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Abstract— This paper presents general modal dual Quater-
nion (DQ) kinematics for multisection continuum arms. DQ’s
produce higher accuracy than homogeneous transformation
matrices (HTM) when transformed to modal shape functions
(MSF) of similar order and are numerically stable. Thus,
the model is compact, more accurate and computationally
efficient than the modal kinematics proposed by the author
based on HTM’s. Also, DQ kinematics does not suffer from
singularity related limitations of Euler angle based inverse
orientation kinematics. Recursive schemes for deriving DQ’s
and DQ Jacobians are also presented and can be extended
arbitrarily. Both modal HTM and modal DQ kinematics are
then applied to solve illustrative spatial inverse position and
orientation tracking problems. Based on the results, this paper
quantitatively compares both methods and highlights the ad-
vantages of modal DQ kinematics. The proposed DQ kinematics
are easily extensible to variable length multisection continuum
arm with general actuator configurations.

I. INTRODUCTION

Many continuum robotic arms have been designed and
implemented for various applications over the years and have
successfully proved their versatility in field deployments [1].
Continuum arms take inspiration from biological entities
such as the musculature of tongues [2], cephalopod arms
[3], [4], vine tentacles [5] etc. Many “true” continuum arms,
as classified in [6], utilize elastic i.e., pneumatic muscle
actuators [7] or backbone bending deformation [8] to gen-
erate motion. Consequently, contrary to rigid robots, all soft
continuum robots have a much greater number of theoretical
degrees of freedom (DoF) due to smooth bending along their
structure. However, these mechanical deformations consider-
ably increase the modeling complexity.

A multisection continuum arm is essentially a parallel-
serial robot. Each continuum section is typically realized as
a three-actuator parallel mechanism which is the optimal ac-
tuator configuration for spatial operation. However other ac-
tuator arrangements are possible [9]. The actuators are rigidly
mounted at each end and constrained to actuate parallel to
the continuum section. Upon actuation continuum sections
deform in circular arc shapes. Kinematics through lumped
approximation methods [10], [11], [12] denote the natural
transition from rigid-linked to continuum arm modeling. But
the large number of virtual rigid-link segments required to
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Fig. 1: Pneumatic muscle actuated state of the art multisection continuum
arms. (a) Three-section continuum robotic arm prototype developed in the
Italian Institute of Technology, Genova, Italy.

sufficiently emulate smooth bending significantly increase
the overall DoF. This poses computational difficulties for
extending to multisection continuum arms, in particular for
inverse kinematics (IK) through iterative methods. Parametric
kinematics avoid these complexities by defining kinematics
with shape functions to accommodate continuous and smooth
bending [13].

The parametric modal shape functions (MSF) for “hyper-
redundant” robotic structures was proposed in [13]. It simpli-
fied kinematic analysis but limited corresponding robots to
“application specific” and “reduced” set of shapes and mo-
tions. The curve parametric (CP) kinematics for multisection
continuum arms proposed in [14] takes a modular approach
to yield correct and structurally accurate results.Contrary to
lumped models, CP kinematics are derived in true actuator
variables, computationally efficient, and provides better phys-
ical interpretation. However CP kinematics cannot model
straight (or near-straight) arm poses, i.e., when actuator
lengths are equal (or near equal), due to an inherent nu-
merical singularity.

The modal kinematics proposed in [15] was based on
the CP principles but replaced the parametric terms with
multivariate polynomial MSF’s of joint space variables. The
model demonstrated kinematic decoupling and spatial 6 DoF
(position and orientation) trajectory tracking for various ap-
plications such as path planning [4]. Because the kinematics
is derived in homogeneous transformation matrix (HTM)
representation and uses Euler angles to calculate inverse
orientation, it suffers from orientation related numerical
problems when solving for certain IK. The Euler angle
representation has several numerical limitations. It suffers
from singularities as angles are discontinued at specific
ranges as other angles go through the singularity [16]. Hence
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these is the need for a better kinematics for hyper-redundant
continuum arms that does not suffer from inverse orientation
related numerical problems.

The dual Quaternion (DQ) representation does not suffer
from these limitations [17]. Dual Quaternion is an ordered
pair of Quaternions, one for orientation and one for po-
sition. DQ representation is unambiguous, accurate, and
computationally efficient. Much like HTM, DQ can represent
spatial (rotational and translational) transformations without
compromise making it appealing for the task at hand. In
addition to these advantages, it uses only 8 parameters
(compare with HTM that uses 12) to define the complete
spatial location thus requires less memory and computations.
Because of the iterative IK solution process associated with
multisection continuum arms due to high-redundancy this
translate to significant computational time improvements.

