air was a facility compressor, while the source of the ethylene
was chemically pure ethylene in a gas cylinder. Air and ethylene flow rates were
controlled with Tylan mass flow controllers. Good accuracy for the indicated flow rates
was ensured by using a Bios DryCal piston-type calibrator. Both gas streams were
filtered for particles before entering the flow controllers. Spectroscopic grade acetone
was seeded into the air stream by bubbling the air through a sealed Teflon container
with acetone liquid. This container was placed in a room temperature water bath to
help maintain the acetone vapour pressure. Because the acetone concentration could
not be controlled easily, a sample line was set up to feed a reference jet for monitoring
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Inner tube Annulus Co-flow
Dji (mm) δj (mm) Ujb (m s−1) Rej Dai (mm) δa (mm) Uab (m s−1)Rea U (m s−1)

5.54 0.406 34.5 12 190 8.38 0.559 32.5 7 636 0.4

TABLE 1. Characteristics of the coaxial jet. Here δj, δa, Ujb and Uab are the wall
thicknesses and the bulk velocities of the centre tube and the annulus, respectively. The
Reynolds numbers are calculated using the tube diameter Dji and the hydraulic diameter of
the annulus Dai − (Dji + 2δj), respectively.

the upstream acetone concentration to normalize the concentration and laser beam
profile. The uncertainties in determining the acetone source concentration are discussed
in Appendix B.

The number densities of the acetone and ethylene were measured using PLIF and
planar laser Rayleigh scattering techniques. Two Q-switched Nd:YAG lasers were
employed: a Quanta-Ray GCR-4 delivering ≈600 mJ pulse−1 at 532 nm was used for
ethylene Rayleigh scattering, while a Quanta-Ray GCR-150 delivering ≈75 mJ pulse−1

at 266 nm was used for acetone PLIF. The frequency-doubled output of the GCR-
150 was itself frequency-doubled in a BBO crystal housed within a heater. The 532
and 266 nm beams were then separated within a Pellin–Broca prism (figure 2). In
each case a collimated laser probe sheet was formed with a telescope consisting of
a negative cylindrical lens (−100 and −150 mm focal lengths, respectively, for the
266 and 532 nm beams) followed by a 1 m focal length spherical lens. The two
sheets were combined onto the same path using a dielectric mirror designed to reflect
266 nm radiation and pass 532 nm radiation. The focus for both laser sheets was
approximately located at the jet centreline. Sheet widths were measured by translating
a 25 µm slit across the laser sheet and measuring the transmitted portion of the beam
with a photodiode. Sheet thicknesses were about 100 and 200 µm, respectively, for
the 226 and 532 nm beams. The laser sheet heights were around 50 mm and were
approximately constant, but only the central 25 mm was imaged where the beam had
the highest intensity.

The PLIF and planar Rayleigh scattering images were collected by a Cooke Corp.
PCO-1600 interline-transfer CCD camera. The laser pulses were separated by 250 ns
(with the GCR-4 laser used for Rayleigh scattering firing first), and straddled the
transfer time for the CCD camera. This time separation is sufficiently short for the
flow speed (less than 35 m s−1). This camera has an array of 1600× 1200 pixels (each
7.4 µm2); pixels were binned 2 × 2 before readout, and the array was further cropped
such that the effective size was 800 pixels wide by 450 pixels high with a resulting
field of view of 24.8 mm (high) × 44.1 mm (wide). This array size ensured that both
frames could be read within 0.1 s, the period for the laser firing cycles. Timing was
controlled by a LabSmith LC880 Programmable Logic Controller and monitored with
a LeCroy WaveRunner 44Xi oscilloscope. Thus both acetone fluorescence and ethylene
Rayleigh scattering were captured with the same CCD camera, and no additional
overlap of images was necessary. Peak quantum efficiency of the camera is about
50 %, while read noise is specified to be 11 e− at 10 Msamples s−1 readout rate (using
two ADCs). Signals are digitized to 14-bit resolution. A second PCO camera was used
to record the reference acetone image.

Background images were acquired using helium as the scattering gas (with no
acetone); background scattering was strongly suppressed using a series of baffles
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FIGURE 2. Schematic of the experimental setup.

and enclosing the entire flowpath and collection system. Images were normalized
with an average image derived from uniform fields of Rayleigh scattering or
acetone fluorescence. This normalization procedure accounted for inherent image non-
uniformity and for the laser fluence distribution. The reference jet was set up along
the laser sheet path right before the main flow field. Acetone PLIF images from the
reference flow were then recorded for each image, allowing a quantification of the
relative acetone concentration for each image.

The PCO-1600 camera was equipped with a custom lens arrangement consisting of
a 200 mm focal length Rodenstock lens followed by 58 mm focal length, f /1.2 Nikon
Noct-Nikkor lens. The Rodenstock lens was placed such that it was at its focal length
(200 mm) from the target while the Nikon lens was then operated at infinity. The
lenses were butted up against one another. The scalar image pixel size for the camera
is 55 µm. The actual image resolution, which also includes the optical blurring, was
quantified by translating a razor blade across the image plane and deriving the line-
spread function (Wang & Clemens 2004). The full width at half maximum (FWHM)
of the line-spread function is ≈76 µm. We estimated the Kolmogorov scale (63 µm)
on the centreline of the flow exiting the centre tube by extrapolating the measurement
results given in Bailey et al. (2009). The Kolmogorov scale of the annular exit flow
was estimated using channel flow data (Antonia et al. 1992; Lavertu & Mydlarski
2005), as the radius ratio for the annulus is large (≈0.758). At the mid-point radial
location, the estimated value is 13 µm. This Kolmogorov scale is smaller than the
FWHM of the imaging system. Scalar fluctuations, however, are generated due to
the mixing of the streams. At these near-field locations, the scalar dissipation length
scales are difficult to estimate, and hence also the required spatial resolution. Instead,
we estimated the extent to which the scalar dissipation rates are resolved using a
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conditional sampling-based method for noise correction and resolution estimation (Cai
& Tong 2009; Cai et al. 2010). It was determined that the dissipation rates were 98 %
or better resolved.

The laser sheets were aligned with the central chord of the jet, which itself was
located in the centre of the 150 mm diameter air co-flow. This entire three-stream flow
system was mounted on a large three-axis translation system equipped with optical
encoders. Thus, the flow field could be translated to any downstream position with
high accuracy. The downstream image location for the first measurement station was
quantified by imaging a ruler placed on the annular jet.

2.2. Data reduction and analysis procedure
The PLIF and Rayleigh scattering images were processed to remove the background
and camera offset, and to normalize the beam profiles. The camera offsets were
obtained with the camera lens closed. The laser profile variations for the 266 nm beam
were corrected using the reference camera. The variations for the 532 nm beam were
corrected using scattering from the co-flow air. A target grid was imaged to remove
any optical distortion.

Acetone PLIF and Rayleigh scattering images were used to obtain the mole fractions
of the two streams. The PLIF signal, SP, from acetone is far from saturated; therefore,
it is a linear function of incident laser pulse energy (Taylor 1993)

SP(x, y)= RP(x, y)IP(x, y)σPCX1(x, y)Y(x, y)+ BP(x, y), (2.1)

where RP, IP, σP, C, X1, Y and BP are the camera response, the laser pulse energy,
the acetone cross-section, the mole fraction of acetone in acetone-doped air, the mole
fraction of the acetone-doped air, the acetone fluorescence yield and the background
signal, respectively. The fluorescence yields of acetone fluorescence with ethylene
versus air are corrected using a ratio of 0.775. This was quantified in an experiment
in which 1 SLPM of air was sent through the acetone bubbler (and the resulting
acetone flow was ≈1.4 SLPM); 35 SLPM of either air or ethylene was then combined
with this flow and the difference in fluorescence yield was measured. The effect on
the fluorescence yield due to acetone itself was quantified and was determined to be
negligible. The Rayleigh signal SR has a similar functional form (Taylor 1993),

SR(x, y)= RR(x, y)IR(x, y)σeff + BR(x, y), (2.2)

where RR, IR, BR and σeff are the camera response to the Rayleigh signal, the
laser pulse energy, the background signal and the effective Rayleigh cross-section,
respectively. The effective Rayleigh cross-section is the mole-weighted average of
Rayleigh cross-section of each species

σeff = σ1X1 + σ2X2 + σ3X3, (2.3)

where σi values are the corresponding Rayleigh cross-section, and Xi values are the
mole fractions of each stream and satisfy the relation

X1 + X2 + X3 = 1. (2.4)

Beam attenuation due to acetone absorption is also accounted for. The acetone
absorption coefficient was determined by fitting the fluorescence signal with Beer’s
law. Sample images of the acetone-doped air (centre jet) and ethylene (annular flow)
are shown in figure 3.

