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Velocity-defect laws, log law and logarithmic
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boundary layer
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The mean velocity profile in the convective atmospheric boundary layer (CBL) is
derived analytically. The shear-stress budget equations and the mean momentum
equations are employed in the derivation. The multi-point Monin–Obukhov similarity
(MMO) recently proposed and analytically derived by Tong & Nguyen (J. Atmos.
Sci., vol. 72, 2015, pp. 4337–4348) and Tong & Ding (J. Fluid Mech., vol. 864,
2019, pp. 640–669) provides the scaling properties of the statistics in the shear-stress
budget equations. Our previous and present studies have shown that the CBL is
mathematically a singular perturbation problem. Therefore, we obtain the mean
velocity profile using the method of matched asymptotic expansions. Three scaling
layers are identified: the outer layer, which includes the mixed layer, the inner-outer
layer and the inner-inner layer, which includes the roughness layer. There are two
overlapping layers, the local-free-convection layer and the log layer, respectively. Two
new velocity-defect laws are discovered: the mixed-layer velocity-defect law and the
surface-layer velocity-defect law. The local-free-convection mean profile is obtained
by asymptotically matching the expansions in the first two layers. The log law is
obtained by matching the expansions in the last two layers. The von Kármán constant
is obtained using velocity and length scales, and therefore has a physical interpretation.
A new friction law, the convective logarithmic friction law, is obtained. The present
work provides an analytical derivation of the mean velocity profile hypothesized in
the Monin–Obukhov similarity theory, and is part of a comprehensive derivation of
the MMO scaling from first principles.

Key words: boundary layer structure, atmospheric flows, turbulent boundary layers

1. Introduction
The mean velocity profile is one of the most important properties of a turbulent

boundary layer. The classical high-Reynolds-number (neutral) boundary layer over a
smooth plane has a two layer structure. In the thin layer close to the wall viscous
effects are important, leading to the law of the wall (Prandtl 1925). In the layer away
from the wall, the velocity-defect law was obtained (von Kármán 1930). The log
law was obtained for the overlapping region of the two layers (von Kármán 1930).

† Email address for correspondence: ctong@clemson.edu
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883 A36-2 C. Tong and M. Ding

Furthermore, the logarithmic friction law was obtained from the log law and the
velocity-defect law (Millikan 1938).

For the convective atmospheric boundary layer (CBL), the Monin–Obukhov
similarity theory (MOST) (Obukhov 1946; Monin & Obukhov 1954) predicts that
the non-dimensional mean shear in the surface-layer scales as φm(−z/L), where
L = −u3

∗
/(κ(g/Θ)Q), with z, L, u∗, κ , g, Θ and Q the distance from the surface,

the Obukhov length, the friction velocity, the von Kármán constant, the gravity
acceleration, the mean potential temperature, and the surface temperature flux,
respectively. For −z/L � 1, φm = 1, the theory is consistent with the log law,
which has been confirmed by numerous measurements and simulations (e.g. Businger
et al. 1971; Wyngaard, Coté & Izumi 1971). The physical justification for the
existence of the log law in the presence of the convective eddies is based on the
concepts of attached eddies and inactive motions (Townsend 1976), and therefore
appears to be less rigorous compared with that for the neutral boundary layer. In the
local-free-convection layer (−z/L� 1 but z/zi� 1), the non-dimensional mean shear
has been implied to vary as (−z/L)−4/3 (Monin & Obukhov 1954; Wyngaard et al.
1971), where zi is the boundary layer (inversion) height.

The velocity-defect law for the neutral atmospheric boundary layer (ABL) was
proposed for the difference between the outer layer mean velocity and the geostrophic
wind, Ug, with u∗ as the velocity scale (Blackadar & Tennekes 1968). Garratt,
Wyngaard & Francey (1982) analysed the velocity defect in the CBL with u∗ as the
velocity scale. A geostrophic drag law was also proposed (Lettau 1959; Kazanski &
Monin 1960; Csanady 1967; Blackadar & Tennekes 1968; Brown 1973). Zilitinkevich,
Laikhtman & Monin (1967) and Zilitinkevich (1969) extended the geostrophic drag
law to include buoyancy effects,

Ug

u∗
=

1
κ

ln
h
h0
+ A

(
h
L

)
, (1.1)

where h = u∗/f and h0 are the Ekman layer height and the roughness height,
respectively. However, this drag law is not supported by measurements (Zilitinkevich
& Chalikov 1968; Clarke 1970a,b, 1972). Arya (1975) replaced u∗/f by the inversion
height zi. Garratt et al. (1982) proposed a three layer model, which led to a drag
law that uses the Monin–Obukhov stability function (2.102). There appears to be
systematic deviations of the drag law from observations (Garratt et al. 1982).

Zilitinkevich & Deardorff (1974) proposed a velocity-defect law with a velocity
scale of u∗ and used it to match the log law to obtain a resistance law for the CBL.
Zilitinkevich (1975) and Zilitinkevich, Fedorovich & Shabalova (1992) proposed
another velocity-defect law with a velocity scale u∗(u∗/w∗) and matched it to an
approximate velocity profile in the local-free-convection layer to obtain another
resistance law, where w∗ is the mixed-layer velocity (or Deardorff) scale. In both
cases, the streamwise geostrophic wind component is used and only a single velocity
defect is assumed for the entire CBL and therefore cannot properly represent the
defects in the CBL.

In the present work we derive the mean velocity profile in the CBL from first
principles (the profile obtained previously is not based on first principles). The mean
momentum equations and the shear-stress budget equations, which contain the mean
shear, are employed in the derivation. The scaling properties of some of the statistics
in these equations are needed for the derivation. Because MOST does not correctly
predict the scaling of all the statistics in the surface layer, it cannot provide the

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

le
m

so
n 

U
ni

ve
rs

ity
, o

n 
30

 N
ov

 2
01

9 
at

 2
2:

25
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

89
8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.898


Velocity-defect laws, log law and logarithmic friction law in CBL 883 A36-3

definitive scaling properties needed. Instead, these scaling properties can be derived
analytically from the multi-point Monin–Obukhov similarity theory (MMO) (Tong &
Nguyen 2015, Tong & Ding 2019).

The Monin–Obukhov similarity theory is the foundation for understanding the
atmospheric surface layer, and has been successfully used to scale many single-point
surface layer statistics (e.g. Businger et al. 1971, Wyngaard & Coté 1971, Wyngaard
et al. 1971, Kaimal et al. 1972, Kaimal 1978). However, it has been known, perhaps
since the late 1950s, that some very important class of statistics do not scale according
to MOST (e.g. Lumley & Panofsky 1964; Kaimal et al. 1972; Kaimal 1978; Caughey
& Palmer 1979), resulting in incomplete surface-layer similarity and raising questions
on the existence of complete surface-layer similarity. To resolve this long-standing
issue, MMO, was recently proposed (Tong & Nguyen 2015) as a generalization of
MOST, hypothesizing that multi-point statistics have universal complete surface-layer
similarity, i.e. all multi-point statistics have universal surface-layer scaling (Tong &
Ding 2019). Thus MMO is a general surface-layer similarity theory, and universal
complete surface-layer scaling properties can be obtained from MMO.

Similar to MOST, MMO was also proposed as hypotheses. Measurements and
simulations can only provide supporting evidence, but not a proof. To provide
analytical support to MMO, we have recently begun deriving the MMO similarity
properties for some of the important statistics from first principles. Tong & Ding
(2019) have derived the MMO scaling of the horizontal Fourier transforms of the
velocity and potential temperature.

The similarity properties of one-point statistics, hypothesized in MOST, can also
be derived using MMO. For example, variances can in principle be obtained by
integrating the spectra, which follow the MMO scaling. The profiles of the vertical
velocity and potential temperature variances have been derived using MMO and
the method of asymptotic expansions (Tong & Ding 2018). On the other hand, the
mean fields, such as the mean velocity and potential temperature profiles, cannot be
obtained directly by reducing the multi-point statistics of the fluctuating variables.
Their derivation requires the use of the budget equations for the mean shear stress
and temperature fluxes. To this end, the CBL has previously been shown to be
mathematically a singular perturbation problem with one outer layer and two inner
layers (e.g. Tong & Ding 2019). Thus we derive the mean velocity profile using the
method of matched asymptotic expansions. Therefore, the derivation in the present
study is part of the comprehensive derivation of the scaling properties using MMO.

The capping inversion layer also has a different scaling than does both the outer
and inner layers that we consider, and therefore is beyond the derivation based on
the Monin–Obukhov similarity (both MOST and MMO). In the present study we only
consider the profiles below the inversion layer. Furthermore, since the Monin–Obukhov
similarity applies to the surface layer, in a boundary layer that obeys this similarity,
the absolute value of the Obukhov length must be within the surface layer. Therefore
we only consider the convective boundary layer with −L� zi.

In the following, we will derive the mean velocity profile for the convective
atmospheric boundary layer (§ 2). Although the derivation is for a rough wall, the
derivation can easily be extended to the case with a smooth wall. Comparisons
of the profiles with large-eddy simulation (LES) are given in § 3, followed by the
conclusions.

