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Abstract—While the field of continuum manipulators has been
the subject of increasing attention from the robotics commu-
nity, knowledge of their inherent capabilities is still limited.
Controllers have been proposed that exploit the null-space
of redundant continuum manipulators, however studies of the
nature of continuum robot null-spaces have not yet been done.
In this paper, we first develop a convenient set of extensible,
continuum manipulator forward kinematics and resolved-motion
rate inverse kinematics. This allows us to analyze the null-space of
2-section, planar, extensible, redundant continuum manipulators
to consider the underlying structure of general continuum robot
self-motions and discuss their importance to real-world examples
and applications.

I. INTRODUCTION

Continuum robots, or robots with continuous backbones are
receiving greater attention within the robotics community, a
comprehensive overview for which can be found in [1], [2],
[3]. The design of these manipulators have been inspired by
elements of the Animal Kingdom [4] and are unique in their
ability to perform tasks and functions that are not possible or
are too complicated for conventional robots. This is because
of a continuum manipulator’s inherent features of structural
compliance and bending at any point along its length. The
more commonly identifiable tasks are navigation in congested
environments and whole-arm grasping. Whole arm grasping,
as the name suggests, is when the robot takes advantage of
its kinematic redundancy to curl around objects and uses its
body structure (as opposed to a gripper) for manipulation.
This allows for manipulable objects to have a variety of
shapes, sizes and physical properties. Numerous continuum
manipulator designs have been proposed [2], [5], [6], [7], [8],
[9], [10], [11].

Kinematic models for continuum manipulators can be con-
sidered to be well understood and have been developed in
[12], [13], [14], [15]. Continuum manipulator dynamics have
been derived in [16], [17], [18] and is an area of active
research. The dynamics by Tatlicioglu et al. are based on
the kinematics in [14]. Configuration-space controllers for
continuum manipulators have been proposed by [19], [20],
[21], [22], [23], while a task-space controller was developed
by [24] and a teleoperation controller in [25].

While mathematical models and controllers for continuum
manipulators have been investigated, one area that has not
yet been studied in detail is the manipulator null-space.

This work is supported in part by NSF grant IIS-0534423.
∗ To whom all correspondence should be addressed.
The authors are with the Department of Electrical & Computer Engineering,
Clemson University, Clemson, SC 29634 ((akapadi, iwalker)@clemson.edu).

Burdick [26] analyzed the null-space of rigid-link redundant
manipulators, characterizing them as a set of disjoint manifolds
based on the sets of possible configurations as a result of the
redundant manipulator’s self-motion property. Burdick cate-
gorized the null-space for conventional redundant rigid-link
manipulators, but this does not apply to continuum robots as
there are inherent structural differences between rigid-link and
continuum manipulators (which are conceptually like strings,
but have physical constraints on their motion). Similar analyses
to that in [26] for continuum manipulators, to the best of our
knowledge, do not exist, thus the work presented here attempts
to gain a better understanding of the null-space of general
continuum manipulators, focusing on the core capabilities of
2-section, redundant, extensible continuum manipulators.

We characterize the manipulator self-motion into three types
i) Self-motion due to bending, ii) Self-motion due to extension,
and iii) General motion case (shown herein to be a combi-
nation of the previous two cases). We begin by describing
a convenient set of 3D forward kinematics for a 2-section
extensible continuum manipulator in Section II. In Section
II-C, we discuss the inherent structural differences between the
self-motion manifolds for rigid-link redundant manipulators,
and their counterpart in continuum robots. Section III-A details
the velocity kinematics and the subsequent resolved motion-
rate inverse kinematics, based on the method first proposed by
[27] leading to a completely new null-space characterization
for continuum manipulators.

Controllers proposed for extensible continuum robots have
focused on the control of the shape of the manipulator or the
control of the tip at an arbitrary location with additional sub-
tasks. These works implicitly deal with the null-space, but do
not utilize (or are not able to take advantage of the structure
of) the null-space itself. This paper fills that gap by analyzing
the motion of the continuum manipulator sections when the tip
is fixed at an arbitrary point. This is important for numerous
applications and is discussed in Section IV.

II. GLOBAL KINEMATICS

The general forward kinematics for a manipulator with
n−degrees of freedom (DOF) are given by

x = f (ψ) , (1)

where x(t) ∈ Rm represents the task-space coordinates of the
manipulator tip, f(·) : Rn → Rm represents the manipulator
forward kinematics, and ψ(t) ∈ Rn is the set of configuration-
space variables (comprising each internal degree of freedom)
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for the manipulator. When n > m, the manipulator is consid-
ered to be kinematically redundant.