To improve the statistical convergence, the mean scalar dissipation rates and the
cross-dissipation rate were averaged over 3 pixels and 5 pixels in the radial and axial
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(b)(a)

FIGURE 3. Sample images of the centre jet stream (a) and the annular flow (b). The bottom
and the top of the images are located at x/d = 3.21 and 7.17 respectively.

Derivative order b1 b2 b3 b4 b5

1st 2100/2520 −600/2520 150/2520 −25/2520 2/2520
2nd 42 000/25 200 −6000/25 200 1000/25 200 −125/25 200 8/25200

TABLE 2. 10th-order central finite difference schemes for first and second derivatives.

directions (0.165 and 0.275 mm) respectively. Conditional statistics were averaged
over 5 pixels and 9 pixels in these directions (0.275 and 0.495 mm) respectively.
Conditional means and PDFs were calculated using Kernel Density Estimation (KDE)
(Wand & Jones 1995) in two dimensions with a resolution of 400 × 400 in the sample
space and an oversmooth parameter of 1.3. Noise correction was applied to the mean
and conditional scalar dissipation, scalar variances and scalar correlation coefficient
using a new method developed by Cai & Tong (2009). The scalar dissipation and
diffusion were obtained using scalar derivatives in the measurement plane (two
components), which were computed using the 10th-order central difference scheme
shown in (2.5) and (2.6):

h u′ = b1(u1 − u−1)+ b2(u2 − u−2)+ b3(u3 − u−3)+ · · · , (2.5)
h2u′′ = b1(u−1 − 2u0 + u1)+ b2(u−2 − 2u0 + u2)+ b3(u−3 − 2u0 + u3)+ · · · . (2.6)

The coefficients are listed in table 2. The diffusion coefficient, D, is 0.1039 cm2 s−1

for acetone (at 20 ◦C) and 0.1469 cm2 s−1 for ethylene (Reid, Prausnitz & Poling
1989).

3. Results
In this section the scalar means, variances, dissipation time scales, correlation

coefficient, segregation parameter, mean and conditional dissipation rates, and
conditional scalar diffusion computed from the two-dimensional images were analysed
to study the mixing process. Typically 3000–5400 images were used to obtain the
statistics. Noise correction and the resolution estimation were performed for variances,
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FIGURE 4. Evolution of the mean scalar, the r.m.s. scalar fluctuations and the fluctuation
intensities along the jet centreline.

correlation coefficient, segregation parameter, mean dissipation rates, and conditional
dissipation rates. We find that the resolution combined with the 10th-order explicit
finite difference scheme are capable of resolving the scalar dissipation rate. Details of
the method and procedures are given in Appendix A and in Cai & Tong (2009).
An analysis of the uncertainties of the statistics was performed and is given in
Appendix B.

3.1. Evolution along the jet centreline
The mean scalar and r.m.s. profiles along the jet centreline are shown in figure 4(a).
Very close to the jet exit (x/d < 4, where d is the diameter of the centre jet tube) there
is essentially only φ1 on the jet centreline. Downstream of this location φ2 begins to
reach the centreline, and 〈φ1〉 begins to decrease. For x/d < 7 there is essentially no
co-flow air on the centreline, i.e. φ1 + φ2 ≈ 1. Further downstream, co-flow air as well
as more φ2 reach the centreline, and 〈φ1〉 decreases monotonically. At the same time,
〈φ2〉 increases and reaches a maximum at ≈x/d = 12. Downstream of this location,
〈φ2〉 decreases along with 〈φ1〉 as more co-flow air reaches the centreline. By x/d = 25,
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the mean values for the two scalars appear to be proportional to each other, suggesting
that the two scalars are quite well mixed and their mixture is mixing largely in unison
with the co-flow air; therefore, the mixing problem becomes similar to two-stream
mixing further downstream.

For both scalars, the r.m.s. fluctuations, σ1 = 〈φ′21 〉, σ2 = 〈φ′22 〉, are small very close
to the jet exit (figure 4b), where φ′1 and φ′2 are the scalar fluctuations. The r.m.s.
fluctuations become significant near x/d = 4 and reach the maximum values near
x/d = 7.5. The maximum fluctuations for φ1 are almost three times those of φ2. Again,
by x/d = 25 the r.m.s. values for the two scalars appear to be proportional to each
other.

The fluctuation intensities on the jet centreline for the scalars, σ1/〈φ1〉 and σ2/〈φ2〉,
are also shown in figure 4. Near the jet exit σ1/〈φ1〉 is small due to the low
fluctuations. It rises rapidly with x/d due to the rapid increase of σ1, and reaches
the maximum near x/d = 10. Further downstream it appears to approach an asymptotic
value of ≈0.21, the value in the self-similar region of binary jet mixing (e.g. Dowling
& Dimotakis 1990; Tong & Warhaft 1995), indicating that φ1 is well mixed. The value
of σ2/〈φ2〉 is large near the jet exit due to the extremely low values of 〈φ2〉. Moving
downstream it drops rapidly due to the rapid increase of 〈φ2〉, and also appears to
approach the asymptotic values of 0.21, again indicating that φ2 is well mixed. The
trend of σ2/〈φ2〉 is similar to that of temperature fluctuations produced by a heated
ring placed in a turbulent jet (Tong & Warhaft 1995). These results show that in the
near field the evolution processes of the two scalars are distinctively different, while
far downstream they may be similar.

The mean and r.m.s. values of the two scalars are measures of the evolution of
the individual scalar fields, but not of the extent of mixing among the three scalars.
The correlation coefficient between the scalar fluctuations provides an effective way
to characterize the extent of mixing. The correlation coefficient, ρ = 〈φ′1φ′2〉/(σ1σ2),
between φ1 and φ2 would equal negative one in the absence of the co-flow air at the
measurement location, regardless of the state of mixing between φ1 and φ2, because
when φ1 + φ2 = 1 (no co-flow air), their fluctuations are anti-correlated with equal
magnitudes. Positive correlation, on the other hand, would indicate mixing of the
two scalars at the molecular level and presence of co-flow air at the measurement
location, but mixing of air with φ1 and φ2 is not necessary. The correlation coefficient
(figure 5a) for x/d < 7 is close to negative one, indicating absence of co-flow air in
this part of the centreline. For x/d > 7 the correlation begins to increase, indicating
mixing between φ1 and φ2 and the presence of co-flow air. For x/d > 20, φ1 and φ2

are well mixed, and their mixture is mixing with co-flow air, reflected by a correlation
coefficient close to unity. Several previous studies (Warhaft 1981, 1984; Tong &
Warhaft 1995) also show that the correlation coefficient increases from −1 to 1.