This paper proposes DQ-based modal kinematics for mul-
tisection continuum arms to improve their accuracy and
performance, particularly for IK. The organization of the
paper is as follows. Section II first reviews the existing HTM
modal kinematics and then presents the approach to derive
modal DQ’s for a continuum arm section of three-actuator
configuration. The single section DQ representation is then
extended and recursively implemented for an arbitrarily long
multisection continuum arm in Section III. The performance
and accuracy comparison is carried out in Section IV. Con-
clusions are presented in Section V.

II. METHODOLOGY

In this section, a review of state of the art modal kinemat-
ics is first summarized. Then the derivation of modal DQ
for continuum sections and application to multisection con-
tinuum arms is detailed followed by an account of accuracy
and performance. The mathematical operators utilized here
onward are annotated in Table I.

A. Revisiting Modal Kinematics for Continuum Arms

Figure 2 shows the schematic of any ith continuum section
of a multisection continuum arm. It has three variable length
actuators mounted at apexes of an equilateral triangle of sides√

3ri where ri ∈ R+ is the radius. Each actuator length at
any time is given by Li0 + lij where lij ∈ R the length
change of the jth actuator (j ∈ {1, 2, 3}) andLi0 ∈ R+

is the unactuated length of the section. Upon actuation the
section deforms in a circular arc [14] of varying curvature
characterized by three parameters; radius of curvature λi ∈
(0,∞) with instantaneous center Ci, angle subtended by

TABLE I: Mathematical Operators

Operator Definition
� Dual quaternion multiplication
◦ Quaternion multiplication

( )∗ Quaternion conjugate
∇q ( ) Partial derivative with respect to vector q.
( ),x Partial derivative with respect to variable qx ∈ R.
( )x xth column vector of the enclosed matrix
( )∨ Form the vector from a angular velocity matrix.
( )∧ Form the matrix from the angular velocity vector.

Base Plate

Top Plate

Fig. 2: Schematic of any ith continuum section showing base {Oi} and
tip {Oi+1} coordinate frames, curve parameters and actuator variables. All
the calculations are carried out with respect to {Oi}.

the bending arc φi ∈ [0, 2πmax], and angle of the bending
plane with respect to the +Xi, θi ∈ [−π, π]. Utilizing
these parameters, the CP HTM of the continuum section,
cT ∈ SE (3) is given by [15]

cTi (ξi, qi) = Rz(θi)Px(λi)Ry(ξiφi)Px(−λi)RT
z (θi)

=

[
cRi (ξi, qi)

cpi (ξi, qi)
0 1

]
(1)

where Rz , Ry are rotational matrices about the Z and Y
axes. Px is the translation matrix along the X axis, qi =
[li1, li2, li3] ∈ R3 is the joint space vector, cRi ∈ SO (3) and
cpi ∈ R3 are respectively the CP rotational and translational
matrices, and ξi ∈ [0, 1] defines the points along the neutral
axis with ξi = 0 is the section base and ξi = 1 is the tip.

However, due to the dependency of the circular arc radius
[15], λ, (or curvature, κ, in [14]) which approaches ∞ for
straight/near-straight arm poses. This in turn introduce errors
in the kinematic model within singularity neighborhoods.
Figure 3 shows the error of [cT]24 within q → 0.03
neighborhood. The modal kinematics for continuum arms
proposed in [15] replace these numerically ill-defined CP
HTM element terms with intuitive, structurally accurate,
unique, and numerically stable multivariate polynomials of
joint-space variables derived through Taylor series expansion.
Further, no intermediary morphological transformations are
required to map particular curve shapes and the approach
thence avoids redefining application specific MSF’s. The
modal HTM derived from (1), Ti ∈ SE (3), is given by

Ti (ξi, qi) =

[
Ri (ξi, qi) pi (ξi, qi)

0 1

]
(2)

where Ri ∈ SO (3) and pi ∈ R3 are respectively the modal
rotation matrix and modal position vector along the neutral
axis.