Continuum manipulators are flexible and compliant robots
that can theoretically bend in any direction at any point along
their length. Practically however, continuum backbones, which
theoretically have infinite degrees of freedom, need to be real-
ized robotically using a small (finite) number of actuators. The
degrees of freedom not directly controlled must be constrained
in the design in order to produce predictable behavior. In all
continuum robots to date, this design constraint results in the
robot being a series of serially connected “sections”, which
can bend (typically in 2 dimensions) and often extend/contract.
While numerous physical instantiations of continuum robots
have appeared [10], [11], [28], [29], in all but one case
[30], the designs result in sections which are constrained to
approximately constant curvature [1], [2], [3]. Thus, constant
curvature section continuum robots is the case analyzed in this
paper.

Physical artifacts consist of serially connected continuum
sections allowing for bending in multiple directions to ac-
complish more complex tasks. Unlike rigid-link redundant
robots, where the kinematics are based on the joint angles
between links (θ(t)) or their extensibility (d(t)), continuum
manipulators are represented by the length of the arc each
section subtends (s(t)), the curvature of the arc (k(t)), and the
angle of curvature (φ(t)) as detailed in Figure 1 and Figure 2

Consider a spatial two-section extensible continuum robot
as shown in Figure 1, where Xi(t), Yi(t), and Zi(t) ∈ R
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Fig. 1. 3-Dimensional Schematic of a Two-Section Octarm

represent the coordinates of the tip of each robot section in
the local frame1, and with each set collectively represented
by Pi(t) ∈ R3; si(t), κi(t), and φi(t) ∈ R represent
the section length, section curvature, and section angle of
curvature respectively; ri(t) ∈ R is the section radius while
Ci(t) ∈ R represents the center of the circle in the local
frame of which each section is a part and is always on the
XiZi-plane of the local frame; θi ∈ R represents the angle
subtended by the arc of the section in the local frame; and
X(t), Y (t), and Z(t) ∈ R represent the coordinates of the tip

1In all cases, i = 1, 2 representing the first or second sections of the
continuum robot respectively

of the second section with respect to the base frame, while
X′Y ′Z′ represent the coordinate frame of the first section
and X′′Y ′′Z′′ represent the coordinate frame of the second
section with respect to the top of the first section. It can be
seen that

θi(t) = si(t)κi(t)
κi = ri(t)

−1 (2)

Remark 1: It is assumed that the variables si(t), κi(t), and
φi(t) are measureable and each section bends with uniform
curvature, resulting in the arcs being parts of circles with
radius ri(t) = κi(t)

−1.
Remark 2: For the kinematic analysis, the coordinate axes

are set up at the base of each section such that each ma-
nipulator section curves tangentially to one of the local co-
ordinate axes. This constraint is inherited directly from the
implementation of physical continuum robots [4] which must
bend about an initial (locally fixed) tangent. In this paper, the
kinematics are developed for the sections curving tangential
to the positive Zi axes. The subsequent kinematics can also
be developed with the sections tangential to the local ±Xi

axes or −Zi axis by simply modifying the rotation matrices
as needed.

A. Base Section Kinematics

Figure 2 shows the robot in the (X’Z’) plane (in which
the first section lies entirely). In that figure, consider the
4C1P1X1, where it can be seen that ∠P1C1X1 = (π − θ1)
and ∠P1X1C1 = 90o. Also, ¯C1P1 = r1 and ¯C1X1 = X1−r1,
which can be utilized to give

cos (π − θ1) =
X1 − r1
r1

. (3)

The expression in (3) can be rewritten as

X1 = r1 − r1cos (θ1) , (4)

and using the expression in (2) in (4) results in

X1 =
1− cos (θ1)

κ1
. (5)

Similarly, the dual trigonometric expression that can be used
from the same triangle results in

Z1

r1
= sin (π − θ1) , (6)

which can be rewritten as

Z1 =
sinθ1
κ1

. (7)

To calculate the Y1-coordinate, the arm section is rotated
counterclockwise around the Z1-Axis by an angle φ1 ∈ R.
Thus the 2D (X1, Z1) coordinates in (5) and (6) are converted
into 3D (X1, Y1, Z1) by

P1−3D =

 cosφ1
sinφ1

0

−sinφ1
cosφ1

0

0
0
1




1−cos(θ1)
κ1

0
sin(θ1)
κ1

 , (8)
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where the matrix represents the 3D Z-axis rotation, resulting
in

P1−3D =

 X1

Y1
Z1

 =
1

κ1

 cos (φ1) (1− cos (θ1))
sin (φ1) (1− cos (θ1))

sin (θ1)

 . (9)

Given the constraint of the initial tangent coinciding with Z1,
it should be noted that the forward kinematics in (9) are unique
for a single section in either the spatial or planar (when φ(t) =
0, see Figure 3(b)) cases. The implications of this are discussed
in further detail in Section II-C.