Another measure of the extent of mixing between φ1 and φ2 is the segregation
parameter α, defined as 〈φ′1φ′2〉/(〈φ1〉〈φ2〉), or 〈φ1φ2〉 = 〈φ1〉〈φ2〉(1 + α) (e.g. Komori
et al. 1991; Tong & Warhaft 1995). When there is no mixing between φ1 and φ2,
i.e. 〈φ1φ2〉 = 0, α = −1. The evolution of α on the jet centreline is shown in
figure 5(b). For x/d < 4, 〈φ2〉 has very low values (<0.02) and the measurements
are less accurate, resulting in a large error in α. Thus, we only plot the α values for
x/d > 4. Nevertheless, an asymptotic value of α for x/d→ 0 can be inferred. Here
ρ ≈ −1, 〈φ1〉 ≈ 1, σ1 ≈ σ2 (no air, mixing between φ1 and φ2 only), and α can be
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FIGURE 5. Evolution of the correlation coefficient and segregation parameter between φ1 and
φ2 on the jet centreline.

approximated as

α ≈−〈φ
2
2〉 − 〈φ2〉2
〈φ2〉 = −


∫

P2φ̂
2
2 dφ̂2∫

P2φ̂2 dφ̂2

−
∫

P2φ̂2 dφ̂2

 , (3.1)

where P2 is the marginal PDF of φ2. As x/d→ 0, P2(φ̂2) is increasingly concentrated
near φ̂2 = 0. Thus, 〈φ2〉 ≈ 0 and

∫
P2φ̂

2
2 dφ̂2 �

∫
P2φ̂2 dφ̂2, since P2φ̂

2
2 � P2φ̂2,

resulting in α ≈ 0. As x/d increases, mixing between φ1 and φ2 causes 〈φ′1φ′2〉 to
become negative and to increase in magnitude, and α becomes negative, reaching
the largest negative value near x/d = 7. Further downstream 〈φ2〉 grows, resulting in
smaller α magnitudes. Far downstream ρ→ 1, α = σ1σ2/(〈φ1〉〈φ2〉) will approach an
asymptotic value (≈0.045) as σ1/〈φ1〉 and σ2/〈φ2〉 approach asymptotic values. This
trend of evolution is similar to that found by Komori et al. (1991), although the
behaviour at small times (equivalent to x/d→ 0) was not given in that work.

Figure 6 shows the evolution of the scalar JPDF of φ1 and φ2 along the jet
centreline. We use greyscale and isocontours to represent the JPDF values. The
outermost contour represents the boundary within which the JPDF integrates to 99 %.
The JPDF should be confined to a triangle in the φ1–φ2 space with the vertices at
(0, 0), (0, 1) and (1, 0), where the co-ordinates denote the sample-space variables for
φ1 and φ2, respectively. At x/d = 3.29 the JPDF is largely concentrated near (1, 0) in
the scalar space. At x/d = 4.01 the JPDF begins to extend towards (0, 1), i.e. the φ2

side, indicating that φ2 begins to mix with φ1. At these locations there is essentially
no co-flow air. The JPDF should be on the mixing line connecting (0, 1) and (1, 0);
however, figure 6 shows that the JPDF extends beyond the boundary of the allowed
scalar space largely due to measurement noise. In general, the measured JPDF is
broadened by the measurement noise. In some cases, the outermost contour (99 %
probability) is primarily noise-related (e.g. JPDF at r/d = 0.387 and x/d = 6.99 in
figure 17), but in other cases the contour also contains real scalar fluctuations. As a
result, we choose to include this contour in all JPDF figures.
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FIGURE 6. Evolution of the scalar JPDF on the jet centreline. The downstream location is
listed in the top of each figure. The last three contours correspond to boundaries within which
the JPDF integrates to 90 %, 95 % and 99 %, respectively, throughout the paper. The rest of
the contours scale linearly over the remaining range.
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FIGURE 7. Cross-stream profiles of the mean scalars. The downstream locations are given in
the legend.

As the downstream distance further increases to x/d = 6.39, the JPDF extends
further towards (0, 1) and some air is present on the centreline, bending the tail of
the JPDF towards (0, 0). The ‘ridgeline’ of the JPDF still has a negative slope in
the scalar space, consistent with the negative correlation between φ1 and φ2. Further
downstream, the bending of the JPDF continues. At x/d = 7.88, the JPDF reaches
(0.15, 0.3), indicating the presence of mixtures with little φ1. The JPDF peak is still
near (1, 0). At x/d = 11.7, the JPDF is almost horizontal, consistent with the smaller
correlation coefficient. The JPDF peak shifts to the centre part of the JPDF, indicating
more complete mixing. Beyond x/d = 15.9, the ridgeline of JPDF has a positive slope
and the correlation becomes positive. At x/d = 27.2, φ1 and φ2 are limited largely to
within 0.2 and 0.3, respectively, and are largely proportional to each other, indicating
that the two scalars are well mixed. Their mixture (also containing some air) is being
mixed with co-flow air, resulting in positive correlation.

The above results along the jet centreline show that the most unique and interesting
part of the present three-scalar mixing is the near field, on which we focus the rest
of the discussions. We first discuss the radial profiles of the scalar means, variances,
correlation, and dissipation rates. Then we discuss the scalar JPDF, the conditional
scalar diffusion and the conditional scalar dissipation rates.

3.2. Cross-stream profiles
The radial profiles of the mean scalars are shown in figure 7. The profiles of 〈φ1〉
have Gaussian-like shapes. For these downstream locations the half-width points (the
location where 〈φ1〉 is one half of its maximum value) are at ≈r/d = 0.5. Moving
downstream, the profiles extend to larger r/d values as the jet spreads. The mean
profiles of 〈φ2〉 have off-centreline peaks, with the peak positions at ≈r/d = 0.65.

The profile of the r.m.s. fluctuations of φ1 at each downstream location have an
off-centreline peak (figure 8a). The peak position is close to r/d = 0.5 and moves
slightly towards the centreline as x/d increases. This shift coincides with the slight
shift of the location of the maximum mean scalar gradient for each profile (not shown)
at which the production of the variance is likely to be largest. On the centreline there
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FIGURE 8. Corrected cross-stream profiles of the r.m.s. scalar fluctuations. The downstream
locations are given in the legend.

is no production of the variance; therefore, mean advection and turbulent transport are
responsible for the non-zero r.m.s. values. The maximum r.m.s. values are ≈25 % of
the maximum mean values.

Each r.m.s. profile for φ2 has two off-centreline peaks (figure 8b), one on each side
of the maximum of the mean profile, reflecting the dominant role of the production
of the scalar variance, which has maximum values near the peak mean gradient. The
minimum point between the peaks is approximately at the location of the maximum
of the mean profile. There is no production of the variance at this location and on the
centreline; therefore, mean advection and turbulent transport again are responsible for
the non-zero r.m.s. values. The maximum r.m.s. values are ≈30 % of the maximum
mean values, higher than the percentage for φ1.

The radial profiles of the fluctuation intensity are shown in figure 9. Up to
x/d = 6.39, σ1/〈φ1〉 largely increase with r/d, only dipping slightly near r/d = 0.8.
Further downstream, it increases monotonically with r/d, appearing to flatten out
beyond r/d = 0.6. The profiles of σ2/〈φ2〉 generally have a minimum point near
r/d = 0.7. The values for small and large r/d decreases with increasing downstream
location, reflecting the progression of the mixing process.

The cross-stream profiles of the correlation coefficient (figure 10a) between φ1 and
φ2 from x/d = 3.29 to 6.99 show a similar trend. For r/d < 0.4, there is little air
present. The mixing is largely binary (between φ1 and φ2), resulting in an almost
perfect anti-correlation (ρ = −1). The deviation of ρ from −1 near the centreline is
due to measurement noise. As r/d increases, there is more air as well as more mixing
between φ1 and φ2, and the correlation begins to increase. Beyond r/d = 1, the φ1

and φ2 values are very low most of the time. Higher values occur when fluid carrying
mixed φ1 and φ2 from the inner part of the flow is advected to the measurement
location by large flow structures. This process produces similar structures in both φ1

and φ2 fields, resulting in a positive correlation. The correlation coefficient approaches
unity for large r/d.

The cross-stream profiles of α are shown in figure 10. The profiles generally have
a minimum near r/d = 0.2, increasing slightly toward the centreline (the profile
at x/d = 3.29 is only given for r/d > 0.2 as it cannot be accurately measured
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FIGURE 9. Corrected cross-stream profiles of the fluctuation intensities. The downstream
locations are given in the legend.
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segregation parameter. The downstream locations are given in the legend.

for r/d < 0.2). For large r/d, α becomes positive, due to the positive correlation
and higher scalar fluctuation intensities.