The modal HTM for a single continuum section given
by (2) is extended to derive the forward kinematics of
multisection continuum arms. Referring to Fig. 4, continuum
sections are numbered incrementally from 1 (base section
coinciding with the task coordinate frame {O}). Employing
basic coordinate transformations, the modal HTM of the
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Fig. 3: Error of [Tc]24 for li2 → 0.03 where li1 = li3 = 0.03. The error
spans within a singularity neighborhood thus eliminating the possibility of
conditional HTM’s such as [18] to counter the numerical instabilities.

Fig. 4: Schematic of a general multisection continuum arm with N contin-
uum sections.

neutral axis for any ith continuum section relative to {O},
Ti ∈ SE (3), is given by

Ti
(
ξi, q

i
)

=

i∏
k=1

Tk (ξk, qk) =

[
Θi

(
ξi, q

i
)

0
Ψi

(
ξi, q

i
)

1

]
(3)

where qi = [q1, q2, · · · , qi]
T ∈ R3i is the actuated joint-

space vector, Θi ∈ SO (3) is the modal rotational matrix,
Ψi ∈ R3 is the modal translation vector [15]. Note that
the position and orientation of any ith continuum section
depends only on the preceding (i− 1) sections and is in-
dependent of the successive sections. To denote this, ξk =
1, ∀k < i and ξk = 0, ∀k > i.

Because of the high redundancy, closed-form analytical
inverse kinematics of multisection continuum arms are com-
putationally infeasible. Hence multivariate iterative Newton-
Raphson or constrained optimization algorithms are utilized
to solve IK problems [19].

B. Modal Dual Quaternions for Continuum Sections

Dual Quaternion is an ordered pairs of Quaternions com-
posed by applying Clifford dual number algebra on Quater-
nions. Let Qi = (si + εti) ∈ R8 be the DQ corresponds to
the ith continuum section where si ∈ R4 is the rotational
Quaternion, ti ∈ R4 is the translational Quaternion. The
dual operator ε is defined as ε2 = 0 and ε 6= 0. Analo-
gous to complex number representations, ε distinguishes the
rotational and translational components. Note that, this paper
lists rotational Quaternions first in the DQ notation.

There exists a unique mapping between HTM’s and
DQ’s [20]. Let cQi be the curve parametric DQ of the
ithcontinuum section. Hence cQi can be derived from the
CP HTM. First, the rotational matrix, cRi, derived in
(1) is transformed to unit rotational Quaternion, csi =

〈
csxi ,

csyi ,
cszi ,

cs0
i

〉
where cs0

i ∈ R is the scalar rotation angle
and 〈csxi , cs

y
i ,
cszi 〉 ∈ R3 is the angle axis vector, as follows1.

cs0
i (ξi, qi) = 1

2

√
[cRi]11 + [cRi]22 + [cRi]33 + 1

csxi (ξi, qi) = 1
4cs0i

([cRi]32 − [cRi]23)

csyi (ξi, qi) = 1
4cs0i

([cRi]13 − [cRi]31)

cszi (ξi, qi) = 1
4cs0i

([cRi]21 − [cRi]12)

(4)

Utilizing csi, the translational component, cti =
〈
ctvi ,

ct0i
〉

is then derived as
cti (ξi, qi) = 1

2 〈
cpi, 0〉 ◦ csi (5)

where ctvi is the vector portion of the Quaternion and cpi
is converted to R4 space by appending a trailing zero. The
Quaternion multiplication is defined by 〈av, a0〉 ◦ 〈bv, b0〉 =
〈a0bv + b0av + av × bv, a0b0 − av · bv〉.

The CP DQ derivation of any ith continuum section is now
completed. Note that the DQ for a general continuum section,
given by (4) and (5)) can be utilized for any continuum
section (with varying mechanical parameters such as L0 and
r) simply by substituting these values in the computation of
curve parameters (λi, φi and θi listed in [15]). Because of
the numerical instabilities associated with the CP kinematics,
as detailed in [15], [21], both (4) and (5) suffer from the
same numerical problems found in (1) yielding undefined
and incorrect solutions within singular neighborhoods. To
circumvent these problems, we derive MSF’s for each DQ
element derived in (4) and (5) as described in [15]. Let
the modal DQ derived from cQi be cQi = (si + εti).
The resulting multivariate polynomial MSF’s are defined
for all values within their actuation range without the need
of specific singularity resolving techniques such as those
proposed in [18].

