
 
 

 

  

Abstract—We present a new geometrical approach to solving 
inverse kinematics for continuous backbone (continuum) robot 
manipulators. First, this paper presents a solution to the in-
verse kinematics problem for a single-section trunk. Assuming 
end-points for all sections of a multi-section trunk are known, 
this paper then details applying single-section inverse kinemat-
ics to each section of the multi-section trunk by compensating 
for resulting changes in orientation. Finally, an approach 
which computes per-section endpoints given only a final-section 
endpoint provides a complete solution to the multi-section in-
verse kinematics problem. The results of implementing these 
algorithms in simulation and on a physical continuum robot 
are presented and possible applications are discussed. 

I. INTRODUCTION 
inematic redundancy, where more degrees of freedom 
exist in the system than are strictly required for task 

execution, offers the benefit of improved performance in the 
form of singularity avoidance, obstacle avoidance as illus-
trated in Fig. 1, fault tolerance, joint torque optimization, 
and impact minimization via effective use of the self-motion 
inherent in the resulting systems. Kinematic redundancy in 
manipulators has been extensively studied, and surveys of 
many of the fundamental results for conventional (rigid-
link) redundant manipulators are presented in [1, 2]. 

However, for the recently emerging class of continuum 
manipulators [3], progress in developing practical kinemat-
ics has been slower. Continuum robots, resembling biologi-
cal trunks and tentacles, feature continuous backbones, for 
which conventional kinematics algorithms do not apply. 
While numerous hardware realizations of continuum ma-
 

Manuscript received February 22, 2008. This work was supported in part 
by the Defense Advanced Research Projects Agency (DARPA) Defense 
Sciences Office through the Space and Naval Warfare Systems Center, San 
Diego, Contract Number N66001-03-C-8043. 

Srinivas Neppalli is with the Department of Electrical and Computer En-
gineering, Mississippi State University, Mississippi State, MS 39762 USA
 (phone : 662-312-3424; e-mail: sn140@ece.msstate.edu). 

Matt A. Csencsits is with the Electrical & Computer Engineering De-
partment, Clemson University, Clemson, SC 29634 USA (phone: 864-656-
7956; e-mail: csencsm@clemson.edu). 

Bryan A. Jones is with the Department of Electrical and Computer Engi-
neering, Mississippi State University, Mississippi State, MS 39762 USA 
(phone: 662-325-3149; fax: 662-325-9438; e-mail: bjones AT @ AT 

ece.msstate.edu). 
Ian D. Walker is with the Electrical & Computer Engineering Depart-

ment, Clemson University, Clemson, SC 29634 USA (e-mail: 
ianw@ces.clemson.edu). 

 
 

nipulators have appeared [3], only recently have accurate 
and practical kinematic models for continuum manipulators 
emerged [4, 5]. 

Many existing continuum robot designs are kinematically 
redundant. Indeed, the inclusion of many extra degrees of 
freedom (hyper-redundancy) has been a key motivation for 
continuum robots, enabling them to maneuver in congested 
environments [6] and allowing them to form whole arm 
grasps [7] of a wide range of objects. While there have been 
attempts to adapt the conventional (rigid link) approaches to 
redundancy resolution by appropriately selecting the shape 
of the robot subject to task constraints [8], their practical 
effectiveness have been hampered by the complexity of the 
analysis, particularly in the resulting Jacobians. 

This paper presents a geometric approach to determining 
the inverse kinematics for single and multi-section contin-
uum robots. The algorithm given in section II determines a 
closed-form solution to the inverse kinematics problem for a 
single continuum section trunk.  

Section III discusses extending the results from section II 
to an n-section continuum manipulator, assuming knowledge 
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Fig. 1 – The inverse kinematics algorithms described in section II move 
both a simulated and an actual trunk from a vertical starting posture in (a) to 
a bent posture in (b) while maintaining tip position, moving only the section 
2 end-point. This maneuver could be used to avoid obstacles in the trunk 
path while maintaining a desired tip position. 
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of the end-point locations for each section of the trunk. Sec-
tion IV presents a procedure to compute these per-section 
end-points given a single end-point for the entire trunk. 
Next, section V presents results obtained by implementing 
these inverse kinematics, in simulation and on a physical 
device (OctArm VI), as shown in Fig. 1. Section VI con-
cludes with a discussion of the advantages and disadvan-
tages of this approach and potential applications. 

II. SINGLE-SECTION KINEMATICS 
For our analysis we model a single section of a continuum 
manipulator as an arc of a circle with one end-point O fixed 
to the origin of a right-handed Euclidean space, the other 
end-point P located anywhere in the space, and the center of 
the arc C in the xy plane (see Fig. 2). We parameterize a 
section of a continuum manipulator by its arc length s, its 
curvature κ , and its orientation φ as shown in Fig. 3. From 
these parameters the tip location of a single continuum sec-
tion is calculated [9]. These assumptions  reflect the physical 
structure of many continuum manipulators when subjected 
to a constant moment applied to the end of the section as 
derived in [10] and applied in [4, 5, 8, 11] including Air-
Octor [12] and the OctArm [13] series of manipulators. In 
particular, the ability of these trunks to not only move to a 
given curvature κ  and direction of curvature φ but also to 
extend to a trunk length s enables them to attain the desired 
tip position based on the φ, κ , and s determined by the in-
verse kinematics.  