The cross-stream profiles of the mean scalar dissipation rates are shown in figure 11.
The dissipation rate for φ1, 〈χ1〉, at x/d = 3.29 peaks near r/d = 0.44, the same
location for the peak of the r.m.s. fluctuations. On the jet centreline there is essentially
no dissipation because there are little scalar fluctuations. As x/d increases 〈χ1〉
increases on the centreline. The peak dissipation rate decreases and the location of
the peak shifts slightly towards the centreline. If the time scale for the spectral transfer
of the scalar variance is constant across the jet, and if there is no turbulent transport
for the dissipation rate, the dissipation rate profiles can be expected to be similar
to the scalar variance profiles. At x/d = 6.99 the ratio of the peak dissipation to
the centreline dissipation is ≈1.6, smaller than the ratio of the peak to centreline
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FIGURE 11. Corrected cross-stream profiles of the mean scalar dissipation rates and the
mean cross-dissipation rate.

variances (≈1.9), suggesting that the time scale for the spectral transfer varies across
the jet. In addition, turbulent transport also plays an important role in the dissipation
rate budget.

The mean dissipation rate for φ2, 〈χ2〉, has two peaks at r/d = 3.29, similar to the
r.m.s. fluctuations, but the outer peak is not as strong as that of the r.m.s. fluctuations.
As x/d increases the inner peak shifts towards the centreline and the outer one away
from it. At r/d = 6.99 the ratios of the inner peak dissipation to the centreline
dissipation is ≈1.3, comparable to the ratio of the peak to centreline variances (≈1.3).
The ratio of the values of the two dissipation peaks (≈1.59) is smaller than the
ratio of the two peak scalar variance values (≈1.64), indicating that there are some
cross-stream variations in the time scale of spectral transfer.

The cross-stream profiles of the mean cross-dissipation between φ1 and φ2, defined
as 〈χ12〉 = 〈2D(∂φ1/∂xi)(∂φ2/∂xi)〉, are shown in figure 11(c), where D is the
average diffusivity of acetone and ethylene. The cross-dissipation generally has a
small negative value on the jet centreline. Away from the centreline, the magnitude
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FIGURE 12. Cross-stream profiles of the mean scalar dissipation rate with and without noise
correction. The downstream locations are given in the legend.

increases, reaching a maximum before decreasing. It appears to overshoot slightly
to positive values before approaching zero at large r/d. The negative peak shifts
from r/d = 0.4 at x/d = 3.29 to r/d = 0.3 at x/d = 6.99, approximately coinciding
with the location of the peak of 〈χ1〉 and the inner peak of 〈χ2〉. At these
radial locations, mixing is primarily between φ1 and φ2, as reflected by the values
(≈−1) of the correlation coefficient; therefore, their small-scale fluctuations are anti-
correlated, resulting in negative 〈χ12〉. One can define a vectorial correlation coefficient,
(2D〈∇φ1 ·∇φ2〉)/(〈χ1〉〈χ2〉)1/2, as a measure of the relationship between ∇φ1 and ∇φ2.
At r/d = 0.4 at x/d = 3.29, where 〈χ12〉 peaks, the value is ≈−0.81, indicating a high
degree of anti-correlation between ∇φ1 and ∇φ2, in both direction and magnitude. The
high negative correlation remains at the peak location at x/d = 6.99. Tong & Warhaft
(1995) measured the coherency spectrum of two scalars, which is a measure of the
correlation coefficient as a function of scale (or wavenumber). They showed that the
dissipation scale fluctuations are negatively correlated in the near field, consistent with
the present results on 〈χ12〉.

The dissipation rate measurements are affected by the measurement noise. Figure 12
compares the values of 〈χ1〉 and 〈χ2〉 before and after noise correction for two
downstream locations (x/d = 3.29 and 6.99). The amounts of correction are generally
large near the peak mean scalar values. The details of the noise correction method is
given in Appendix A.

The scalar dissipation time scale, defined as 〈φ′2〉/〈χ〉, represents the time scale at
which fractional changes (dissipation) of scalar variance occur. At x/d = 3.29 and 4.01,
the time scales generally are smaller on the jet centreline and increase away from it
(figure 13). Further downstream 〈φ′21 〉/〈χ1〉 has a mild peak near r/d = 0.4, whereas
〈φ′22 〉/〈χ2〉 peaks near r/d = 0.3. The peak values of the dissipation time scale for
φ1 are generally larger than those for φ2 by approximately a factor of two, perhaps
partly reflecting the mean velocity difference between the φ2 stream and the co-flow
air. In addition the radial dimension of the annulus is smaller than the centre jet tube
diameter, which also tends to increases the rate of mixing and reduce the dissipation
time scale.
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FIGURE 13. Corrected cross-stream profiles of the scalar dissipation time scales.

3.3. JPDF, conditional diffusion, and conditional dissipation
In this subsection we discuss in detail the scalar JPDF, the conditional diffusion,
the conditional dissipation rates, and the conditional cross-dissipation rate for φ1 and
φ2 at two downstream locations (x/d = 3.29 and 6.99). The scalar diffusion evolves
the scalar JPDF through the mean scalar diffusion conditional on the two scalars,
〈D∇2φ1 | φ1, φ2〉 and 〈D∇2φ2 | φ1, φ2〉. The diffusion terms in the JPDF equation
transport the JPDF in the scalar space; therefore, the conditional diffusion represents
the two components of a diffusion (or transport) velocity. We present the conditional
diffusion as the diffusion velocity, represented by streamlines and magnitudes (using
isocontours). An analysis of the JPDF equation suggests that both conditional diffusion
terms can be normalized by the dissipation time scale for φ1. Because both scalars are
normalized at the jet exit, there is no need to normalize the sample-space variable for
the scalars.

The results for x/d = 3.29 at three radial locations are shown in figures 14 and 15.
On the centreline, the mixture is essentially pure φ1 (figure 6). At r/d = 0.149 (not
shown), the JPDF begins to extend towards (0, 1) along the straight (mixing) line
connecting (0, 1) and (1, 0), indicating that there is some φ2 mixed with φ1 but there
is no co-flow air.

At r/d = 0.347, the JPDF extends further towards (0, 1), a larger amount of φ2.
There is also some co-flow air in the mixture as indicated by the JPDF near (0.2, 0.5).
The composition near (0.2, 0.5) comes from the air side, containing both φ2 and
air. The JPDF near the φ1–φ2 mixing line is about twice as wide as that on the
jet centreline, indicating that turbulent mixing begins to dominate the broadening
of the JPDF. The diffusion streamlines generally move towards the mixing line. A
manifold begins to emerge near (0.3, 0.5), towards which the diffusion streamlines first
converge. The mean composition, (〈φ1〉, 〈φ2〉), is indicated by a solid circle in the
streamline plot.

Moving further away from the jet centreline the JPDF extends further towards (0, 1),
and then bends down towards (0, 0), indicating that there is more air in the mixture.
At r/d = 0.536, which is near the 〈φ2〉 peak, the JPDF becomes bimodal, with two
peaks near (0.10, 0.50) and (0.4, 0.5), representing mostly φ2–air and φ1–φ2 mixtures,
respectively. The JPDF peaks are a result of flapping of the two mixtures by the
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FIGURE 14. The cross-stream evolution of the scalar JPDF (a,c,e) and the corresponding
conditional diffusion (b,d,f ) at x/d = 3.29. The radial location is given at the top of each
figure. The last three JPDF contours correspond to the same integrated probabilities given in
figure 6. The contour magnitudes of the diffusion are the Euclidean norm of the diffusion
velocity vector. The mean scalars (〈φ1〉, 〈φ2〉) are indicated in each streamline plot by a solid
circle.
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FIGURE 15. The cross-stream evolution of the conditional scalar dissipation for φ1 (a,c,e)
and φ2 (b,d,f ). The radial location is given in each figure. Conditional dissipation values are
normalized by the maximum mean scalar dissipation at the same x/d location.

large-scale velocity fluctuations, indicating that there is little mixing between φ1 and
air. The diffusion manifold is well-defined and appears to be close to the ridgeline of
the JPDF, which is also close to the conditional mean 〈φ2 | φ1〉 (not shown). On the



516 J. Cai, M. J. Dinger, W. Li, C. D. Carter, M. D. Ryan and C. Tong

diffusion manifold the streamlines are bell-shaped, starting near (0, 0.4) and moving
up to (0.25, 0.50). The streamlines then bend downward towards the φ1–φ2 mixing
line. They tend to move first in the φ2 direction when approaching the manifold,
suggesting that the mixing of φ2 is initially much faster than that of φ1. The magnitude
of the diffusion velocity is large when approaching the manifold, but is much smaller
on the manifold, indicating that the approach to the manifold is a much faster mixing
process.