B. Second Section Kinematics

In the local frame, the kinematics derivation of the second
section is identical to that of the base section by considering
4C2P2X2. This results in the local frame coordinates of the
tip of the second section to have the form

P2−3D =

 X2

Y2
Z2

 =
1

κ2

 cos (φ2) (1− cos (θ2))
sin (φ2) (1− cos (θ2))

sin (θ2)

 .
(10)

In order to represent the coordinates of the second section
tip in the world frame, the second section coordinates have
to be first rotated clockwise by the angle θ1(t) about the
Y1-axis, rotated again (counterclockwise) by the angle φ1(t)
about the Z2 axis and finally added to the coordinates of the
first section tip. Thus the 3D coordinates of a two-section
continuum manipulator are given by X

Y
Z

 =

 X1

Y1
Z1

+ cosφ1
0

sinφ1

−sinφ1
cosφ1

0

0
0
1

 cosθ1
0

−sinθ1

0
1
0

sinθ1
0

cosθ1

 X2

Y2
Z2


(11)

If φ1(t) = φ2(t) = 0, manipulator motion is restricted to
the X-Z plane, as shown in Figure 2, and this case will be the
main consideration for the rest of this article. This results in
the coordinates of the tip being represented by [X(t) Z(t)]T ,
where

X = 1
k1
− 1

k1
cosθ1 + 1

k2
cosθ1 − 1

k2
cosθ1cosθ2

+ 1
k2
sinθ1sinθ2;

Z = 1
k1
sinθ1 − 1

k2
sinθ1 + 1

k2
sinθ1cosθ2

+ 1
k2
cosθ1sinθ2,

(12)

C. Self-Motion Manifolds

As discussed in the introduction, we are interested in
categorizing the self-motion of continuum robots, i.e. the type
and nature of internal movement where the tip remains at
a fixed location. The underlying structures describing self-
motion topologically are self-motion manifolds [26]. Self-
motion manifolds group the infinity of inverse kinematic
solutions into a finite and bounded set of solutions. Under-
standing of these solutions enables practical exploitation of

Fig. 2. Planar Schematic of two-section Octarm

the manipulator self-motion. In this section, we discuss the
“self-motion manifolds” inherent for continuum robots.

Self-motion manifolds of redundant manipulators have been
categorized in [26]. However, the manipulators in question
were rigid-link and revolute. For these manipulators, the anal-
ysis in [26] resolves the fundamental question of how many
distinct self-manifolds exist (physically, how many distinct
self-motions exist). In [26], it is shown that for serial rigid-link
revolute manipulators, there are up to 16 potential distinct self-
motion solutions. As the number of rigid links increase, the
number of self motions decreases, until they resemble “strings”
having only one self-motion solution.

As noted in Section II, serially-connected continuum sec-
tions bend to resemble “strings” more so than their rigid-
link counterparts. However the physical constraints continuum
manipulators have in comparison to strings are significant.
Thus since continuum manipulator motion capabilities lie in
between that of redundant rigid-link robots and strings, a
deeper understanding is required.

For rigid-link manipulators, it is shown in [26] that there
exist two distinct types of pose-based self-motion manifolds,
physically corresponding to different self-motions from the
“elbow up” and “elbow-down” configurations for the same
position as shown in Figure 3(a). Multiple self-motion man-
ifolds arise because, for some end-effector locations, there
are disjoint “elbow-up” and “elbow-down” trajectories which
cannot cross into each other. Such crossings occur at singular
configurations. It is shown by induction in [26] that there is
an upper limit (that number being 10) of distinct self-motions
manifolds. However, for continuum robots the solution is quite
different. In fact, the following result holds:

Theorem 1: There is a single unique self-motion manifold
for serially connected continuum manipulators.