2. Mean velocity profile using matched asymptotic expansions
We consider a horizontally homogeneous barotropic atmospheric convective

boundary layer with geostrophic velocity components Ug and Vg, capped by a
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883 A36-4 C. Tong and M. Ding

temperature inversion. The x-direction of the coordinate system is aligned with the
mean velocity direction in the bulk of the mixed-layer (it is shown later in this
section that the variations of the mean wind direction in the mixed layer are small
for the CBL considered). The shear-stress budget equations and the mean momentum
equations are

∂uw
∂t
+w2

∂U
∂z
−

g
T

uθ +
∂uw2

∂z
+w

∂p
∂x
+ u

∂p
∂z
+2(Ω2w2 +Ω1uv −Ω3vw−Ω2u2)= 0,

(2.1)
∂vw
∂t
+w2

∂V
∂z
−

g
T
vθ +

∂vw2

∂z
+w

∂p
∂y
+ v

∂p
∂z
+2(Ω1v2 +Ω3uw−Ω1w2 −Ω2uv)= 0,

(2.2)
∂V
∂t
+
∂vw
∂z
= f (Ug −U)+

dτry

dz
, (2.3)

∂U
∂t
+
∂uw
∂z
= f (V − Vg)+

dτrx

dz
, (2.4)

where Ωi, f = 2Ω3, τrx and τry are the components of Earth’s rotation vector, Coriolis
parameter, and the shear-stress in the x- and y-directions induced by the surface
roughness, respectively. The Coriolis terms in (2.1) and (2.2) are of higher order (e.g.
Wyngaard 2010), thus we neglect them in this analysis.

Similar to the classical neutral boundary layer (e.g. Millikan 1938, Panton 2005),
equations (2.1) to (2.4) for the convective surface layer also form a singular
perturbation problem, but with a three layer structure, which we analyse in the
following using the method of matched asymptotic expansions. A schematic of the
structure obtained in the analysis is shown in figure 1.

In the outer layer, analysed in § 2.1, turbulent fluctuations are dominated by
buoyancy effects. The larger vertical velocity variance reduces the mean velocity
gradient compared to a neutral boundary layer. The outer layer is affected by the
external influences (from above), and therefore is not universal. The scales in this layer
include a mixed-layer mean velocity scale, the lateral geostrophic wind component,
the surface kinematic stress (u2

∗
), the surface temperature flux (Q), the inversion

height (zi), the mixed-layer velocity scale (w∗) and a lateral stress scale (2.5). A
new velocity-defect law, the mixed-layer velocity-defect law, is derived, which has a
velocity scale of u∗(u∗/w∗). The inner-outer layer is characterized by the importance
of both buoyancy and shear production (§ 2.2). In this layer, the terms in (2.1) to
(2.4) are isolated from the external influences, and therefore are universal. The scales
for this layer are the mixed-layer mean velocity scale, the lateral geostrophic wind
component, the surface stress and temperature flux, the Obukhov length (L), and a
lateral stress scale. Another new velocity-defect law, the surface-layer velocity-defect
law is derived, which has a velocity scale of u∗. The overlapping portion of the
outer and inner-outer layers is the local-free-convection layer (§ 2.3). The inner-inner
layer is characterized by negligible buoyancy production of the turbulent fluctuations
(§ 2.4), with the shear production and roughness effects being important. Similar to
the inner-outer layer, this layer is also universal. Its scales are the roughness height,
the surface stress and the surface temperature flux. The overlapping portion of the
inner-outer layer and inner-inner layer is the log layer. A new logarithmic friction
law (§ 2.5), the convective logarithmic friction law is derived by combining the log
law and the surface-layer velocity-defect law.
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−L

Mixed
layer

Surface
layer

Um0
h0 U

¡0.2zi

zi

z

Outer layer
Mixed-layer

velocity-defect law

Inner-outer layer
Surface-layer

Velocity-defect law

Inner-inner layer
Law of the wall

Log law

Local free
convection

¡u2
*/w*

¡u*

FIGURE 1. Schematic of the overall CBL mean velocity profile, which has a three layer
structure. In the outer and inner-outer layers, the mean velocity follows the mixed-layer
and surface-layer velocity-defect laws, respectively. In the inner-inner layer, it obeys the
law of the wall (only up to z<−L, however).

2.1. The outer expansions
The outer layer in the asymptotic expansions is defined as the layer with z
being of the order of zi, but below the capping inversion. We use Um, Vg, zi, u2

∗
,

u2
∗
we/( fzi) = −Vgwe, w2

∗
, Q and zi/w∗ as the outer scales for the mean velocity

components, height from the surface, the streamwise and lateral kinematic stress
components, velocity variance, potential temperature flux, and time to define the
dimensionless outer variables (with a subscript o),

U(z)=UmUo

(
z
zi

)
, V(z)= VgVo

(
z
zi

)
, uw= u2

∗
uwo, vw=

u2
∗
we

fzi
vwo,

z= zizo, uθ =Quθ o, t=
zi

w∗
τ , w2 =w2

∗
w2

o,


(2.5)

where we is the entrainment velocity (at the capping inversion). These outer scales
are given by the geometry (zi), the external parameters ( f , we), and the boundary
conditions (Ug, Q and u∗, although u∗ is not an independent one) of the problem. The
scale of vw reflects the balance between the lateral pressure gradient and the lateral
stress generated by entrainment (Lilly 1968; Deardorff 1973; Wyngaard 2010). The
mixed-layer scale is obtained from Q, zi and g/Θ , and is also an external parameter,
because it is not a parameter in MOST or MMO. The scale of lateral stress and Vg

are obtained with the lateral mean velocity being of higher order in the outer layer.
The outer-layer mean velocity scale Um will be determined later in this section (2.26),
but is asymptotically close to the mean velocity in the mixed layer. Panton (2005)
showed that the use of the free-stream velocity as the velocity scale leads to the
velocity-defect law in neutral boundary layers. In the present study, the use of Um

also leads to velocity-defect laws in the CBL.
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883 A36-6 C. Tong and M. Ding

These parameters (outer scales) and the budget equations (2.1)–(2.4) form the
singular perturbation problem that describes the mean velocity of the CBL. In the
following, the scaling laws of the mean velocity will be derived by analysing this
problem using the method of matched asymptotic expansions. Therefore, our analysis
is based on first principles. These scaling laws could potentially also be obtained less
rigorously using dimensional analysis without involving first principles (the budget
equations).

Writing equations (2.1) and (2.2) in terms of the outer variables,

∂uwo

∂τ

u2
∗
w∗
zi
+w2

∗
w2

o
Um

zi

∂Uo

∂zo
−

g
T

Quθ o +
w∗u2

∗

zi

(
∂uw2

o

∂zo
+

(
w
∂p
∂x

)
o +

(
u
∂p
∂z

)
o

)
= 0,

(2.6)

∂vwo

∂τ

u2
∗
we

fzi

w∗
zi
+w2

∗
w2

o
Vg

zi

∂Vo

∂zo
−

g
T

Qvθ o +
w∗
zi

u2
∗
we

fzi

(
∂vw2

o

∂zo
+

(
w
∂p
∂y

)
o

+

(
v
∂p
∂z

)
o

)
= 0,

(2.7)

and dividing them by w2
∗
Um/zi results in the non-dimensional shear-stress budget

equations for the outer variables,

u∗
w∗

u∗
Um

∂uwo

∂τ
+w2

o
∂Uo

∂zo
−

w∗
Um

uθ o +
u∗
w∗

u∗
Um

(
∂uw2

o

∂zo
+

(
w
∂p
∂x

)
o

+

(
u
∂p
∂z

)
o

)
= 0,

(2.8)

we

w∗

Vg

Um

∂vwo

∂τ
+w2

o
Vg

Um

∂Vo

∂zo
−

w∗
Um
vθ o +

we

w∗

Vg

Um

(
∂vw2

o

∂zo
+

(
w
∂p
∂y

)
o

+

(
v
∂p
∂z

)
o

)
= 0.