C. Accuracy and Performance Comparison

The MSF approach detailed in [15] is a high dimensional
approximation technique but is straightforward and readily
derived by means of modern computer algebra systems.
Accuracy is a critical metric in engineering approximation
methods. We next compare the accuracy of modal HTM and
DQ systems. First, the position and orientation error metrics,
denoted ep and eR respectively, employed in this paper is
defined as [22]

ep = ‖pc − p∗‖ (6)

eR = 1
2

∑3
k=1 ‖(Rc)k × (R∗)k‖ (7)

where p∗ and R∗ are substituted with modal position and
orientation matrices computed with modal HTM and DQ
representations. The cross product is denoted with × and ( )k
are the orthonormal orientation vectors of enclosed rotation
matrices.

The maximum bending angle (φmax) of the prototype
continuum section shown in Fig. 1 is close to 184◦(when

1Note that there are varying ways to compute the Quaternion from the
rotational matrix to avoid numerical scaling problems. But for ease of
presentation, only this method is presented.
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Fig. 5: Error comparison between the modal HTM and modal DQ against
the approximation expansion order (a) position error from (6) normalized
to the original section length Li0 = 0.15m, (b) maximum orientation error
from (7). The reference lines denote 0.001.

li1 = 0 and li2 = li3 = 0.06m). At φmax, normalized
(to the original length of actuators, Li0) maximum position
error (ep) variation for both modal HTM and DQ systems
are plotted against the Taylor series expansion order in
Fig. 5a. Similarly, orientation error (eR) variation is plotted
against the expansion order in Fig. 5b. It is observed that for
attaining a given accuracy, the DQ representation requires
an expansion 2-3 orders less. This order reduction is pro-
portional to φmax and results in fewer terms in MSF’s. This
corresponds to significant computational time and memory
usage improvement, particularly for multisection continuum
arm calculations as will be illustrated in the next section.

III. DUAL QUATERNION RECURSIVE KINEMATICS FOR
MULTISECTION CONTINUUM ARMS

Akin to HTM based kinematics, coordinate transformation
is defined for DQ systems. If {Oi} and {Oj} are two
reference frames with respect to a fixed frame of reference,
{O}, while Qi and Qj are the DQ’s of those reference
frames relative to {O}, then spatial coordinate transformation
from {Oi} to {Oj} is denoted by

Qi �Qj = si ◦ sj + ε (si ◦ tj + ti ◦ sj) (8)

Hence, analogous to (3), the complete DQ forward kinemat-
ics of any ith continuum section relative to {O}, denoted by
Qi, is given by

Qi
(
ξi, q

i
)

= Q1 �Q2 � · · · �Qi (9)

= ui
(
ξi, q

i
)

+ εvi
(
ξi, q

i
)

where ui ∈ R4 is the rotation Quaternion and vi ∈ R4 is the
translational Quaternion of the ith continuum section relative
to {O}.

A. Recursive Rotation and Translational Quaternions

From the definition given by (9), DQ of (i− 1)
th section

is Qi−1 = ui−1 + εvi−1. Substituting this result into (9)
yields

Qi = Q1 �Q2 � · · · �Qi = Qi−1 �Qi (10)

If the DQ of ith section DQ, i.e., Qi = si + εti is sub-
stituted to (10), the rotational and translational components
can be separately expanded as

ui
(
ξi, q

i
)

= ui−1

(
qi−1

)
◦ si (ξi, qi) (11)

vi
(
ξi, q

i
)

= vi−1

(
qi−1

)
◦ si (ξi, qi)

+ ui−1

(
qi−1

)
◦ ti (ξi, qi) (12)

Recursive DQ for any ith section relative to {O} is now
completed. DQ velocity kinematics is presented next. Note
that, for ease of notation, dependency variables are omitted
from here onward.

B. Velocity Kinematics and Jacobians

Let Jui and Jvi are respectively be the rotational and
translation Quaternion Jacobians, defined as Jui = ∇qui ∈
R4×3i and Jvi = ∇qvi ∈ R4×3i. Any jth column of Jui
is defined as (Jui )j = ui,j . Noting qi =

[
qi−1, qi

]
thus

qj ∈ qi−1 or qj ∈ qi, q
i−1 7→ Jui

(
qi−1

)
, and from (11),

(Jui )j can be simplified to two separate cases as

(Jui )j =

{
ui−1,j ◦ si ; qj ∈ qi−1

ui−1 ◦ si,j ; qj ∈ qi
(13)