Proof: Consider a single section continuum robot. As
stated in Remark 2, there exists a constraint for the initial
tangent to be fixed. This constraint, along with the constant
curvature assumption implies that there is a unique config-
uration for any tip location. Thus, it can be seen that the
“elbow up” and “elbow down” configurations of rigid-link
robots (shown in Figure 3(a)) do not have equivalent feasible
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inverse kinematic solutions for continuum manipulators. The
“elbow down” equivalent of the continuum manipulator base
section is possible only with a different initial mounting (180o

from that shown in Figures 1 and 2)), and shown in Figure 3
(right).

Fig. 3. Left: The “elbow-up” and “elbow-down” configurations for rigid-link
robots as described in [26]. Right: The equivalent for continuum robots only
possible by redefining the kinematic equations as described in Theorem 1.

Now consider a 2-section continuum manipulator. Let C
denote the set of locations formed by the point D connecting
the two solutions when moving section 2 and keeping the tip
fixed. Each point in C corresponds uniquely to a configuration
of section 2 (D to tip) and also uniquely to a configuration of
section 1 (base to D) since each section has a unique 1 − 1
kinematic map, as shown in Figure 4. Thus, any self-motion
trajectory corresponds to a unique self-motion trajectory, and
hence a single self-motion manifold.
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Fig. 4. The 2-section continuum manipulator, showing a 1 − 1 kinematic
map for the point connecting sections 1 and 2.

By induction, it can be seen that there is only one self-
motion manifold for any serially connected, constant curva-
ture, multi-section continuum robot.

The self-motion manifold for continuum manipulators, un-
like their rigid-link counterpart, is also not hindered by singu-

larities. This is because singular configurations exist only when
each manipulator section is straight along the axis its base is
tangential to, resulting in the curvature k(t) = 0. This lack of
singularities within the rest of the configuration-space results
in self-motion solutions easily “traveling into” one another as
opposed to being divided by a loci of singularities in the rigid-
link cases.

III. THE NULL-SPACE: LOCAL ANALYSIS

A. Velocity Kinematics

A two-section extensible continuum manipulator as seen
in Figure 2 is kinematically redundant for 3D (X-Y-Z) po-
sitioning tasks in 3D space as it has 6 DOFs. Redundancy
also exists for the XZ planar positioning case (by setting
φ1(t) = φ2(t) = 0), since 4 DOFs still exist (s1(t), k1(t),
s2(t), and k2(t)).

Given that the manipulator is redundant, the inverse kine-
matics for the manipulator yield non-unique solutions. This
means that there exist infinite manipulator configurations for
the same position of the manipulator tip. Thus the manip-
ulator configuration cannot be conveniently computed from
positional inverse kinematics. Due to this, we utilize the
manipulator velocity kinematics.

The velocity kinematics for the planar extensible continuum
manipulator are obtained by taking the time derivative of the
kinematic model, and are given by

ẋ = J (ψ) ψ̇, (13)

where J(·) ∈ Rm×n is the Jacobian matrix defined by

J =
∂f(·)
∂ψ

, (14)

and ẋ(t) ∈ Rm represents the task-space velocity, and ψ̇ ∈
Rn represents the configuration-space velocity. For a 4 DOF
extensible continuum manipulator in the X − Z plane, the
velocity Jacobian is found to be

J ,

 ∂X
∂s1

∂Z
∂s1

∂X
∂k1

∂Z
∂k1

∂X
∂s2

∂Z
∂s2

∂X
∂k2

∂Z
∂k2

 . (15)

B. Resolved Motion Rate Inverse Kinematics

To numerically solve the inverse kinematics problem for
non-redundant manipulators in the velocity domain, an initial
motion is fed on both sides of (13) to be multiplied by J(·)−1

(when [J ]−1 is defined and invertible) resulting in

ψ̇ = [J ]
−1
ẋ. (16)

The expression in (16) can then be numerically integrated to
obtain ψ(t). This method of obtaining a robot configuration
from the velocity kinematics is known as the “resolved-motion
rate” approach [27].