(2.9)

There are two independent small parameters (u∗/w∗)(u∗/Um) and (we/w∗)(Vg/Um)

in (2.8) and (2.9), since in a CBL that obeys the Monin–Obukhov similarity u∗�w∗,
u∗�Um, we�w∗ and Vg<Um. The streamwise temperature flux in the buoyancy term
in (2.8) scales as (−z/L)−2/3 in the local-free-convection layer (Wyngaard et al. 1971),
and is smaller in the outer layer as the turbulence becomes increasingly horizontally
isotropic. The cross-wind temperature flux is much smaller. Therefore, the buoyancy
terms are smaller than the terms containing (u∗/w∗)(u∗/Um) and (we/w∗)(Vg/Um).
These small parameters are a result of the outer scales (2.5) and the terms in (2.8)
and (2.9), reflecting the physics of the CBL. Therefore, in general, we can write the
outer expansions for U and V as,

Uo(zo)=Uo,1(zo)+
u∗
w∗

u∗
Um

Uo,2a(zo)+
we

w∗

Vg

Um
Uo,2b(zo), (2.10)

Vg

Um
Vo(zo)=

Vg

Um
Vo,1(zo)+

u∗
w∗

u∗
Um

Vo,2a(zo)+
we

w∗

Vg

Um
Vo,2b(zo). (2.11)
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Velocity-defect laws, log law and logarithmic friction law in CBL 883 A36-7

Thus,

Vo(zo)= Vo,1(zo)−
fzi

w∗
Vo,2a(zo)+

we

w∗
Vo,2b(zo). (2.12)

The last terms in the outer expansions result from the Coriolis effects. The expansions
for the velocity derivatives are

∂Uo

∂zo
=
∂Uo,1

∂zo
+

u∗
w∗

u∗
Um

∂Uo,2a

∂zo
+

we

w∗

Vg

Um

∂Uo,2b

∂zo
, (2.13)

∂Vo

∂zo
=
∂Vo,1

∂zo
−

fzi

w∗

∂Vo,2a

∂zo
+

we

w∗

∂Vo,2b

∂zo
. (2.14)

Inserting equations (2.13) and (2.14) into (2.8) and (2.9), we find that the only
leading-order terms are the mean-shear production terms (those that do not contain
small parameters). Thus,

∂Uo,1

∂zo
= 0,

∂Vo,1

∂zo
= 0, (2.15a,b)

resulting in

Uo,1 = 1, (2.16)
Vo,1 = 0, since V = 0 at some height in the mixed layer. (2.17)

Setting the leading order U to Um results in Uo,1= 1. Thus, from the outer expansions
(2.10) and (2.12), we have

U =UmUo =Um +
u∗
w∗

u∗Uo,2a +
we

w∗
VgUo,2b, (2.18)

V = VgVo =
u∗
w∗

u∗Vo,2a +
we

w∗
VgVo,2b. (2.19)

The leading-order expansions (2.16) and (2.17) are not valid in the roughness layer,
confirming that the system described by (2.8) and (2.9) is a singular perturbation
problem. The second-order terms for U

U −Um =
u∗
w∗

u∗Uo,2a +
we

w∗
VgUo,2b (2.20)

are the difference between the mean velocity and Um. Inserting ∂Uo/∂zo (2.13)
into (2.8) leads to ∂Uo,2b/∂zo = 0, since at the second order, equation (2.8) does
not contain the parameter (we/w∗)(Vg/Um) (§ 2.3 further shows that Uo,2b = 0).
Equation (2.20) is a new velocity-defect law, which we term the mixed-layer
velocity-defect law. The scale of the defect is u∗(u∗/w∗), which is asymptotically
smaller than that in a neutral boundary layer (u∗). Physically this is because the
larger vertical velocity variance (∼w2

∗
) reduces the mean shear to maintain the same

shear stress. Some previous works (e.g. Zilitinkevich & Deardorff 1974, Garratt et al.
1982) defined the velocity defect as U − Ug, which also depends on we and f as
discussed later in this subsection. With such a definition, the variations of U in the
outer layer, which is asymptotically smaller than U − Ug, is obscured. Consequently,
this definition does not reflect the velocity defect in the outer layer.
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883 A36-8 C. Tong and M. Ding

The new velocity-defect law further indicates the importance of the mixed-layer
mean velocity scale Um. This defect law provides the scaling of the variations of the
mean velocity in the mixed layer, and therefore is different in nature from that of
Garratt et al. (1982), which describes the difference between the height-averaged mean
velocity and the geostrophic wind.

Similarly, inserting ∂Vo/∂zo (2.14) into (2.9) leads to ∂Vo,2a/∂zo = 0; since at the
second order, equation (2.9) does not contain the parameter fzi/w∗ (§ 2.3 further shows
that Vo,2a= 0). We can evaluate the magnitudes of V for typical values of w∗, we and
Vg using (2.19) as

V ∼
we

w∗
Vg ∼

0.03
2.0
× 1∼ 0.01 m s−1. (2.21)

Thus, the change in the direction of the mean velocity in the outer layer is
negligible compared to that across the inversion layer (∼11◦ for Ug = 5 m s−1

and Vg = 1 m s−1).
The equation for the second-order term Uo,2a is,

∂uwo,1

∂τ
+w2

o,1
∂Uo,2a

∂zo
−

w2
∗

u2
∗

uθ o,1 +
∂uw2

o,1

∂zo
+

(
w
∂p
∂x

)
o

+

(
u
∂p
∂z

)
o

= 0. (2.22)

This equation does not contain a small parameter (the buoyancy production term is
also of order one as the horizontal flux is of order u2

∗
/w2
∗
). However, the scaling of

w2
o changes when z decreases to z < −L (from u2

f to u2
∗
, Tong & Ding 2018), also

resulting in a non-uniformly valid solution and a singular perturbation problem, where
uf = (βQz)1/3 is the local-free-convection velocity scale. Although equation (2.22) is
not explicitly used, it helps us identify the source of the singularity.

Given that the scale of vw is u2
∗
we/( fzi) = −Vgwe, we can write the mean

momentum equation for V as,

Vg
w∗
zi

∂Vo

∂τ
+

u2
∗
we

fzi

1
zi

∂vwo

∂zo
= fUm

Ug −U
Um

. (2.23)

Dividing this equation by Umw∗/zi results in

Vg

Um

∂Vo

∂τ
+

we

w∗

Vg

Um

∂vwo

∂zo
=

u∗
Vg

u∗
w∗

(
Ug −Um

Um
−

u∗
w∗

u∗
Um

Uo,2a

)
. (2.24)

For z < zi, the mean velocity is quasi-steady, the time rate of change is dropped.
Equation (2.23) becomes

∂vwo

∂zo
=

Ug −U
(u2
∗
we)/( f 2z2

i )
. (2.25)

Both sides of (2.25) are of order one. It follows that Ug −Um scales as u2
∗
we/( f 2z2

i ),
which is the jump in U across the inversion layer needed to balance the vertical
derivative of the lateral stress in the outer layer. Thus, we can define the mean velocity
scale Um as

Um ≡Ug −
u2
∗
we

f 2z2
i
. (2.26)
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Velocity-defect laws, log law and logarithmic friction law in CBL 883 A36-9

Garratt et al. (1982) obtained a similar expression for the height-averaged mixed-layer
velocity. Thus,

∂vwo

∂zo
=

Ug −Um

(u2
∗
we)/( f 2z2

i )
−
(u∗/w∗)u∗Uo,2a

(u2
∗
we)/( f 2z2

i )
,

= 1−
f 2z2

i

w∗we
Uo,2a, (2.27)

where,
f 2z2

i

w∗we
∼

0.01
2× 0.03

∼ 0.15. (2.28)

Thus, there are small but significant variations of ∂vwo/∂zo in the outer layer.
Using (2.19), the mean momentum equation for U can be written as

∂uwo

∂zo
=

fzi

u2
∗

(V − Vg)=
Vg − V

Vg
,

=
Vg − V

Um

Um

Vg
= 1−

we

w∗

Vg

Um

Um

Vg
Vo,2b,

= 1−
we

w∗
Vo,2b. (2.29)

The parameter we/w∗ is estimated as

we

w∗
∼

0.03
2
∼ 0.015, (2.30)

indicating that the second-order terms on the right-hand side of (2.29) is of higher
order, i.e. to the leading order, the uwo varies linearly with zo. Therefore the Coriolis
term is of higher order and at the leading order, Earth’s rotation does not affect the
fundamental characteristics of the convective atmospheric boundary layer.

We note that if w2
∗

is used as the scale for the kinematic stress (uw = w2
∗
uwo)

to focus on the dynamics of u2
o and w2

o, the non-dimensional shear-stress transport
equation becomes,

∂uwo

∂τ
+

Um

w∗
w2

o
∂Uo

∂zo
− uθ o +

∂uw2
o

∂zo
+

(
w
∂p
∂x

)
o

+

(
u
∂p
∂z

)
o

= 0. (2.31)

All the terms in this equation are of higher order, indicating that in the outer layer, the
effects of the shear-stress dynamics on that of u2

o and w2
o are of higher order, whereas

the leading budget terms in the equations of u2
o and w2

o are of order one (Tong & Ding
2018).

2.2. The inner-outer expansion
Two inner layers have been previously identified in the convective boundary layer
(Tong & Ding 2018, 2019): one has a length scale of −L , which we term the inner-
outer layer, and the other has a scale of h0, which we term the inner-inner layer. This
structure is in contrast with the neutral boundary layer, which has only one inner layer,
and is a key difference between a convective boundary layer and a neutral one.
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883 A36-10 C. Tong and M. Ding

Tong & Ding (2018) have shown analytically using the budget equations for w2

and θ 2 that their scaling changes as z decreases across −L, going from buoyancy
dominated to shear dominated. Therefore −L and u∗ are the length scale and vertical
velocity scale, respectively. Accordingly, we define the dimensionless inner-outer
variables as,

U(z)=UmUio

(
−

z
L

)
, V(z)= VgVio

(
−

z
L

)
, uw= u2

∗
uwio,

vw=
u2
∗
we

fzi

(
−

L
zi

)
vwio, z=−Lzio, uθ =Quθ io, w2 = u2

∗
w2

io.