The JPDF at positions further away from the centreline (e.g. r/d = 0.794) becomes
unimodal and extends further towards (0, 0), i.e. pure air. The general streamline
patterns of the conditional diffusion are opposite to those near the centreline as air
becomes the dominant scalar in the mixture. For even larger r/d (not shown) the
JPDF is narrow, and is approximately a straight line with a large slope starting from
the origin, indicating that φ2 is well mixed with a small amount of φ1 because both
scalars have a significant amount of time to mix when travelling outwards to reach this
position, and that together they are being mixed with air.

The conditional diffusion is also affected by the measurement noise. Since the finite
difference scheme used to compute the diffusion terms has a negative coefficient
for the sample at the location of the computed diffusion terms, a positive noise
contribution to the scalar would result in a negative diffusion value and vice versa.
Because there are more samples near the peak of JPDF, the noise contributions to the
diffusion cause the streamlines to converge toward the φ1–φ2 mixing line.

These results show that there are two mixing processes: a fast one causing the
diffusion streamlines to approach the manifold, and a slow one with the streamlines
moving along the manifold. Although qualitatively the fast approach to the manifold
in the φ2 direction is consistent with the smaller dissipation time scale for φ2,
quantitatively the ratio of the φ2 component of the diffusion velocity to the φ1

component is much larger than the dissipation time scale ratio (by at least a factor
of two). The different diffusion velocities for the two scalars, therefore, cannot be
explained by the dissipation time scales alone, which are a measure of the average
rates of dissipation of the scalar variances. The dissipation time scales are probably a
better measure of the diffusion velocity components along the manifold because the
probability that the scalars are on the manifold is much higher. The fast approach to
the manifold perhaps reflects the local environment in scalar and physical spaces in
which the scalars mix. Specifically, the local scalar appears to be diffusing towards the
ridgeline of the JPDF, which is the locally most likely composition.

In the study of Juneja & Pope (1996) the three scalars are arranged symmetrically,
thereby having equal average distances from each other in scalar as well as physical
space. A major difference between that study and the present work is that in the
present three-scalar mixing configuration there is no direct contact between φ1 and air
at the jet exit. Although in scalar space the three scalars initially have equal distance
from each other, the distance in physical space between φ1 and air is larger than those
between φ1 and φ2 and between φ2 and air. The manifold provides a pathway along
which φ1 mixes with air through φ2.

The conditional dissipation rates of φ1 and φ2 conditional on both scalars are shown
in figure 15. At x/d = 3.29 there is little mixing on the centreline (not shown). Slightly
away from the centreline (not shown) the mixing is only between φ1 and φ2, and the
dissipation rates for both scalars are large towards (0, 1). At r/d = 0.347 the mixing
of φ1 is largely among mixtures between (1, 0) and (0.2, 0.5), the latter likely due to
the φ2–air mixtures from the air side penetrating into the jet; therefore, 〈χ1 | φ1〉 peaks
near φ1 = 0.45 (not shown, but can be inferred from figure 15). The highest value
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of 〈χ1 | φ1, φ2〉 is near (0.45, 0.3), rather than between the JPDF peaks, probably due
to more intense mixing of mixtures between (1, 0) and (0.2, 0.5). The inward velocity
fluctuations that bring the latter mixture to the location is probably much larger than
the velocity fluctuations associated with the φ1–φ2 mixing line, thereby resulting in a
sharper interface between the mixtures near (1, 0) and (0.2, 0.5) and large dissipation
rate values. Near the mixing line, mixing is again primarily between φ1 and φ2. The
latter does not require large velocity fluctuations to reach this location; therefore, the
conditional dissipation is smaller.

In the scalar space between (0.35, 0.6) and (0.8, 0.15) there is also mixing between
φ1–φ2 mixtures and φ1–φ2–air mixtures. The conditional dissipation is small near the
ridgeline of the JPDF. This mixing scenario is likely to correspond to local events
and have smaller time scales, consistent with the diffusion streamlines approaching the
manifold. The conditional dissipation results are also consistent with the two different
mixing processes discussed above, with the slow one related to the large-scale motions,
and the fast one due to local mixing events.

The mixing of φ2 at r/d = 0.347 is also between mixtures at (1, 0) and (0.2, 0.5),
and 〈χ2 | φ1, φ2〉 is quite similar to 〈χ1 | φ1, φ2〉. This similarity is because there is
little air at this location, resulting in negative correlation for φ1 and φ2; therefore, the
process mixing φ1 also mixes φ2. The location for the peak of 〈χ2 | φ1, φ2〉 is towards
a slightly higher φ1 value (0.5) than that of 〈χ1 | φ1, φ2〉 (0.45), a result of mixing
between φ2 and air. Near (1, 0), the mixture is mostly φ1 and there is little mixing;
therefore, the conditional dissipation rates for both φ1 and φ2 are small.

At r/d = 0.536 the conditional dissipation rates for both φ1 and φ2 have local peaks
near (0.45, 0.3), due to the mixtures at (1, 0) and (0, 0.6) converging to form a sharp
interface. The peak dissipation occurs near the centre of the interface. In the region
near φ1 = 0, mixing is primarily between φ2–air mixtures having different proportions
of the two. This mixing process causes the diffusion streamlines to move towards the
JPDF peak near (0.1, 0.5). Near the φ1–φ2 mixing line, the mixing is similar to that at
r/d = 0.347. At r/d = 0.635 (not shown), 〈χ2 | φ1, φ2〉 has two peaks near (0.15, 0.3)
and (0.55, 0.3) respectively. This location is close to that of the maximum mean φ2.
There is intense mixing on both sides of the maximum, one side with air and the other
with φ1, resulting in two dissipation peaks. Two weaker peaks also can be seen at
r/d = 0.536, where the JPDF is bimodal; therefore, it appears that the double peaks of
〈χ2 | φ1, φ2〉 are closely related to the bimodal JPDF. Further away from the centreline
the conditional dissipation for both φ1 and φ2 gradually become similar because the
mixing is primarily between φ1–φ2 mixtures and air.

The conditional cross-dissipation 〈χ12 | φ1, φ2〉 is shown in figure 16. Near the
centreline there is little mixing; therefore, 〈χ12 | φ1, φ2〉 is low (not shown). At
r/d = 0.347, mixing is primarily between φ1 and φ2, their gradients being strongly
anti-correlated. Consequently, 〈χ12 | φ1, φ2〉 is negative, with the overall trend similar
to those of 〈χ1 | φ1, φ2〉 and 〈χ2 | φ1, φ2〉. Its large magnitudes are near (0.45, 0.3),
coinciding with those of 〈χ1 | φ1, φ2〉 and 〈χ2 | φ1, φ2〉. The conditional vectorial
correlation coefficient, 〈χ12 | φ1, φ2〉/(〈χ1 | φ1, φ2〉〈χ2 | φ1, φ2〉)1/2, is close to −1,
indicating a near-perfect anti-correlation. At r/d = 0.536, 〈χ12 | φ1, φ2〉 has the same
qualitative features. Further away from the centreline, fluctuations of the φ1 and
φ2 become positively correlated. At r/d = 0.794, 〈χ12 | φ1, φ2〉 has a positive peak
near (0.2, 0.3), coinciding with that of 〈χ2 | φ1, φ2〉 and close to that of 〈χ1 | φ1, φ2〉
at (0.3, 0.4). The conditional vectorial correlation coefficient at (0.2, 0.3) is ≈0.3,
indicating that the φ1 and φ2 gradients also begin to correlate positively with each
other.
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FIGURE 16. The cross-stream evolution of the conditional scalar cross-dissipation of φ1
and φ2. The radial location is given in each figure. Conditional cross-dissipation values are
normalized by the maximum mean φ1 dissipation at the same x/d location.