From the definition of (Jui )j it can be deduced that(
Jui−1

)
j

= ui−1,j . By substituting this result, now (13) can
be simplified to

(Jui )j =

{(
Jui−1

)
j
◦ si ; qj ∈ qi−1

ui−1 ◦ si,j ; qj ∈ qi
(14)

By similar reasoning and expression manipulation, the jth

column of the translational Jacobian can be derived. The
recursive form of (Jvi )j is straightforward and is given by

(Jvi )j =

{(
Jvi−1

)
j
◦ si +

(
Jui−1

)
j
◦ ti ; qj ∈ qi−1

vi−1 ◦ si,j + ui−1 ◦ ti,j ; qj ∈ qi
(15)

The recursive relationship of the DQ Jacobians is now
completed.

C. Deriving Cartesian Linear and Angular Velocities

The DQ Jacobians derived in (14) and (15) are however
valid only in DQ space. In order to apply them in the Carte-
sian space, they must be transformed back into Cartesian
velocities, i.e., linear and angular velocities about {O}.

The Cartesian angular velocity, Ωi ∈ R3 relative to
{O} can be recovered from Quaternion velocities as Ωi =
2u̇i ◦ u∗i [23]. By definition, DQ kinematics make use of
Quaternion products which involve cross products. However,
computational operations for cross products are computa-
tionally slower with respect to matrix computations. The
Quaternion product is a linear transformation of involved
DQ’s, hence there exists a matrix representation which can
be readily derived by isolating relevant elements in matrix
form. Thence, isolating velocity terms, it can be rearranged to
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Ωi = 2 [ũi] u̇i where [˜] ∈ R3×4 defined in (16). Applying
∇q̇ to both sides and substituting Cartesian angular velocity
Jacobian, JΩ

i = ∇q̇Ωi ∈ R3×3i, and Jui listed in Section
III-B, it is compactly rewritten as

JΩ
i = 2 [ũi]J

u
i (16)

where the matrix [ã] for Quaternion a = 〈a1, a2, a3, a0〉 is
defined as

[ã] =

 a0 −a3 a2 −a1

a3 a0 −a1 −a2

−a2 a1 a0 −a3

 .
Similarly, the position vector can be recovered from vi

of the DQ as p = 2vi ◦ u∗i [23]. The linear velocity is
recovered from the DQ component as V i = 2 [ūi] v̇i −
2 [ṽi] u̇i. The Cartesian linear velocity Jacobian is defined
as JVi = ∇q̇V i ∈ R3×3i. The recursive velocity Jacobian is
constructed as

JVi = 2 [ũi]J
v
i − 2 [ṽi]J

u
i (17)

Note that, all Cartesian velocities are with reference to {O}.
IV. COMPARISON OF RESULTS

A. Prototype Arm,Validity of the Model, and Implementation

The mechanical parameters utilized herein were taken
from the three-continuum section prototype arm shown in
Fig. 1. Each continuum section is operated via three identical
extending pneumatic muscle actuators having Li0 = 0.15m,
lmin = 0m, and lmax = 0.06m [24]. Rigid plastic mount
frames of ri = 0.0125m were used to mount pneumatic
muscle actuators and connect adjacent continuum sections
with a π

3 rad angle offset about the Z ′ of {Oi+1} (see Fig.
2). This offset helps mounting PMA’s without crowding and
enables routing pressure supply tubes.

The continuum arm kinematic model depend on the cir-
cular arc shaped deformation in individual continuum sec-
tions. However, continuum sections are subjected to external
loading under the influence of gravity. These forces and
moments can cause the deformation of continuum sections
to deviate from the assumed circular arc shape. The evenly
distributed constrainers (Fig. 6a) installed along the length
of continuum sections significantly increase the elastic and
torsional stiffness of the arm to mitigate possible deviations.
Figure 6b compares a static pose of the prototype arm with
the kinematic model given by (9). The respective pneumatic
muscle actuator length changes of the prototype arm are
substituted into the prototype arm kinematic model (see Fig.
6c). The curve parameters (λi and φi) of relevant continuum
sections, computed utilizing the definitions given in [15],
match and thus validate the circular arc assumption.