 (2.32)

The scale for vw is such because its gradient is of the same order of magnitude as
in the outer layer (Ug − U is constant to the leading order). Writing equations (2.1)
and (2.2) in terms of the inner-outer variables,

∂uwio

∂τ

u2
∗
w∗
zi
+ u2

∗
w2

io
Um

−L
∂Uio

∂zio
−

g
T

Quθ io

+
u3
∗

−L

(
∂uw2

io

∂zio
+

(
w
∂p
∂x

)
io

+

(
u
∂p
∂z

)
io

)
= 0, (2.33)

∂vwio

∂τ

u2
∗
we

fzi

(
−

L
zi

)
w∗
zi
+ u2

∗
w2

io
Vg

−L
∂Vio

∂zio
−

g
T

Qvθ io

+
u∗
zi

u2
∗
we

fzi

(
∂vw2

io

∂zio
+

(
w
∂p
∂y

)
io

+

(
v
∂p
∂z

)
io

)
= 0, (2.34)

and dividing by u2
∗
Um/(−L) results in the non-dimensional shear-stress budget

equations in the inner-outer layer,

u2
∗

w2
∗

u∗
Um

∂uwio

∂τ
+w2

io
∂Uio

∂zio
−

u∗
Um

uθ io +
u∗
Um

(
∂uw2

io

∂zio
+

(
w
∂p
∂x

)
io

+

(
u
∂p
∂z

)
io

)
= 0,

(2.35)
u4
∗
we

w5
∗

Vg

Um

∂vwio

∂τ
+w2

io
Vg

Um

∂Vio

∂zio
−

u∗
Um
vθ io

+
u2
∗

w2
∗

we

w∗

Vg

Um

(
∂vw2

io

∂zio
+

(
w
∂p
∂y

)
io

+

(
v
∂p
∂z

)
io

)
= 0. (2.36)

The scaling of the u∂p/∂z can be obtained using the MMO scaling of the u–∂p/∂z
cospectrum. The results (Tong & Ding 2019, (2.16) and § 3.5) show from first
principles that the spectra of u and ∂p/∂z in the convective range (1/zi < k<−1/L)
have scaling exponents of −5/3 and −1/3, respectively, the latter is caused by
buoyancy fluctuations, where k is the horizontal wavenumber. Their cospectrum
therefore has a scaling exponent no less than −1, i.e. the cospectrum cannot be
steeper that k−1, because u and ∂p/∂z may be less correlated at scales larger than
−L as it is an off-diagonal component of the velocity-pressure gradient tensor. Thus
u∂p/∂z at z∼−L is dominated by the scales near −L, and therefore u3

∗
/L is its proper

scale. The spectral scaling exponents of w and ∂p/∂x are 1/3 and −1/3, respectively,
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Velocity-defect laws, log law and logarithmic friction law in CBL 883 A36-11

the latter has the same scaling as ∂p/∂z. Therefore w∂p/∂x is also dominated by the
scales near −L and scales as u3

∗
/L. However, this term is smaller than u∂p/∂z because

w is smaller than u at z∼−L. The scaling of the velocity-pressure gradient terms is
consistent with the role of these terms (partly) as the destruction rate of the shear
stress. The transport term ∂uw2

io/∂zio is small above the convection-induced stress
layer (Businger 1973; Sykes, Henn & Lewellen 1993; Grachev, W. & Zilitinkevich
1997; Zilitinkevich et al. 2006; Tong & Ding 2019). The different scaling of u∂p/∂z
in the outer and inner-outer layers also contributes to the singular nature of the
problem.

There are two small parameters u∗/Um and (u2
∗
/w2
∗
)(we/w∗)(Vg/Um) in (2.35) and

(2.36), which are a result of the inner-outer scales (given in 2.32) and the terms in
the budget equations. Thus, in general, we can write the inner-outer expansions of U
and V as

Uio(zio)=Uio,1(zio)+
u∗
Um

Uio,2a(zio)+
u2
∗

w2
∗

we

w∗

Vg

Um
Uio,2b(zio), (2.37)

Vg

Um
Vio(zio)=

Vg

Um
Vio,1(zio)+

u∗
Um

Vio,2a(zio)+
u2
∗

w2
∗

we

w∗

Vg

Um
Vio,2b(zio), (2.38)

thus,

Vio(zio)= Vio,1(zio)+
u∗
Vg

Vio,2a(zio)+
u2
∗

w2
∗

we

w∗
Vio,2b(zio). (2.39)

The velocity gradients are,

∂Uio

∂zio
=
∂Uio,1

∂zio
+

u∗
Um

∂Uio,2a

∂zio
+

u2
∗

w2
∗

we

w∗

Vg

Um

∂Uio,2b

∂zio
, (2.40)

∂Vio

∂zio
=
∂Vio,1

∂zio
+

u∗
Vg

∂Vio,2a

∂zio
+

u2
∗

w2
∗

we

w∗

∂Vio,2b

∂zio
. (2.41)

In general, there are two inner-outer expansions, one to be matched with the outer
expansion and other one to be matched with the inner-inner expansion. However, the
expansions in (2.37)–(2.41) (up to the second order) can be matched with both the
outer expansion and the inner expansion because it is the leading-order expansion for
the velocity derivative.

Inserting ∂Uio/∂zio and ∂Vio/∂zio into (2.35) and (2.36), the only leading-order terms
are the mean-shear production terms. Thus,

∂Uio,1

∂zio
= 0,

∂Vio,1

∂zio
= 0. (2.42a,b)

By matching with leading-order term of the outer solution (2.18) and (2.19) (formal
matching is given in (2.54)), we have

Uio,1 = 1, Vio,1 = 0. (2.43a,b)

Thus, from the inner-outer expansions (2.37) and (2.39), the inner-outer solution is,

U =UmUio =Um + u∗Uio,2a +
u2
∗

w2
∗

we

w∗
VgUio,2b, (2.44)
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883 A36-12 C. Tong and M. Ding

V = VgVio = u∗Vio,2a +
u2
∗

w2
∗

we

w∗
VgVio,2b. (2.45)

From the inner-outer solution (2.44), we have,

U −Um = u∗Uio,2a +
u2
∗

w2
∗

we

w∗
VgUio,2b. (2.46)

Inserting ∂Uio/∂zio (2.40) into (2.35) leads to ∂Uio,2b/∂zio = 0, since at the second
order, equation (2.35) does not contain the parameter (u2

∗
/w2
∗
)(we/w∗)(Vg/Um) (§ 2.3

further shows that Uio,2b = 0). Equation (2.46) is another new velocity-defect law, the
surface-layer velocity-defect law, in the convective atmospheric boundary layer. Thus
the z/L dependence of U is in the form of a velocity-defect law, not the law of the
wall. The term ‘surface layer’ here is used to indicate that the range of heights within
which this velocity-defect law is valid is inside the surface layer, not that the defect
law is valid in the entire surface layer. Equation (2.43) shows that Um is also the
upper boundary condition for the leading-order velocity in the inner-outer layer (due
to the asymptotically small velocity defect in the outer layer), indicating that the mean
velocity in this layer is coupled to the mixed layer rather than to the surface. Again,
previous works (e.g. Zilitinkevich & Deardorff 1974; Garratt et al. 1982) used U−Ug
as the defect, which does not reflect the velocity defect in the surface layer.

We note that the surface-layer velocity-defect law cannot be obtained using MOST,
as the velocity scale Um is not a parameter in the Monin–Obukhov similarity.
Since MOST only involve the surface-layer parameters, it can only provide the
Monin–Obukhov similarity functions. The surface-layer velocity-defect law, on the
other hand, also needs to include Um.

The inner-outer layer also limits the extent of the outer layer. In the neutral ABL
the outer layer extends down to heights z� h0. In the CBL, on the other hand, it only
extends down to heights of order −L due to the small velocity defect in the outer layer.
Note that the inner-outer solution (2.43) is not valid in the roughness layer, indicating
that there is still another singular (inner) layer.

Similarly, inserting ∂Vio/∂zio (2.41) into (2.36) leads to ∂Vio,2a/∂zio= 0, since at the
second order, equation (2.36) does not contain the parameter u∗/Vg (§ 2.3 shows that
Vio,2a= 0). We evaluate the magnitude of V using typical values of u∗, w∗, we and Vg,

V ∼
u2
∗

w2
∗

we

w∗
Vg ∼

0.32

22

0.03
2
× 1∼ 4× 10−4 m s−1, (2.47)

indicating that the change in the direction of the mean velocity direction in this layer
is also negligible.