Moving downstream to x/d = 6.99, there is already air on the centreline (figure 17),
Part of the JPDF ridgeline bends down from the φ1–φ2 mixing line, due to penetration
of the φ2–air mixture. Away from the centreline the JPDF bends down further towards
(0, 0). The peak of the JPDF shifts from the φ1 side to the air side. The JPDF
is only slightly bimodal at r/d = 0.387, indicating that the mixing has progressed
much further at this downstream location. Almost pure co-flow air begins to appear
near r/d = 0.635. At the same time, nearly pure φ1 is still present. The conditional
diffusion streamlines are mostly in the vertical direction before converging to the
manifold. The manifold is again bell-shaped and connects mixtures having almost pure
φ1 and co-flow air, providing a mixing path for them. At r/d = 0.992, the JPDF has
a tail on the φ1 side, which is the opposite of that of the centreline. Further away
from the centreline, φ1 and φ2 are well correlated, suggesting that the two scalars are
brought out and mixed by the outward radial velocity fluctuations.

The conditional dissipation rates for φ1 and φ2 at x/d = 6.99 are shown in figure 18.
The conditional dissipation for φ1 has some similarities to that at x/d = 3.29 for r/d
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FIGURE 17. Conditions as in figure 14 but at x/d = 6.99.

values beyond 0.387. Near the centreline (r/d < 0.387), it has a maximum near (0.56,
0.16), well below the φ1–φ2 mixing line, again indicating that the high dissipation
is caused by the large inward radial velocity fluctuations that bring mixtures from
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FIGURE 18. Conditions as in figure 15 but at x/d = 6.99.

the far air side to the measurement locations. One difference between the conditional
dissipation at x/d = 3.29 and 6.99 is that at the latter downstream location there
appear to be no minimum dissipation near the φ1–φ2 mixing line, probably because the
probability for the mixture to be on the mixing line is small.
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FIGURE 19. Conditions as in figure 15 but at x/d = 6.99.

The conditional dissipation for φ2 again is similar to that of φ1 near the jet
centreline. The maximum is located near (0.60, 0.16), towards the φ1 side compared
to that of 〈χ1 | φ1, φ2〉, consistent with the results at x/d = 3.29. Near the location of
the maximum mean φ2 (r/d = 0.635), 〈χ2 | φ1, φ2〉 has two peaks, resulting from the
mixing of φ2 with φ1 and with air, respectively.

The conditional cross-dissipation at x/d = 6.99 has the same general trend as that at
x/d = 3.29. The largest negative conditional vectorial correlation coefficient is ≈− 0.8,
indicating a less strong anti-correlation than at x/d = 3.29, due to the progression of
the mixing process. At r/d = 0.635, the peak again coincides with that of 〈χ1 | φ1, φ2〉
and 〈χ2 | φ1, φ2〉, resulting from the mixing between φ1 and φ2. At r/d = 0.992,
〈χ12 | φ1, φ2〉 has a positive peak, indicating positive vectorial correlation for the scalar
gradients.

The JPDF and conditional dissipation rates observed here have some similarities to
the mixture fraction-temperature filtered mass density function and the conditionally
filtered dissipation rates in turbulent flames (Cai et al. 2009). The JPDF is bimodal
near the jet exit and becomes unimodal downstream. The filtered mass density function
also has bimodal or unimodal shapes depending on the values of the conditioning
variables, reflecting similar mixing processes. The conditional dissipation rate for φ1 at
x/d = 3.29 and r/d = 0.536 is similar to the conditionally filtered dissipation rate of
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the mixture fraction (figure 2b,d in Cai et al. 2009). The conditional dissipation rate
for φ2 is similar to the conditionally filtered dissipation rate of the temperature (figure
3b,d in Cai et al. 2009), which also has double peaks. These similarities suggest that
some of the essential properties of the mixing process in inert flows are also present
in reactive flows. These properties can be used to test and improve mixing models
without the complication from chemistry.

The results on the conditional diffusion also have implications for mixing models.
The manifold in the diffusion velocity streamline map provides a diffusion path in
scalar space. Diffusion streamlines for mixtures that are close in scalar space but
separated in physical space must take a ‘detour’ in scalar space. Such a diffusion path
presents a test for the physical-space localness for mixing models. The IEM model
depends only on the scalar-space variables, and causes the scalars to move directly
towards their mean values; therefore, this model cannot reproduce the detour in the
scalar space.

The quick approach of the streamlines to the manifold represents a fast mixing
process whereas the diffusion along the manifold is a slow process. During the fast
process, the diffusion in the φ2 direction often dominates. The ratio of the diffusion
velocity components for φ2 and φ1 is larger than inverse ratio of the corresponding
dissipation time scales (figure 13) (the latter probably characterize better the diffusion
velocity ratio along the manifold); therefore, the fast process cannot be modelled by
simply using different dissipation time scales for the two scalars (e.g. in the IEM
model).

4. Conclusions
In the present study we investigated three scalar mixing in a turbulent coaxial jet.

A unique aspect of this study compared to previous studies of three-scalar mixing is
that two of the scalars (the centre jet and the co-flow air) are separated from the
third (annulus). This configuration, therefore, better approximates the mixing process
in a non-premixed turbulent reactive flows. The results provide a basis for studying
multiscalar mixing in reactive flows and for testing mixing models.

The evolution of the scalar statistics along the jet centreline indicates mixing of φ1

and φ2 near the jet exit. Significant amounts of co-flow air begin to appear at x/d = 7.
The correlation coefficient between the two scalars starts from a value of −1 near the
jet exit and approaches unity far downstream. A high correlation indicates that two
scalars are well mixed, and both are being mixed with co-flow air in unison. At this
stage the three-scalar mixing is similar to two-scalar mixing. As a result, our study
focused on the near field where the unique aspects of the three-scalar mixing problem
are most prominent.

The radial mean scalar profiles of φ1 and φ2 in the near field have a centreline
and an off-centreline peak, respectively. The r.m.s. fluctuations profile for φ1 has an
off-centreline peak approximately coinciding with location of the maximum mean φ1

gradient. The r.m.s. profile for φ2 has two off-centreline peaks, also coinciding with
locations of the peaks of the mean φ2 gradient, suggesting that production dominates
the scalar variance budgets.

The correlation coefficient between φ1 and φ2 is close to −1 near the jet centreline,
indicating an almost perfect anti-correlation. Moving away from the centreline, mixing
between the two scalars and the presence of air cause the correlation to move towards
positive values. Towards the edge of the jet the correlation coefficient approaches unity
due to advection of mixed fluid by the large-scale flow structures.
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The mean scalar dissipation profile for φ1 has a peak approximately coinciding with
the peak of the r.m.s. profile. The peaks of mean scalar dissipation profile for φ2 also
coincide with those of its r.m.s. profile. The scalar dissipation time scales vary across
the jet. The highest values for φ1 are approximately twice as large as for φ2, probably
reflecting the difference in the mean velocity between the φ2 stream and the co-flow
air as well as the smaller radial dimension of the φ2 stream.

The scalar JPDF and the conditional dissipation rates obtained in the present study
have similarities to those of mixture fraction and temperature in turbulent flames. The
conditional scalar diffusion for the two scalars, shown as diffusion velocity streamlines
in scalar space, generally converge quickly to a manifold along which they continue
at lower velocities. The manifold appears to coincide with the ridgeline of the scalar
JPDF, perhaps representing the locally most likely composition, towards which the
nearby mixtures tend to diffuse.

The results also show that the approach to the manifold is generally in the φ2

direction. The different magnitudes of the diffusion velocity components for the two
scalars cannot be accounted for by their different dissipation time scales alone. The
difference in the former is much larger. The mixing processes during the approach to
the manifold, therefore, cannot be modelled by using different dissipation time scales
alone.