B. Multisection Arm Forward Kinematics

When multiple continuum sections are serially stacked
together, the MSF errors of each section accumulate towards
the arm tip. Therefore, the MSF order needs to be determined
from the desired arm tip error. Figure 7a shows the arm
tip position error variation for both modal HTM and modal

(a) (b) (c)

Fig. 6: Validating the circular arc assumption (a) Kinematic result com-
parison against the prototype continuum arm by overlaying the curvature
radii of different sections: λ1 = 84.22mm, φ1 = 77.1◦,λ1 = 55.51mm,
φ1 = 109.8◦, λ3 = ∞, and φ3 = 0 where the values are computed
according to [15]. Respective joint space variables are q1 = [0.025, 0, 0]T ,
q2 = [0, 0.036, 0]T , and q3 = [0, 0, 0]T . (b) Direct kinematic result for
the input joint space variables employed to generate Fig. 6b.
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Fig. 7: Three-section multisection continuum arm error comparison between
the modal HTM and modal DQ method against the approximation expansion
order (a) position error from (6) normalized to the original arm length,
3Li0 = 0.45m, (b) maximum orientation error from (7). The reference
lines denote 0.001.

DQ kinematics for the prototype arm. In this paper, an
absolute (normalized to the unactuated length, 3L0, given
within brackets) position error of 0.005m ( ~1%) at the three-
section arm tip was considered acceptable. By referring to the
plot, this requires 11th order expansion for the modal HTM
method but only 8th order approximation was sufficient for
the DQ approach. Further, according to Fig. 7b which shows
the orientation error (computed from (7)), for the 8th order
approximation, modal DQ method produces about 10 times
better orientation error performance.

This accuracy and numerical performance are also re-
flected in velocity kinematics. In order to quantitatively
compare the error performance, the norm of matrix difference
between the CP Jacobian and either DQ or modal HTM
Jacobians are computed. First the CP linear and angular
velocity Jacobians were recursively derived using (1) and
its partial derivatives (see Appendix I). For the chosen MSF
orders, the linear velocity Jacobian derived from both modal
HTM and DQ methods yielded 0.736 and 0.038 errors (~20
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times less). Similarly, the angular velocity Jacobian errors
for modal HTM and DQ were 2.721 and 0.123 respectively
(~22 times less). Also, the DQ method only consumed 66%
computational time relative to the modal HTM method.
These results confirm the accuracy and numerical efficiency
of modal DQ based velocity kinematics.
C. Inverse Kinematics Trajectory Solutions

Next the performance for inverse position and inverse
position with orientation are considered. First start and end
points of a linear spatial trajectory are identified. Then
90 uniformly distributed linear position (and orientation in
Section IV-C.2) trajectories are generated. Due to the high
order polynomial nature of expressions and high redundancy,
obtaining closed form inverse kinematics for the full task-
space position and/or orientation for multisection continuum
arms is computationally infeasible. Hence, iterative Newton-
Raphson method employing the pseudo inverse, J† =

JT
(
JJT

)−1
, of linear velocity Jacobians

(
JV ∈ R3×9

)
was

used for inverse position solutions and Matlab’s “fmincon”
nonlinear optimization routine was employed for inverse
orientation solutions. The choice of “fmincon” procedure
was mainly due to the poor performance of iterative schemes
for inverse orientation problems regardless of the HTM or
DQ kinematics. This is because of the discontinuous nature
of Euler angles in which case step error does not uniformly
converge.

1) Inverse Position Kinematics: As a result of the nu-
merical stability observed in the modal kinematics, higher
solver gains are permitted in iterative calculations. Hence the
algorithm rapidly converges to solutions (takes 5-9 iterations
form random initial conditions) making the proposed modal
approach suitable for computing IK solutions in real time
(in the order of milliseconds). Because IK are solved in
joint space this approach will incorporate joint variables
within their mechanical ranges to ensure realizable solutions.
Both modal HTM and DQ kinematics showed comparable
performance in terms of number of iterations taken to reach
the solution. However the DQ implementation consumed less
computational time (~55%) for the task making it superior
overall.