The equation for the second-order term Uio,2a is,

u2
∗

w2
∗

∂uwio,1

∂τ
+w2

io,1
∂Uio,2a

∂zio
− uθ io,1 +

∂uw2
io,1

∂zio
+

(
w
∂p
∂x

)
io

+

(
u
∂p
∂z

)
io

= 0. (2.48)

Equation (2.48) contains a small parameter u2
∗
/w2
∗

in the time derivative term, which
becomes order one in (2.22) (the outer layer). In addition, the scaling of w2 and
u∂p/∂z changes when z increases from z<−L to z�−L, as discussed in section (2.1).
Therefore (2.22) and (2.48) form a singular perturbation problem. The leading-order
expansions Uo,2a and Uio,2a can be obtained by the method of matched asymptotic
expansions.
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Velocity-defect laws, log law and logarithmic friction law in CBL 883 A36-13

From the mean momentum equation for V , we can write the inner-outer expansion
of ∂vw/∂z as

∂vwio

∂zio
=

Ug −Um

(u2
∗
we)/( f 2z2

i )
−

u∗Uio,2a

(u2
∗
we)/( f 2z2

i )
,

= 1−
f 2z2

i

u∗we
Uio,2a, (2.49)

where,
f 2z2

i

u∗we
∼

0.01
0.3× 0.03

∼ 1. (2.50)

Thus there are also significant variations of the gradient of vwio in the inner-outer
layer. From the mean momentum equation for U, we can write the inner-outer
expansion of ∂uw/∂z,

∂uwio

∂zio
=−

fL
u2
∗

(V − Vg)=−
L
zi
+

L
zi

u2
∗

w2
∗

we

w∗
Vio,2b� 1. (2.51)

Thus, the variations of the gradient of uwio in the inner-outer layer are of higher order,
(i.e. the stress is approximately constant). Although the variations of the vwio gradient
are of order one, vw itself is of higher order compared to uw. Thus, the behaviour of
the inner-outer layer at the leading order is not affected by Earth’s rotation.

2.3. Matching between the outer and the inner-outer expansion
The mean velocity in terms of the outer expansion (up to the second order) is

U =UmUo =Um

(
1+

u∗
w∗

u∗
Um

Uo,2a +
we

w∗

Vg

Um
Uo,2b

)
. (2.52)

In terms of the inner-outer expansion, it is

U =UmUio =Um

(
1+

u∗
Um

Uio,2a +
u2
∗

w2
∗

we

w∗

Vg

Um
Uio,2b

)
. (2.53)

Matching the two expansions we have

Um

(
1+

u∗
w∗

u∗
Um

Uo,2a +
we

w∗

Vg

Um
Uo,2b

)
=Um

(
1+

u∗
Um

Uio,2a +
u2
∗

w2
∗

we

w∗

Vg

Um
Uio,2b

)
. (2.54)

For the parameter (u∗/w∗)(u∗/Um), we have

u∗
w∗

u∗Uo,2a

(
z
zi

)
= u∗Uio,2a

(
−

z
L

)
. (2.55)

Thus,
u∗
w∗

(
z
L

L
zi

)α
=

(
−

z
L

)α
, α =−

1
3
, (2.56)
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because L/zi has to cancel on the left-hand side (note that −L/zi ∼ (u∗/w∗)3). This
leads to

Uo,2a = Au

(
z
zi

)−1/3

, Uio,2a = Au

(
−

z
L

)−1/3
. (2.57a,b)

For the parameter (we/w∗)(Vg/Um), we have

we

w∗
VgUo,2b

(
z
zi

)
=

u2
∗

w2
∗

we

w∗
VgUio,2b

(
−

z
L

)
, (2.58)

u2
∗

w2
∗

(
−

zi

L
z
zi

)β
=

(
z
zi

)β
, β =

2
3
, (2.59)

leading to

Uo,2b = Bu

(
z
zi

)2/3

, Uio,2b = Bu

(
−

z
L

)2/3
. (2.60a,b)

However, since ∂Uo,2b/∂zo = 0, we have Bu = 0; thus Uo,2b = Uio,2b = 0. From (2.57)
and (2.60) we can write

U =Um + u∗Au

(
−

z
L

)−1/3
. (2.61)

This is the velocity profile in the local-free-convection scaling layer. Monin &
Obukhov (1954) predicted the (−z/L)−1/3 scaling, but did not predict it as a velocity
defect.

Similarly, for the V component of the mean velocity, matching results in

Vo,2a = Av

(
z
zi

)−1/3

, Vio,2a = Av
(
−

z
L

)−1/3
, (2.62a,b)

and

Vo,2b = Bv

(
z
zi

)2/3

, Vio,2b = Bv
(
−

z
L

)2/3
. (2.63a,b)

Since ∂Vo,2a/∂zo = 0, we have Av = 0; thus Vo,2a = Vio,2a = 0. Thus we can write

V = BvVg
u2
∗

w2
∗

we

w∗

(
−

z
L

)2/3
. (2.64)

2.4. The inner-inner expansion
The inner-inner layer has a length scale of h0 and a velocity scale of u∗ (Tong & Ding
2018). We use Um, Vg, u2

∗
, h0 and Q to define the dimensionless inner-inner variables

as follows:

U(z)=UmUii

(
z
h0

)
, V(z)= VgVii

(
z
h0

)
, uw= u2

∗
uwii,

vw= fUg(−L)vwii, z= h0zii, uθ =Quθ ii, w2 = u2
∗
w2

ii.

 (2.65)

The scale for vw is obtained by integrating the leading-order mean momentum
equation ∂vw/∂z = fUg from h0 to −L, with the upper limit determined by the fact
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that the vertical derivative of the lateral stress matches that due to the entrainment.
The shear-stress budget equations are as follows:

∂uwii

∂τ

u2
∗
w∗
zi
+ u2

∗
w2

ii
Um

h0

∂Uii

∂zii
−

g
T

Quθ ii +
u3
∗

h0

(
∂uw2

ii

∂zii
+

(
w
∂p
∂x

)
ii

+

(
u
∂p
∂z

)
ii

)
= 0,

(2.66)
∂vwii

∂τ
fUg(−L)

w∗
zi
+ u2

∗
w2

ii
Vg

h0

∂Vii

∂zii
−

g
T

Qvθ ii

+
u∗
h0

fUg(−L)

(
∂vw2

ii

∂zii
+

(
w
∂p
∂y

)
ii

+

(
v
∂p
∂z

)
ii

)
= 0. (2.67)

Dividing (2.66) and (2.67) by u2
∗
Um/h0 results in the non-dimensional shear-stress

budget equations in the inner-inner layer,

h0

zi

w∗
Um

∂uwii

∂τ
+w2

ii
∂Uii

∂zii
−
(g/T)Qh0

u2
∗
Um

uθ ii +
u∗
Um

(
∂uw2

ii

∂zii
+

(
w
∂p
∂x

)
ii

+

(
u
∂p
∂z

)
ii

)
= 0,

(2.68)
h0

zi

f (−L)w∗
u2
∗

Ug

Um

∂vwii

∂τ
+w2

ii
Vg

Um

∂Vii

∂zii
−
(g/T)Qh0

u2
∗
Um

vθ ii

+
f (−L)

u∗

Ug

Um

(
∂vw2

ii

∂zii
+

(
w
∂p
∂y

)
ii

+

(
v
∂p
∂z

)
ii

)
= 0. (2.69)

Similar to the inner-outer layer, the scaling of the u∂p/∂z can be obtained using the
MMO scaling of the u–∂p/∂z cospectrum. Tong & Ding (2019) have shown that the
spectrum of u in the dynamic range have scaling exponents of −1. Near kz= 1, ∂p/∂z
is balanced by the nonlinear term (N3) in equation (3.19) in Tong & Ding (2019),
which has a spectral scaling exponent of 3. Therefore the u− ∂p/∂z cospectrum has
a scaling exponent no less than 1. Thus u∂p/∂z is dominated by the scales near z,
and u3

∗
/z is its proper scale. Similarly, the spectral scaling of w and ∂p/∂x are both

1. Thus, w∂p/∂x is also determined by the scales near z, thus having a scale of u3
∗
/z.

For z→ h0, we expect that u2
∗
/h0 is the proper scale for these quantities. Again, the

transport term is small.
Similar to (2.35) and (2.36) in the inner-outer layer, there are also two small

(independent) parameters u∗/Um and ( f (−L)/u∗)(Ug/Um) in the (2.68) and (2.69).
Thus, we can write the inner-inner expansions as

Uii(zii)=Uii,1(zii)+
u∗
Um

Uii,2(zii), (2.70)

Vg

Um
Vii(zii)=

Vg

Um
Vii,1(zii)+

f (−L)
u∗

Ug

Um
Vii,2(zii), (2.71)

thus,

Vii(zii)= Vii,1(zii)+
f (−L)

u∗

Ug

Vg
Vii,2(zii). (2.72)

The velocity gradients are

∂Uii

∂zii
=
∂Uii,1

∂zii
+

u∗
Um

∂Uii,2

∂zii
, (2.73)
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∂Vii

∂zii
=
∂Vii,1

∂zii
+

f (−L)
u∗

Ug

Vg

∂Vii,2

∂zii
. (2.74)

Inserting ∂Uii/∂zii and ∂Vii/∂zii into (2.68) and (2.69), the only leading-order terms
are the mean-shear production terms. Thus,

∂Uii,1

∂zii
= 0,

∂Vii,1

∂zii
= 0, (2.75a,b)

and
Uii,1 = 0, Vii,1 = 0, (2.76a,b)

since Uii,1 and Vii,1 must equal zero at some z value, which can be defined as h0. Thus,
we can write the inner-inner solution as,

U =UmUii = u∗Uii,2(zii), (2.77)

V = VgVii =
f (−L)

u∗
UgVii,2(zii). (2.78)

For a strongly convective boundary layer, e.g. −L = 20 m, u∗ = 0.3 m s−1, Ug =

5 m s−1, the lateral velocity is of order f (−L)Ug/u∗= 0.03 m s−1, which is relatively
small.