However, for kinematically redundant manipulators, J(·) is
never square, in which case matrix inversion is not directly
possible. Thus the Moore-Penrose pseudoinverse of J(·), given
by J+(·) = JT

(
JJT

)−1 ∈ Rn×m is often utilized. The
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pseudoinverse J+(·) satisfies JJ+ = Im where Im is the
m×m identity matrix. Properties of the Moore-Penrose Pesu-
doinverse can be found in [31]. For kinematically redundant
manipulators, the inverse kinematics solution in the velocity
space can be given by

ψ̇ = [J ]
+
ẋ. (17)

Along with finding a specific inverse kinematic solution for
redundant manipulators, it is also important for us to char-
acterize all the solutions. Thus, we modify the pseudoinverse
solution, (17) as

ψ̇ = [J ]
+
ẋ+

[
In − J+J

]
ε, (18)

where In ∈ Rn×n is the n× n identity matrix, and ε ∈ Rn×1

is an arbitrary vector. Both terms on the right side of (18)
represent joint velocities, and can be further denoted as

ψ̇ = ψ̇P + ψ̇N , (19)

where ψ̇P ∈ Rn×1 represents the particular solution and ψ̇N ∈
Rn×1 represents the homogeneous solution, given by

ψ̇P = [J ]
+
ẋ

ψ̇N = [In − J+J ] ε
(20)

The homogeneous solution refers to the fact that [J ]ψ̇N = 0,
i.e. solutions ψ̇N (parameterized by the arbitrary ε) are joint
velocities that produce no tip motion, and thus characterize
the self-motion.

Thus, to better explore the self-motion of an extensible
continuum manipulator, we calculate its Jacobian null-space
and analyze manipulator motion in that space. To that end,
we begin with the planar 2-section extensible continuum robot,
for which the null-space matrix, denoted by ξN (t) ∈ R4×4, is
defined as

ξN , I4 − J+J, (21)

where I4 ∈ R4×4 represents an identity matrix, and J+(·) ∈
R4×2 is the Moore-Penrose pseudoinverse of the Jacobian
matrix, J(·). The columns (or rows) of ξN (t) span the null
space in R4.

IV. SELF-MOTION CHARACTERIZATION

To better understand the self-motion behavior of continuum
manipulators we consider 3 cases for 2-section extensible
continuum robots:

1) Constant second section curvature case;
2) Constant second section length case; and
3) General motion case.

In case 1 and case 2, the constant curvature and length
respectively represent restrictions on curvature and length of
the second section only. In all cases the first section is free
to move without any constraints while the manipulator tip
remains fixed at its initial point. No physical restrictions have
been placed on the manipulator section lengths or curvatures
except si(t) > 0 and ri(t) > 0 (i.e. ki(t) <∞).

A. Self-Motion Due To Extension

In this case, the first section has no constraints on its length
or curvature while the length of the second section is free
to change with its curvature being fixed, as seen in Figure
5 and the associated video. Further, it can be seen that the
overall shape of the manipulator remains the same despite the
changes in section lengths. This is probably the most intuitive
self-motion case.

Fig. 5. Screenshots from the accompanying video of the constant second
section curvature case. The time lapse is clockwise starting from the top left.

Based on (18), the velocity kinematics for this case can be
given by

ψ̇cc =

 ṡ1
k̇1
ṡ2

 = [Jcc]
+
ẋ+

[
I3 − J+

ccJcc
]
ε, (22)

where ψ̇cc(t) ∈ R4 represents the configuration space velocity,
Jcc(t) ∈ R2×3 is the Jacobian for the second section constant
curvature case, J+

cc(t) ∈ R3×2 is the pseudoinverse of Jcc(t),
and ε(t) ∈ R3 is an arbitrary vector. It should be noted that
since the curvature of the second section is constant, the ∂X

∂k2

and ∂Z
∂k2

from (15) are not used in [Jcc] resulting in the k̇2(t)

term not present in the null-space vector ˙ψcc(t).
An example in nature of the use of constant curvature 2-

section continuum structures is the larvae of the Ascidian (also
known as a Sea Squirt), Distaplia occidentalis [32], where
McHenry found the the tails of free-swimming larvae were
made up of two extensible sections. each section bent with
constant curvature, and the curvatures and angles changed
depending on the direction of motion.

B. Self-Motion Due to Bending

In this case, the curvature of the second section is variable
while its length is kept constant and there are no restrictions
on the base section. Figure 6 and video (see attached video)
show this case, where the lengths of both the first and second
sections vary while the curvature remains constant.

1984



Fig. 6. Screenshots from the accompanying video of the constant second
section length case. The time lapse is clockwise starting from the top left.

Based on (18), and parallel to (22) the velocity kinematics
for this case can be given by

ψ̇cl =

 ṡ1
k̇1
k̇2

 = [Jcl]
+
ẋ+

[
I3 − J+

clJcl
]
ε, (23)

where ψ̇cl(t) ∈ R3 represents the configuration space velocity,
Jcl(t) ∈ R2×3 is the Jacobian for the second section constant
curvature case, J+

cl (t) ∈ R3×2 is the pseudoinverse of Jcl(t),
and ε(t) ∈ R3 is an arbitrary vector. It should be noted that
since the length of the second section is constant, ∂X∂s2 and ∂Z

∂s2
from (15) are not used in [Jcl] resulting in the ṡ2(t) term not
present in the null-space vector ψ̇cl(t).