A unique aspect of the present three-scalar mixing configuration is that while the
three scalars have the same distance in scalar space, two of the scalars (φ1 and air) are
separated by the third (φ2) in physical space. Mixing between the first two can only
occur through the third, resulting in a detour of the manifold (mixing path) in scalar
space. This mixing path and the approach to the manifold presents a challenging test
for mixing models since most mixing models use only scalar-space variables and do
not take into account the spatial (physical-space) scalar structure.
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Appendix A. Noise correction for the scalar variances and scalar dissipation
rates

In scalar dissipation rate measurements, it is generally necessary to correct for noise
contributions and to estimate the extent to which the dissipation rate is resolved. The
noise and resolution effects are usually present at the same time, with the noise
contribution and resolved dissipation both increasing with resolution, making these
effects difficult to separate and quantify. Cai & Tong (2009) and Cai et al. (2010)
developed a conditional sampling-based method to separate the noise and resolution
effects, to accurately correct for noise contributions, and to estimate measurement
resolution. It is based on the idea that small-scale turbulent scalar is intermittent, and
local fields with larger local dissipation length scales (often with lower dissipation
rate values) can be selected using conditional sampling. These fields can be resolved
well by the measurement system, thereby allowing separation of the noise effects and
resolution effects. In the present work, we make use of the property of the conditional
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dissipation that in the scalar space with low dissipation values, the dissipation length
scales are larger (verified a posteriori). Thus, we use the scalar values φ1 and φ2 as
conditioning variables to select well-resolved local fields. The noise contributions can
be determined experimentally by computing the dissipation rate using finite difference
schemes of different order, which result in different noise contributions but fully
resolve the dissipation rate of the conditional samples. The noise-corrected dissipation
rate is used to assess the extent to which the mean and conditional dissipation rates are
resolved. The method is described briefly in the following.

A.1. Noise variances

In this study, the dominant noise sources are the shot noises from the Rayleigh
scattering and PLIF measurements, which are additive to the scalar values. The
measured scalars, φ1 and φ2, are

φ1 = φ∗1 + nφ1, φ2 = φ∗2 + nφ2 (A 1)

respectively, where φ∗1 and φ∗2 are the true scalar values. The measurement noises, nφ1
and nφ2 , are random variables to be determined.

The shot noises at different measurement locations (different pixels) are uncorrelated
with zero mean. The noise variances depend on the measured variables. In the
present study φ1 is obtained from PLIF measurements. Since the dependence of the
fluorescence yield on φ2 is much weaker than on φ1, the statistics of nφ1 should be
largely a function of φ1 only. We find experimentally that the dependence on φ2 is
indeed negligible. Furthermore, the conditional variance of nφ1 is linear in φ1, i.e.

〈n2
φ1
| φ̂1, φ̂2〉 = 〈n2

φ1
| φ̂1〉 = α0 + α1φ̂1, (A 2)

where φ̂1 and φ̂2 are the sample-space variables for φ1 and φ2 respectively. The
coefficient α0 represents other possible noise that is independent of the shot noise,
such as the electric noise of the camera, which is small and is important only when φ̂1

approaches zero.
The noise for φ2 comes from both Rayleigh scattering and PLIF. The noise from the

Rayleigh measurements is proportional to the effective Rayleigh cross-section, which
is a linear combination of φ1 and φ2,

〈n2
Ray | φ̂1, φ̂2〉 = A0 + A1φ̂1 + A2φ̂2. (A 3)

Note that A0 is non-zero due to Rayleigh scattering from the air in the co-flow. The
φ1 value measured using PLIF is used to obtain the contribution to the Rayleigh signal
from φ1. Since the PLIF and Rayleigh shot noises are uncorrelated, subtracting the φ1

contribution from the total Rayleigh signal results in an increase in the noise variance
of φ2:

〈n2
φ2
| φ̂1, φ̂2〉 = 〈n2

Ray | φ̂1, φ̂2〉 + 〈n2
aRay | φ̂1, φ̂2〉

= β0 + β1φ̂1 + β2φ̂2, (A 4)

〈n2
aRay | φ̂1, φ̂2〉 = B〈n2

φ1
| φ̂1, φ̂2〉 = Bα0 + Bα1φ̂1, (A 5)

where 〈n2
aRay | φ̂1, φ̂2〉 is the noise contribution to φ2 from φ1, and β0 = A0 + Bα0,

β1 = A1 + Bα1 and β2 = A2 are coefficients to be determined using experimental data.
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α0
(×10−3)

α1
(×10−3)

β0
(×10−3)

β1
(×10−3)

β2
(×10−3)

γ0
(×10−3)

γ1
(×10−3)

x/d = 3.29 0.0073 0.2487 0.0308 0.0909 0.4991 −0.002 59 −0.08 611
x/d = 6.99 0.0055 0.2631 0.0333 0.0921 0.4327 −0.003 14 −0.090 43

TABLE 3. Noise correction coefficients. 〈n2
φ1
| φ̂1, φ̂2〉 = α0 + α1φ̂1,

〈n2
φ2
| φ̂1, φ̂2〉 = β0 + β1φ̂1 + β2φ̂2 and 〈nφ1nφ2 | φ̂1, φ̂2〉 = γ0 + γ1φ̂1.

A.2. Effects of noise and determination of noise variances
Applying the noise model discussed in the previous section to the finite difference
schemes, the estimated scalar derivative is

h ·
d̃φs

dx
= a1(φs,1 − φs,−1)+ a2(φs,2 − φs,−2)+ a3(φs,3 − φs,−3)

+ a4(φs,4 − φs,−4)+ · · ·
= a1(φ

∗
s,1 − φ∗s,−1)+ a2(φ

∗
s,2 − φ∗s,−2)+ a3(φ

∗
s,3 − φ∗s,−3)+ a4(φ

∗
s,4 − φ∗s,−4)

+ · · · + a1nφs,1 + a−1nφs,−1 + a2nφs,2 + a−2nφs,−2 + a3nφs,3 + a−3nφs,−3

+ a4nφs,4 + a−4nφs,−4 + · · ·

= h · d̃φ∗s
dx
+ a1nφs,1 + a−1nφs,−1 + a2nφs,2 + a−2nφs,−2 + a3nφs,3 + a−3nφs,−3

+ a4nφs,4 + a−4nφs,−4 + · · · , (A 6)

where d̃φ∗/dx is the measured first derivative without noise and s = 1, 2 is the scalar
index. Note that such an estimated derivative is dependent on the scheme used due to
their different spectral responses. The measured conditional mean dissipation rate is

〈χ̃s | φ̂1, φ̂2〉 =
〈

2D

(
d̃φs

dx

)2
∣∣∣∣∣∣ φ̂1, φ̂2

〉

=
〈

2D

(
d̃φ∗s
dx

)2
∣∣∣∣∣∣ φ̂1, φ̂2

〉
+
〈

2D

h2

N∑
i=−N

a2
i n2
φs,i

∣∣∣∣∣ φ̂1, φ̂2

〉

=
〈

2D

(
d̃φ∗s
dx

)2
∣∣∣∣∣∣ φ̂1, φ̂2

〉
+ 2D

h2

N∑
i=−N

a2
i 〈n2

φs,i
| φ̂1, φ̂2〉

=
〈

2D

(
d̃φ∗s
dx

)2
∣∣∣∣∣∣ φ̂1, φ̂2

〉

+ 2D

h2

N∑
i=−N

a2
i 〈fs(φ1,i, φ2,i) | φ1,0 = φ̂1, φ2,0 = φ̂2〉

w

〈
2D

(
d̃φ∗s
dx

)2
∣∣∣∣∣∣ φ̂1, φ̂2

〉
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+ 2D

h2

N∑
i=−N

a2
i 〈fs(φ1,0, φ2,0) | φ1,0 = φ̂1, φ2,0 = φ̂2〉

=
〈

2D

(
d̃φ∗s
dx

)2
∣∣∣∣∣∣ φ̂1, φ̂2

〉
+ 2D

h2

N∑
i=−N

a2
i 〈n2

φs
| φ̂1, φ̂2〉

=
〈

2D

(
d̃φ∗s
dx

)2
∣∣∣∣∣∣ φ̂1, φ̂2

〉
+ 2D

h2
CN〈n2

φs
| φ̂1, φ̂2〉 (A 7)

where CN =
∑N

i=−N a2
i ,D, 2D(d̃φ∗/dx)2 and fs(φ1, φ2) are a scheme-dependent

coefficient, the scalar diffusivity, the noise-corrected dissipation rate and the variance
model for the nφs respectively. The approximation from the fourth to the fifth line is
made with a Taylor series expansion of fs about the centre point of the scheme and
keeping the first-order term:

N∑
i=−N

a2
i fs(φ1,i, φ2,i)=

N∑
i=−N

a2
i fs(φ1(x0 + ih), φ2(x0 + ih))

=
N∑

i=−N

a2
i

{
fs(φ1(x0), φ2(x0))+ dfs

dx

∣∣∣∣
x0

ih+ i2h2

2
d2fs

dx2

∣∣∣∣
x0

+ o(h3)

}

=
N∑

i=−N

a2
i

{
fs(φ1(x0), φ2(x0))+ i2h2

2
d2fs

dx2

∣∣∣∣
x0

+ o(h3)

}

=
N∑

i=−N

a2
i

{
fs(φ1(x0), φ2(x0))+ i2h2

2

2∑
j=1

∂fs

∂φj

∂2φj

∂x2

∣∣∣∣
x0

+ o(h3)

}
.