The mean momentum equation for V is

∂vwii

∂zii
=

h0

−L
−

h0

−L
u∗
Ug

Uii,2 +
dτryii

dzii
. (2.79)

The mean momentum equation for U is

∂uwii

∂zii
=

h0

zi
−

h0

zi

V
Vg
+

dτrxii

dzii
=

h0

zi
−

h0

zi

f (−L)
u∗

Ug

Vg
Vii,2 +

dτrxii

dzii
. (2.80)

Integrating these equations from h0 to zii and keeping the leading-order results in

vwii,1 = 1− τryii,1, (2.81)
uwii,1 = 1− τrxii,1. (2.82)

Again, since vw is much smaller than uw, the behaviours of the inner-inner layer at
the leading order is not affected by Earth’s rotation at the leading order.

The equation for the second term Uii,2 is,

h0

zi

w∗
u∗

∂uwii

∂τ
+w2

ii
∂Uii,2

∂zii
−
(g/T)Qh0

u3
∗

uθ ii +

(
∂uw2

ii

∂zii
+

(
w
∂p
∂x

)
ii

+

(
u
∂p
∂z

)
ii

)
= 0.

(2.83)
Equation (2.83) contains a small parameter (g/T)Qh0/u3

∗
in the uθ ii term, which

becomes order one in (2.48) (the inner-outer layer), and is a correction due to
buoyancy production as z→−L. The roughness contribution (as part of the pressure
terms) in (2.48) is of higher order, which becomes order one in (2.83). Thus (2.48)
and (2.83) also form a singular perturbation problem. The leading-order expansions
Uio,2a and Uii,2 can be obtained by the method of matched asymptotic expansions.
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2.5. Matching between the inner-outer and the inner-inner expansion
The mean velocity in terms of the inner-outer expansion is

U =UmUio =Um + u∗Uio,2a(zio). (2.84)

In terms of the inner-inner expansion, it is

U =UmUii = u∗Uii,2(zii). (2.85)

Matching the two expansions results in

Uii,2

(
−zio

L
h0

)
=

Um

u∗
+Uio,2a(zio). (2.86)

This equation shows that Um/u∗ is a function of −L/h0. Differentiating equation (2.86)
with respect to zio results in

∂Uii,2

∂zio
=−

dUii,2

dzii

L
h0
=

dUio,2a

dzio
. (2.87)

Thus
dUii,2

dzii
zii =

dUio,2a

dzio
zio =

1
κ
, (2.88)

where κ does not depend on either zii or zio, and therefore does not depend on −L/h0.
Differentiating equation (2.86) with respect to −L/h0 results in

−
∂Uii,2

∂L/h0
=

dUii,2

dzii
zio =−

dUii,2

dzii
zii

h0

L
=−

dUm/u∗
dL/h0

. (2.89)

The last term in (2.89) does not depend on zii. From (2.89) we obtain

Uii,2 =
dUm/u∗
dL/h0

L
h0

ln zii =
1
κ

ln zii =
1
κ

ln
z
h0
. (2.90)

Note that this expression is valid only in the matching layer. This h0 is defined by
extrapolating the profile to Uii,2 = 0. From (2.88) we obtain

Uio,2a =
dUm/u∗
dL/h0

L
h0

ln zio +C=
1
κ

ln zio +C=
1
κ

ln
(
−

z
L

)
+C. (2.91)

Hence,

U =Um + u∗

(
1
κ

ln
(
−

z
L

)
+C

)
. (2.92)

Equation (2.90) provides a physical interpretation of the (inverse of) the von Kármán
constant

1
κ
=

dUm/u∗
d ln(−L/h0)

. (2.93)

It is the rate of change of the friction velocity ratio Um/u∗ with respect to the
logarithm of the ratio of the height of the shear-production-dominant layer to the
roughness height. In a neutral boundary layer, it becomes

1
κ
=

dUm/u∗
d ln zi/h0

, (2.94)
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which also has a clear physical interpretation. Equations (2.90) and (2.91) are the log
law and the surface-layer velocity-defect law in the matching layer. Combining the
two equations results in

Um

u∗
=

1
κ

ln
(
−

L
h0

)
−C. (2.95)

Differentiating this equation with respect to −L/h0 and considering (2.93), we find
that C also does not depend on −L/h0, and therefore is a constant. Equation (2.95)
is the logarithmic friction law for the convective atmospheric boundary layer, which
we term the convective logarithmic friction law. Thus, for the same Um, the surface
stress increases with the surface temperature flux. Compared with the logarithmic
friction law for neutral boundary layers, the Obukhov length replaces the boundary
layer (inversion) height, because the convective eddies result in an asymptotically
small mean velocity gradient in the mixed layer, pushing Um down to the height −L.

The discovery of the convective logarithmic friction law allows us to make several
comments on the previous geostrophic drag laws (or resistance laws) (Lettau 1959;
Kazanski & Monin 1960; Csanady 1967; Blackadar & Tennekes 1968; Brown 1973;
Zilitinkevich & Deardorff 1974; Zilitinkevich 1975; Zilitinkevich et al. 1992). First,
the convective logarithmic friction law is derived analytically from first principles
whereas the geostrophic drag law was largely based on phenomenology. Second,
the convective logarithmic friction law is derived from the law of the wall and the
surface-layer velocity-defect law and is an exact leading-order result relating u∗ to
the velocity scale Um, not an extrapolation of the log law. No approximate velocity
is used. By contrast, some previous drag laws (e.g. Zilitinkevich et al. 1992) match
the geostrophic wind with an approximate velocity beyond the log layer (at a height
z ∼ zi), and therefore are inherently approximate and empirical. Third, as mentioned
above, the convective logarithmic friction law is derived using the velocity defect
U − Um which scales with u∗ in the surface layer, whereas some other previous
drag laws (e.g. Zilitinkevich & Deardorff 1974; Zilitinkevich 1975) used the velocity
defect U − Ug, part of which (Um − Ug) does not scale with u∗ (2.26). Since u∗ is
completely determined by Um and L/h0, Um−Ug does not play a role in determining
the friction, and therefore should not be an inherent part of the drag law. Garratt
et al. (1982) proposed a geostrophic drag law assuming that the mean velocity at the
top of the surface layer equals that in the mixed layer. However, it uses the empirical
stability function ψm, which may be inaccurate for large values of −z/L, whereas the
convective logarithmic friction law does not involve any empirical functions.

2.6. Overall mean velocity profile
The different functional forms of mean velocity in the three layers discussed in the
preceding subsections form an overall mean velocity profile. A schematic including
the relationships among the different layers and scaling ranges is shown in figure 1.
In a neutral ABL, the inner layer, where the law of the wall is valid, covers the entire
surface layer. The outer layer, where the velocity-defect law holds, extends into the
surface layer, down to a height z� h0. By contrast, in a CBL, the inner-inner layer,
where the law of the wall (for rough wall) is valid, only extends to a height z<−L.
The inner-outer layer covers the rest of the surface layer (h0� z� zi), and follows the
surface-layer velocity-defect law, with the velocity scale u∗. The outer layer extends
into the surface layer, but only down to z�−L, and follows the mixed-layer velocity-
defect law, with the velocity scale u2

∗
/w∗. There are two overlapping layers in which
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the mean velocity profile conforms to the log law and the local-free-convection scaling,
respectively.

The surface-layer velocity-defect law provides an important interpretation of the
velocity profile given in Monin & Obukhov (1954),

U(z)=
u∗
κ

[
f
( z

L

)
− f

(
h0

L

)]
, (2.96)

where
f
( z

L

)
=

∫
φm(z/L)

z/L
d
( z

L

)
. (2.97)

For h0/L� 1, f (h0/L)≈ ln(L/h0) since φm(0)= 1. Thus,

U(z)≈
u∗
κ

[
f
( z

L

)
+ ln

(
L
h0

)]
. (2.98)

Using the convective logarithmic friction law (2.95), we can write

U(z)≈
u∗
κ

[
f
( z

L

)
+

Umκ

u∗
+ κC

]
, (2.99)

and
U −Um ≈

u∗
κ

[
f
( z

L

)
+ κC

]
. (2.100)

Thus f (z/L) is essentially part of the velocity defect. However, this relationship only
becomes clear with the derivation of the surface-layer defect-law.

The surface-layer velocity-defect law also provides an understanding of another
form of the velocity profile (Panofsky & Dutton 1984),

U
u∗
=

1
κ

[
ln

z
h0
−ψm

( z
L

)]
, (2.101)

where

ψm

( z
L

)
=

∫ z/L

0
[1− φm(ζ )]

dζ
ζ
. (2.102)

We note that (2.102) is only valid for z/h0 � 1, i.e. in the matching (log) layer
and above, because it is obtained using the non-dimensional mean shear φm(z/L),
which has the same region of validity. Furthermore, although (2.101) might give the
impression of a modified law of the wall (with an added dependence on −z/L), in
which a wall velocity scale (u∗) and a wall length scale (h0) are involved, it is not
one. This can be seen from the surface-layer velocity-defect law (2.46), which shows
that the dependence of U on −z/L comes entirely in the form of the velocity defect
and does not depend on h0 (part of ψm cancels the logarithmic term in (2.101)).