One application uniquely applicable to continuum manip-
ulators is that of rolling an object. Mobile hospital units
often need help turning a patient over, especially in cases of
rehabilitation. In this case, a 2-section continuum manipulator
could maneuver and around the the patient with the tip’s
location setting up it’s fixed point under the patient. Using
self-motion, the tip section would increase it’s curvature to
leverage the patient, while the base section reduces its length
so as to pull the patient back, effectively rolling them over.
This is analogous to the way nurses utilize their hands and
arms to roll a patient over. To do so, the nurse would leverage
their hands around and under the patient while standing on
the other side. The nurse then pulls their hands out and back
while leveraging the patient with their elbows to avoid slip
and thus rolling the patient over in their bed.

C. The General Motion Case

We now consider the general selfmotion case allowing for
the manipulator to be completely unrestricted in its motion.

Theorem 2: The general self-motion of planar 2-section ex-
tensible continuum manipulators is spanned by the constrained
manipulator self-motion velocities.

Proof: The null-space vector in (22) can be viewed and
expanded into R4 as

ψcc =


˙s1cc
˙k1cc
˙s2cc
0

 ∈ N [J ] . (24)

The last element of ψcc, nominally k̇2(t) does not exist for this
case (constant second section curvature) and thus its position
is padded with a zero. Note that (24) remains a self-motion
velocity for the manipulator, i.e. [J ]ψee = 0. Similarly, (23)
can be expanded as,

ψcl =


˙s1cl
˙k1cl
0
˙k2cl

 ∈ N [J ] , (25)

as the ṡ2(t) term does not exist, and therefore has no effect on
the manipulator motion due the constant length second section
case being considered, and is thus padded by a zero.

From the general inverse kinematic solution in (18) (valid
through the workspace except for the infinitesimally thin
subspaces of the local X and Z axes, i.e. ki(t) = σ), for
[J(t)] of full rank 2, [I − J+J ] is of rank 2, and that the
columns of [I − J+J ] span the null-space [33]. The general
null-space is thus 2-dimensional, and given that the vectors in
(24) and (25) are clearly both in N [J ] and independent, they
form a basis for the null-space.

ψ =


ṡ1
k̇1
ṡ2
k̇2

 . (26)

Thus, we can see that (26) must result from a the linear
combination of the vectors in (24) and (25),

ψ̇ = Kcc
˙ψcc +Kclψ̇cl, (27)

where Kcc, Kcl ∈ R are constants.
An example of the general self-motion, generated using

(27), in Figure 7 and video (see attached video), it can be seen
that the both the first and second section lengths increase, and
their curvatures decrease. Note the scale changes as a result
of combining the two special cases.

One potential application for this case is on-sea refueling,
with the ships lining up next to each other and a continuum
robot hose being used for transmitting the fuel. Given that
the ships are constantly in relative motion due to the active
sea states, and the high pressure with which the fuel is
being transmitted, it is imperative that the “hose” not flail
about in the event of a disconnection, while the configuration
be compliant. Exploitation of the manipulator null-space is
necessary in such situations.

A novel way to apply continuum manipulators is using two
continuum sections as a hand-finger equivalent with the hand
and the finger distinguised from each other at the point where

1985



Fig. 7. Screenshots from the accompanying video of the fully variable second
section case. The time lapse is clockwise starting from the top left.

the sections join. The constant curvature paradigm could be
used for the hand in order to set leverage a tip position similar
to a lasso winding around an object. The constant length self-
motion and/or base section motion can then change its shape
to manipulate the object as required.

V. CONCLUSION

In this paper we present new insight into and characteri-
zation of the self-motion properties of continuum robots. We
show that there is a single self-motion manifold underlying
the available self-motion. To that end, we develop a new,
simplified set of forward kinematics for extensible continuum
manipulators along with the resolved-motion rate inverse kine-
matics. This allows us to conveniently analyze the manipulator
null-space in order to explore the self-motion characteristics of
continuum manipulators. We identify 3 base self-motion cases
which generate continuum manipulator behavior in the null-
space and discuss the practical implications of these findings
along with real-world examples or application in each case.
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