2) Inverse Orientation Kinematics: Accuracy and perfor-
mance of modal HTM and modal DQ were compared for
orientation IK for an illustrative trajectory. Figure 8 shows
the instances of the trajectory following example for both
modal HTM and modal DQ kinematics. The end points
of the trajectory were [-0.1, -0.2, -0.35] and [0.1, -.02, -
0.35] with orientation [π/2 0 0]. Matlab’s “fmincon” with
“interior-point” algorithm was used with absolute
tolerance 0.005, 300 maximum iterations, and the error
function (0.1eα + ep) where eα is the ZYX Euler angle
error and ep is given in (6). The angle error was scaled
to fit the position range. Both HTM and DQ methods
consumed comparable times. However, the DQ kinematics
were able to converge faster toward the solution for given
constraints to produce a smooth and low-error trajectory in
the joint-space (Fig. 8a). However the modal HTM kinemat-
ics convergence was slower hence the accuracy was poor

(a) (b)

Fig. 8: Inverse orientation trajectory following snapshots. (a) DQ kinematics,
(b) modal HTM kinematics. Note the smooth trajectory of DQ kinematics
whereas modal HTM kinematics fails to reach solutions occasionally thus
resulting non-smooth joint space trajectories.

with respect to modal DQ kinematics. Consequently the
respective joint-space trajectory was not smooth and Fig.
8b shows one such instance where IK solution showing
a relatively large error. Refer to the accompanying video
for the visual simulation results of the inverse orientation
kinematic trajectory following. This types of deviations are
reflected on the joint space. In an actual situation, as a
result of the high compliance, these cause large decaying
oscillatory perturbations. Figure 9 compares the errors along
the inverse trajectory points. The plot was generated by
obtaining the mean error for 30 intermediate points solved
for 30 times for better interpretation. The slow convergence
and limited successful convergence of modal HTM is evident
by observing the scattering of errors across the plot. Where
as modal DQ solution range is significantly lower with high
and more successful and consistent convergence to/closer-
to solutions. Additionally, when the number of iterations
was decreased keeping the error function constant at 0.005,
not surprisingly, modal DQ method still maintained better
error performance consuming less time than the modal
HTM method. This has important implications for real-time
inverse kinematic algorithm implementations. Finally, the the
orientation [0, π/2, 0] for the same trajectory given above
is singular for modal HTM implementation hence failed to
solve the trajectory but modal DQ kinematics produced the
solution without any issues. Supplementary video includes
the numerical results. Overall, the results conclude that
modal DQ kinematics offer superior performance in both
accuracy and computational time over both modal HTM and
CP kinematics for multisection continuum arms.

V. CONCLUSIONS

In this paper, new modal DQ based kinematics were intro-
duced for multisection continuum arms. The procedure for
deriving the DQ representation from the CP kinematics and
MSFs for DQ elements were detailed. These MSF’s derived
for a continuum section can be implemented functionally
and used for continuum sections with different mechanical
parameters. Recursive implementation of DQ Jacobians was
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Fig. 9: Mean error comparison of inverse kinematic solutions between DQ
and homogeneous transformation matrix kinematics for a 6-DoF spatial
trajectory defined by 30 points. Note the small, consistent, and smooth error
variation of DQ inverse kinematics.

presented. Illustrative numerical examples were then pre-
sented to compare the accuracy and computational efficiency
of modal DQ against the modal HTM approach. Inverse
position and orientation kinematics for spatial trajectory fol-
lowing examples showed the numerical stability of the modal
DQ kinematics with efficient iterative numerical solutions for
IK problems. The proposed modal DQ kinematics is easily
extensible to variable length multisection continuum arm
with more general actuator configurations and other serial
rigid-linked robots.
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APPENDIX I
RECURSIVE HTM KINEMATICS

Recursive rotational and position matrices are given by

Θi = Θi−1Ri (I.1)
Ψi = Ψi−1 + Θi−1pi (I.2)

The angular velocity vector and Jacobian with respect to

{O} is defined as ω =
(

Θ̇iΘ
T
i

)∨
and JΘ

i =
(
∇qΘiΘ

T
i

)∨
respectively. However for ease of implementation, we can
define the angular velocity matrix such that Ω = ω∧ =
∇qΘiΘ

T
i . Analogous to the DQ Jacobian derivation by

considering qi =
[
qi−1, qi

]
and substituting (I.1),

(
JΘ
i

)
j

=

(Jωi )
∧
j is given by(
JΘ
i

)
j

=

{(
JΘ
i−1

)
j

; qj ∈ qi−1

Θi−1Ri,jR
T
i ΘT

i−1 ; qj ∈ qi
(I.3)

Similarly, JΨ
i = ∇qΨi and the case-wise recursive

(
JΨ
i

)
j

is given by(
JΨ
i

)
j

=

{(
JΨ
i−1

)
j

+
(
JΘ
i−1

)
j

Θi−1pi ; qj ∈ qi−1

Θi−1pi,j ; qj ∈ qi
(I.4)
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