To further examine (2.101), we derive it by inserting Um (2.95) into the surface-
layer defect-law (2.46),

U =
u∗
κ

ln
(
−

L
h0

)
− u∗C+ u∗Uio,2a

=
u∗
κ

[
ln

z
h0
+ ln

(
−

L
z

)]
− u∗C+ u∗Uio,2a

=
u∗
κ

ln
z
h0
−

u∗
κ

ln
(
−

z
L

)
− u∗C+ u∗Uio,2a. (2.103)
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883 A36-20 C. Tong and M. Ding

It can be seen that ψm(z/L) contains the velocity defect which, however, also only
becomes clear with the derivation of (2.46). Since (2.101) was obtained without
the knowledge of the surface-layer velocity-defect law, it could only be obtained
empirically.

The defect law (2.46) also shows that for z ∼ −L, the mean velocity U is of
order Um because Um − U ∼ u∗ � Um. This behaviour, however, cannot be inferred
from (2.96) and (2.101) as they do not contain Um. Thus, while numerically the
empirical velocity profile (2.101) has the correct behaviour and is useful for practical
applications, its origin and interpretation only become clear with the discovery of
the surface-layer velocity-defect law. From a practical point of view, it may be more
accurate to use the surface-layer velocity-defect law rather than (2.101) for z/L & 1,
as it is the difference of two large terms (the term ln(z/h0) is actually cancelled).

The surface-layer velocity-defect law indicates that buoyancy effects reduce the
extent of the law of the wall. In a neutral boundary layer, the law of the wall is
valid in the entire surface layer. By contrast, in a convective boundary layer, it is
only valid up to z<−L, i.e. it ceases to be valid as z approaches −L. Thus buoyancy
disrupts the law of the wall rather than modifying it. A key factor for the law of
the wall is the no-slip boundary condition (at z= h0). For z >−L the larger vertical
velocity variance due to buoyancy production reduces the outer-layer velocity defect,
imposing Um as the (upper) boundary condition on the leading-order inner-outer layer
velocity, thereby disrupting the law of the wall and resulting in the surface-layer
velocity-defect law. This defect law suggests that −L can also be interpreted as the
height at which the mean velocity ceases to be coupled to the surface velocity, and
instead becomes coupled to the mixed-layer velocity scale Um.

3. Comparisons with LES

In this section we compare the velocity-defect laws and the logarithmic friction
law with the mean velocity profiles obtained using LES with different −zi/L values
as shown in table 1. Since the scaling laws are obtained for the barotropic CBL,
comparisons with field data would require information about the horizontal mean
temperature gradient to ensure that baroclinic effects are negligible. We will leave
such comparisons to future studies.

We used the LES formulation described in detail in Moeng (1984). It has been
well documented in the literature (Moeng & Wyngaard 1988; Sullivan, McWilliams
& Moeng 1994, 1996) and refined later by Otte & Wyngaard (2001). The LES code
solves the spatially filtered momentum equation for Boussinesq flow and a transport
equation for a filtered conserved scalar, supplemented with a transport equation
for the subgrid-scale turbulent kinetic energy. The LES code uses pseudo-spectra
representation in the horizontal directions and first-order finite difference in the
vertical direction, the latter implemented on a staggered mesh to maintain tight
velocity–pressure coupling. A third-order Runge–Kutta scheme (Spalart, Moser &
Rogers 1991, Sullivan et al. 1996) is used for the time stepping. Assuming that
the mean wind and mean stress obey the Monin–Obukhov scaling, we follow the
procedure described by Moeng (1984) and compute the surface friction velocity
u∗ from the horizontal-mean wind speed at the first grid level. The local stress at
each grid point at the surface is then computed from u∗ based on the procedure
described in the appendix of Moeng (1984), where the wind in the surface drag law
is decomposed into mean and fluctuating components. At the lower boundary, the
surface stress and flux are estimated using wall functions based on MOST (Businger
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SGS Ug Q u∗ −L zi w∗ θ∗ −zi/L
model (m s−1) (K m s−1) (m s−1) (m) zi (m) (m s−1) (K) (1)

(1) Kosović 15 0.20 0.74 154.0 1045 1.89 0.11 6.79
(2) Kosović* 10 0.08 0.53 144.2 1011 1.38 0.05 7.01
(3) Smagorinsky 15 0.20 0.71 137.2 1040 1.88 0.11 7.58
(4) Smagorinsky 10 0.12 0.56 115.0 1092 1.62 0.07 9.50
(5) Kosović* 10 0.18 0.59 87.2 1031 1.81 0.10 11.82
(6) Smagorinsky* 10 0.12 0.51 84.9 1030 1.59 0.08 12.13
(7) Kosović 10 0.20 0.56 69.5 1048 1.89 0.11 15.08
(8) Smagorinsky 10 0.20 0.54 61.8 1055 1.89 0.11 17.07
(9) Kosović 9 0.20 0.52 54.5 1095 1.91 0.10 20.09
(10) Smagorinsky 9 0.20 0.51 49.8 1088 1.91 0.10 21.85
(11) Smagorinsky* 9 0.20 0.50 47.4 1081 1.91 0.10 22.81
(12) Smagorinsky 8 0.20 0.47 39.4 1092 1.91 0.11 27.72
(13) Smagorinsky 8 0.24 0.48 34.5 1095 2.03 0.12 32.17
(14) Kosović* 6 0.20 0.40 25.3 1099 1.92 0.10 43.41

TABLE 1. Large-eddy simulation parameters for 5123 and 10243 (*) resolutions. All
simulations are implemented with a domain size of 5120 m × 5120 m in the horizontal
directions and 2048 m in the vertical direction. The grid sizes (∆x, ∆y, ∆z) for 5123 and
10243 resolutions are (10 m, 10 m, 4 m) and (5 m, 5 m, 2 m), respectively.

et al. 1971). The Smagorinsky model (Smagorinsky 1963; Lilly 1967; Moeng 1984)
and Kosović model (Kosović 1997) are employed to parameterize the subgrid-scale
(SGS) fluxes.

The velocity scale Um in the velocity-defect laws is given in (2.26). However,
since we is not known in the present study (its determination is beyond the scope of
this study), we determine Um using an empirical approach involving two methods as
follows. In the first method, we choose the Um value for each U profile such that
the curves collapse near the outer layer (z/zi ∼ 0.2), thus determining Um for each
profile up to a (common) constant. We then determine the constant by varying it until
(Um − U)/(u2

∗
/w∗) has an approximate (z/zi)

−1/3 scaling in the overlapping region
with the inner-outer layer. We note that the (z/zi)

−1/3 scaling is consistent with the
(z/zi)

−4/3 scaling for the mean velocity gradient obtained using LES (not shown).
In the second method, we collapse profiles in the inner-outer layer (−z/L ∼ 1),
determining another Um value for each curve, again up to a (common) constant.
We again determine the constant by varying it until (Um − U)/u∗ has a (−z/L)−1/3

scaling in the overlapping region with the outer layer. The Um values determined
using the two methods are compared in figure 2. The difference between the values
for each case is typically less than 0.1 m s−1, corresponding to approximately 10 %
of the (Um − U) value near −z/L ∼ 1. Therefore the two methods yield consistent
results, indicating the effectiveness of the approach, and providing support to the
velocity-defect laws.

The mixed-layer velocity-defect profiles obtained from LES with several −zi/L
values employing the Smagorinsky model are shown in figure 3(a). The profiles
collapse well in the mixed layer up to z/zi = 0.4, supporting the mixed-layer
velocity-defect law. For z/zi > 0.4, the differences among the profiles are larger,
perhaps due to the effects of the inversion layer.

The surface-layer velocity-defect law profiles (figure 4a) also collapse well near
−z/L=1. The overlapping region also has a (−z/L)−1/3 scaling. While several profiles
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FIGURE 2. The values of the mixed-layer mean velocity scale Um determined using two
methods: collapsing profiles in the outer layer (x-axis) and collapsing profiles in the inner-
outer layer (y-axis). The number next to each square denotes the LES run (table 1).

show a log region (figure 5a), those with larger −zi/L do not, due to the lack of LES
resolution for z� −L and the well known overshoot in the non-dimensional mean
shear associated with the Smagorinsky model (Mason & Thomson 1992). Brasseur &
Wei (2010) proposed a method to solve the overshoot problem through a combination
of the model coefficient and resolution. However, the potential effects on the statistics
of fluctuating variables are not clear at this time. Exploring these effects is beyond
the scope of this work. Therefore, we do not employ this method to eliminate the
overshoot.