(A 8)

In the last step, the linear dependence of fs on φj is used. The numerical schemes
can affect the measured conditional dissipation rates in two ways. Firstly, higher-order
schemes can resolve more dissipation rates. Secondly, higher schemes result in higher
noise contributions. We use the second property to determine the noise variances as
follows.

At any given point in the scalar space, i.e. given φ1 and φ2 values, when all the
schemes (or schemes of certain order or higher) can resolve the scalar fields, the
resolved dissipation rate (the first term on the last line of (A 7)) is independent of the
scheme used, while the measured dissipation rate depends bilinearly with respect to
the conditional noise variance and CN , the latter depending on the scheme used. The
conditional noise variance can be regarded as a coefficient in the 〈χ̃s | φ̂1, φ̂2〉 − CN

(linear) relationship, which is employed to estimate the conditional noise variance,
by varying CN using schemes of different orders. Repeating the above procedure,
the estimated conditional noise variance is obtained for all the occupied region in
scalar space. The model in the previous section ((A 2) and (A 4)) is then fitted to the
conditional noise variance using the linear least-squares method to obtain α0, α1, β0, β1

and β2. After the noise variance is determined, (A 7) is used to correct the conditional
scalar dissipation rate.
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The mean (unconditioned) dissipation rate can be corrected in the same way. For
example, the measured 〈χ̃2〉 is

〈χ̃2〉 =
〈

2D

(
d̃φ2

dx

)2〉

=
〈

2D

(
d̃φ∗2
dx

)2〉
+
〈

2D

h2

N∑
i=−N

a2
i n2
φ2,i

〉

=
〈

2D

(
d̃φ∗2
dx

)2〉
+ 2D

h2

N∑
i=−N

a2
i 〈n2

φ2,i
〉

=
〈

2D

(
d̃φ∗2
dx

)2〉
+ 2D

h2

N∑
i=−N

a2
i 〈 f2(φ1,i, φ2,i)〉

w

〈
2D

(
d̃φ∗2
dx

)2〉
+ 2D

h2

N∑
i=−N

a2
i 〈 f2(φ1,0, φ2,0)〉

=
〈

2D

(
d̃φ∗2
dx

)2〉
+ 2D

h2

N∑
i=−N

a2
i 〈n2

φ2
〉

=
〈

2D

(
d̃φ∗2
dx

)2〉
+ 2D

h2
CN〈n2

φ2
〉

=
〈

2D

(
d̃φ∗2
dx

)2〉
+ 2D

h2
CN(β0 + β1〈φ1〉 + β2〈φ2〉). (A 9)

The coefficients β0, β1, β2 are the same as in (A 4).
We find that the scalar dissipation rates are fully resolved except when 〈χ1 | φ1, φ2〉

or 〈χ2 | φ1, φ2〉 peaks. Based on the ratio of the noise-corrected dissipation ratios using
the 8th- and 10th-order schemes (typically greater than 99 %), we conclude that these
large dissipation values are 98 % or better resolved.

The cross-dissipation can also be corrected in a similar way. Here the noise
covariance, 〈nφ1nφ2 | φ1, φ2〉, which comes from subtracting the Rayleigh signal from
acetone from the total to obtain that from ethylene, needs to be determined. The noise
covariance can be written in the form 〈nφ1nφ2 | φ̂1, φ̂2〉 = γ0 + γ1φ̂1. The coefficients,
γ0 and γ1, are determined using the same method for those in 〈n2

φ1
| φ̂1, φ̂2〉 and

〈n2
φ2
| φ̂1, φ̂2〉.

Appendix B. Uncertainty analysis
The uncertainties in the scalar statistics come from several sources. They include

the uncertainties in determining the acetone source concentration, the imaging camera
response and the laser profiles, and the uncertainties in statistical analysis (due to
finite sample size). The first three are system uncertainties and can be estimated
by examining the scalar JPDF on the centreline at x/d = 3.29. The JPDF, if free
from noise, should be limited to the (0, 1) and (1, 0) mixing line. Both noise
and uncertainties cause the JPDF to broaden. Using the Gaussian JPDF as an
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approximation, the 99 % contour is at approximately three standard deviations. Thus
the r.m.s. fluctuations of the combined noise and uncertainty are ≈0.06/3 = 0.02 (2 %
of the full scale of φ1). Assuming that the uncertainties are independent of the noise,
the r.m.s. fluctuations of the uncertainties are (0.022 − 0.0162)1/2 = 0.012, where the
nφ1 = 0.016 at φ1 = 1 is obtained in Appendix A. The 1.2 % uncertainty appears to be
consistent with the accuracies of various apparatus and experimental conditions.

The maximum statistical uncertainties in the mean scalar profiles are estimated
using the peak r.m.s. fluctuations (0.24 from figure 8) as σ1/

√
N = 0.24/

√
3000 =

0.0044, where N = 3000 is the number of images (independent samples). Thus, the
uncertainties are dominated by system uncertainties. The statistical uncertainties in the
r.m.s. fluctuations (σ1) are estimated in a similar way. The ratio of the r.m.s. of the
measured variance to the variance is ((k − 1)/(N − 1))1/2 = 0.0258, leading to a ratio
of the r.m.s. of σ1 to σ1 of 0.013, where k = 3 is the approximate value of the kurtosis
of the scalar fluctuations. This uncertainty is comparable to the system uncertainty.
The combined uncertainty is (0.0122 + 0.0132)1/2 = 0.0178.

The mean dissipation rates and the cross-dissipation rate are averaged over 3
pixels and 5 pixels in the radial and axial directions, respectively, to improve
statistical convergence. The resulting r.m.s. uncertainty for the maximum 〈χ1〉 is
σ〈χ1〉 = σχ1/

√
N = 47.65/

√
45000 = 0.2246, which is about 0.85 % of the peak 〈χ1〉

value. The relative uncertainty, σ〈χ1〉/〈χ1〉, at other radial locations is also close to 1 %.
The averaging in the radial direction results in a bias of ≈0.5 % for the maximum 〈χ1〉.
The uncertainty and bias for 〈χ2〉 are also similar.

The scalar JPDF is affected by the measurement noise, the statistical uncertainty,
and bias. Noise broadens the JPDF. Deconvolution can be used to correct independent
noise. The noise in the present work, however, depends on the scalar values ((A 2),
(A 4)). Thus no attempt is made to correct the noise effects.

The statistical uncertainty and bias are estimated using the bootstrap method (Hall
1990). The r.m.s. values of the JPDF are typically less than 4 % of the JPDF values
for much of the sample space, and are less than 10 % near the contour for 90 %
integrated probability, only rising to 18 % at the 99 % probability contour. The bias is
typically less than 3 % (negative) near the JPDF peak(s) and is less than 6 % at the
90 % contour, again rising to 15 % at the 99 % contour. The combined (mean-square)
error is less than 4 %, 10 % and 23 % respectively.

The statistical uncertainty and bias for the conditional dissipation rates are estimated
using the method given by Ruppert (1997). The r.m.s. uncertainties for both
〈χ1 | φ1, φ2〉 and 〈χ2 | φ1, φ2〉 are typically less than 3 % of the dissipation rates,
only rising to ≈10 % in the highest dissipation regions of the sample space, which are
usually near the 90 % integrated JPDF contour. The bias is typically less than 5 % for
〈χ1 | φ1, φ2〉 and 3 % for 〈χ2 | φ1, φ2〉, rising to ≈15 % in high dissipation regions.
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