The velocity defects obtained from LES employing the Kosović model are shown
in figures 3(b), 4(b) and 5(b). The log law is more evident, due to the absence of the
overshoot problem for this model. The collapse is better than the Smagorinsky model,
providing further support for the velocity-defect laws. We note that the values of the
model coefficients in the Kosović model are the same as those in Miles, Wyngaard
& Otte (2004), which have not been fine-tuned to optimize the model performance,
because we are interested in the scaling properties, not the accuracy of the mean
velocity profiles. While the velocity-defect profiles for the two models do not collapse,
their scaling behaviour is correctly captured by both models, as evident from the
collapse of the profiles for each model.

The differences between the profiles (the extent of the log-law region and the value
of the von Kármán constant) obtained using the two SGS models indicate that the
SGS model has strong effects and could result in deviation from the Monin–Obukhov
scaling. Therefore, it is unlikely that the Monin–Obukhov scaling of the LES mean
velocity profile at heights greater than the first few grid points is a result of the
boundary condition.

To examine the convective logarithmic friction law, we plot Um/u∗ in figure 6 as
a function of −L/h0 for the same LES runs. The value of the von Kármán constant
for each model (the inverse of the slope) is obtained from figure 5 (0.35 and 0.55
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FIGURE 3. The mixed-layer velocity-defect profiles obtained from LES runs with several
−zi/L values as shown in table (1) using the (a) Smagorinsky model and (b) Kosović
model. The arrows indicate the ordinates that the curves correspond to.

for the Smagorinsky and Kosović models, respectively). In spite of the difference in
the values of the von Kármán constant obtained, the data points for each SGS model
follow the friction law well, indicating that the scaling laws predicted by LES are
robust. Interestingly for some of the LES runs with large −zi/L values, although the
log law is not present, the convective logarithmic friction law is followed, suggesting
that the friction law is quite robust. Although the constants in the friction law obtained
for the Smagorinsky and Kosović models are different, perhaps due to the different
predicted u∗ values, the scaling properties are correctly predicted by both models.
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FIGURE 4. The surface-layer velocity-defect law profiles obtained from LES with several
−zi/L values using the (a) Smagorinsky model and (b) Kosović model. The arrows
indicate the ordinates that the curves correspond to.

4. Conclusions and discussion

In the present work we derived analytically the mean velocity profile in the
convective atmospheric boundary layer that has Monin–Obukhov similarity (−L� zi).
It is part of a comprehensive analytical derivation of the MMO scaling properties of
the surface-layer statistics, including the multi-point statistics (Tong & Ding 2019),
one-point fluctuation statistics (Tong & Ding 2018), and the mean field (present study).
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FIGURE 5. The surface-layer logarithmic law obtained from LES with several −zi/L
values using the (a) Smagorinsky model and (b) Kosović model.

Note that the multi-point statistics cannot be predicted by MOST, while only some
of the one-point fluctuation statistics can be predicted by MOST.

The shear-stress budget equations (2.1) and (2.2) and the mean momentum equations
(2.3) and (2.4) are employed in the derivation. The scaling properties of the statistics
in the shear-stress budget equations needed for the derivation are obtained using
predictions based on MMO. Previous analysis (Tong & Ding 2019) and this work have
shown that CBL is mathematically a singular perturbation problem. Therefore, we
obtain the mean velocity profile using the method of matched asymptotic expansions.

The analysis shows that the Coriolis force results in jumps in the streamwise
and cross-stream mean velocity components across the inversion layer, the former
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FIGURE 6. The convective logarithmic friction law obtained from LES with several −zi/L
values using the Smagorinsky model (solid) and the Kosović model (dashed). The slope
of the lines are obtained from figure 5.

corresponding to the cross-stream shear stress generated by the entrainment of the
air above the inversion layer, and the latter corresponding to the streamwise pressure
gradient driving the flow in the boundary layer. The effects of Earth’s rotation on
the shear-stress budget equations are of higher order and are neglected. The change
in the direction of the mean velocity vector in the boundary layer due to Earth’s
rotation is much smaller than that across the inversion layer.

Three scaling layers are identified: the outer layer, which includes the mixed
layer, the inner-outer layer and the inner-inner layer, which includes the roughness
layer. There are two overlapping layers, the local-free-convection layer and the log
layer, respectively. The analysis shows that in the outer layer the leading term,
the streamwise mean-shear production, is zero, resulting in a leading term velocity
equalling the mixed-layer mean velocity scale Um (2.26). The second-order term
is a velocity defect with a scale of u∗(−zi/L)−1/3, leading to the discovery of the
mixed-layer velocity-defect law (2.20). In the inner-outer layer, the leading-order term
is also zero, again leading to a leading-order mixed-layer mean velocity equalling Um.
The second-order term is also a velocity defect, but with a scale of u∗, leading to the
discovery of the surface-layer velocity-defect law (2.46). Asymptotically matching the
expansions in the outer and inner-outer layers resulting in the local-free-convection
scaling for the U-component (2.57) and a Coriolis term with a (−z/L)2/3 dependence
for the V-component (2.64). The existence of the inner-outer layer limits the extent
of the outer layer scaling to z>−L, instead of z� ho in the neutral ABL. Previous
attempts to examine the velocity defect defined it incorrectly as U − Ug instead
of U − Um. Furthermore, only one scale of velocity defect was found for both the
inner-outer and the outer layers.

In the inner-inner layer, the zero leading-order mean-shear production leads to a
zero leading-order mean velocity. Matching the expansions in the inner-outer and the
inner-inner layer leads to a log law contribution (2.92).

A new friction law, the convective logarithmic friction law (2.95) is obtained by
combining the log law in terms of the inner-outer and inner-inner variables and
therefore is an exact leading-order result. It has the same form as the logarithmic
friction law for a neutral boundary layer over a rough wall, but with the boundary
layer height replaced by the Obukhov length. Intuitively this is because to the
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leading-order the mean velocity near z = −L is Um. This friction law can have
important implications to practical applications. The inverse of the von Kármán
constant is obtained as the rate of change of Um/u∗ with respect to ln(−L/h0).
Previous geostrophic drag laws were obtained using approximation of the mean
velocity and Ug instead of Um.

The surface-layer velocity-defect law (2.46) provides important interpretations of
the expressions for the velocity profile: equation (2.96) (Monin & Obukhov 1954)
and (2.101) (Panofsky & Dutton 1984). The former is closer to the defect law,
although this cannot be inferred from (2.101) without the knowledge of the defect
law. The latter profile has the appearance of a modified law of the wall with an
added dependence on −z/L. However, the defect law shows that the dependence of
U/u∗ on −z/L actually comes entirely in the form of the velocity defect. Therefore,
it is not a modified law of the wall. In addition, the fact that U→Um when z→−L
cannot be inferred from this profile. Thus, while this profile has the correct behaviour
and is useful for practical applications, its origin and interpretation only become
clear with the discovery of the surface-layer velocity-defect law. The surface-layer
velocity-defect law also indicates that buoyancy effects reduce the extent of the law
of the wall. In a convective boundary layer, it is only valid up to z < −L, i.e. it
ceases to be valid as z approaches −L.

We note that for the CBL with −L∼ zi or −L> zi, buoyancy does not introduce an
inner-outer layer in the singular perturbation problem. Such a case can be analysed
as a modified neutral boundary layer, which has a two layer structure. In addition,
the surface layer does not obey Monin–Obukhov similarity. Therefore, the CBL with
−L� zi (strong buoyancy) is structurally different from one with −L∼ zi or −L> zi
(weak buoyancy).

In the present work we performed preliminary comparisons of the derived mean
velocity profile to LES results. While the agreement is good, more comprehensive
comparisons, especially with field measurements, are needed to further validate the
prediction as well as to establish the values of the coefficients in the expansions.
Preparations for a field campaign for this purpose are under way.

The predicted mean velocity profile, especially the two velocity-defect laws, has
implications for applications where the mean velocity is important, such as transport
of pollutants by the mean velocity in the boundary layer, wind turbine, aerodynamic
loading on structures, etc. We note that it might be numerically more accurate to use
the surface-layer velocity-defect law instead of (2.101) in practical applications. The
convective logarithmic friction law can potentially be used to predict the surface stress
in meso- and large-scale simulations.

The present work is an integral part of a comprehensive derivation of MMO scaling
using first principles. In deriving the vertical velocity variance and temperature
variance profiles in the CBL (Tong & Ding 2018), the scaling properties of the
terms in the variance equations (derived using MMO) and the mean velocity gradient
(provided by the present study) were used. The present study derives the scaling of
the mean velocity. The scaling of the terms in the shear-stress and mean momentum
equations (provided by MMO) was used. The results from these derivations are the
solution of the set of simultaneous equations employed in the derivations, and are
comprehensive MMO scaling properties.

The fact that multi-point statistics represent the complete surface-layer similarity,
whereas one-point statistics do not, suggests that the similarity properties of these
statistics are different in nature. Tong & Ding (2019) have shown that the surface-layer
similarity of multi-point statistics results directly from that of the surface-layer eddies,
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suggesting that the former is a fundamental similarity. The similarity of one-point
statistics, on the other hand, results indirectly from that of the surface-layer eddies,
and may involve additional aspects of the surface-layer dynamics (e.g. variance and
mean momentum equations). It needs to be derived from the similarity properties of
the multi-point statistics, and therefore is derived similarly.
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