A. Inverse Kinematics 
The trunk parameters s, κ , and φ for a single continuum 

section can be determined given the end-point location P in 
a closed-form expression. The direction of bending φ can be 
trivially determined by dividing the x and y coordinates, 
giving 

 

 1tan .y
x

φ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1) 

 
The curvature can be determined by finding the distance 

from the origin to the center of the arc formed by the contin-
uum section. Rotating P about the z axis by φ−  produces a 
point 'P  such that 2 2'x x y= + , ' 0y = , and 'z z=  (see Fig. 
4), yielding an arc of the same curvature which lies entirely 
in the xz plane. Our model assumes the center of the arc to 
be in the xy plane; after rotation, this center must lie along 
the x axis. Therefore, the radius r of the center of this arc C 
lies at ( ),0r  in the xz plane. Noting that the end-point and the 
origin of the arc must be equidistant from C and recalling 
that the origin of the arc coincides with the origin of the 
coordinate system gives ( )2 2 2x r z r′ ′− + = . Solving for r 
and noting that 1rκ −= , ( )2 22x z x zκ ′ ′ ′ ′= + . Substituting for 
x′ and z′, 
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The angle θ  as shown in Fig. 3 can be calculated from the 

curvature and the Cartesian coordinates of P. Looking at the 
planar case of P′, examining the C P D′ ′ ′ in Fig. 4 gives 

( )( )1 1 1cos 'xθ κ κ− − −= −  when ' 0z >  and 

( )( )1 1 12 cos 'xθ π κ κ− − −= − −  when ' 0z ≤ . Noting that the 

rotation of P does not affect the arc-length, 2 2'x x y= + as 
before. Simplifying gives 
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Fig. 2 – A single section of a continuum trunk modeled as an arc of a circle 
in 3D space with its center in xy plane. One of the end-points O is at the 
origin and other end-point P is located anywhere in 3D space. 

θ 

 
Fig. 3 - Manipulator variables s, κ , and φ , where φ  gives the direction of 
bending measured in the xy plane, κ  defines the curvature as the inverse of 
the trunk radius and s gives the length of the trunk. 
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Knowing that length of arc is the product of the angle sub-
tended by the arc and the radius of the arc, the length of the 
trunk section s rθ= , where 1r κ=  (see Fig. 3). 

B. Special cases (singularities) 
Endpoint coordinates along the z axis present singularities 

in the inverse kinematics calculations and can be grouped 
into three different cases: 0z > , 0z = , and 0z < .  Coordi-
nates along the z axis with 0z >  produce (correct) curvature 
values of zero; this creates a divide-by-zero condition in the 
arc-length calculation. When 0x =  and 0y =  the orientation 
calculation also produces the divide-by-zero condition. This 
case is easily handled by assigning φ to any arbitrary value 
and determining the arc length as s z= . 

In the second case, when [ ]T0 0 0P = , multiple solu-
tions exist as an arc forming a complete circle with any ra-
dius at any orientation satisfies this condition. In this case, 
choose 2θ π=  and choose any value for φ and κ . 

The last case occurs when P lies along the z axis where 
0z < . This case poses an impossibility given the physical 

constraints of a continuum manipulator section, requiring a 
solution of 0κ =  and s z=  where φ is arbitrary. 

III. MULTI-SECTION KINEMATICS 
The inverse kinematics derived in the previous section can 
be iteratively applied to multiple, serially-linked continuum 
sections to model an n-section continuum manipulator.  

A. Inverse Kinematics Algorithm 
Given a list of end-points (one for each section), the val-

ues of s, κ , and φ can be computed for each section by de-
termining the values of s, κ , and φ for the base section, sub-
tracting the translation due to the base section from the re-
maining endpoints, applying the opposite rotation due to the 
base section to the remaining endpoints, and then repeating 

this process with the remaining sections. Recalling from [9] 
the rotation due to a single trunk section occurs about the 
axis [ ]Tsin cos 0ω φ φ= −  by the angle θ , the adjusted 
end-point coordinates can be expressed as 

( ),next next currentp p pω θ−= −R  where currentp  is the end-point of 
the section whose s, κ , and φ values are currently being 
computed and nextp  is the end-point of a remaining, distal 
section. 

B. Incorporating Dead-Length Sections 
Many actual continuum manipulator devices contain 

lengths of space between each section that do not bend.  
There are three ways to represent these ‘dead’ lengths as 
part of each section. The non-bending length of each section 
can be included at either end of the section or split between 
the two. Taking the approach of including the non-bending 
length at the end of each section, incorporating these ‘dead’ 
lengths can be easily handled by adding an appropriate 
translation at the beginning of each loop in the inverse algo-
rithm. Following this method, simply subtract the vector 
[ ]T0 0 l  where l gives the dead length for the current sec-
tion from newp  computed for the following sections, 

( ) [ ]T
, 0 0next next current currentp p p lω θ−= − −R . 

IV. END-POINT LOCATIONS OF EACH SECTION FOR A MULTI-
SECTION CONTINUUM ROBOT 

An essential ingredient to applying the inverse kinematics in 
the previous section is the x, y, and z coordinate of the end-
points of each section of the trunk in addition to the end-
point of the trunk itself. This section presents an algorithm 
to assist in choosing these intermediate coordinates while 
also exposing structure of the solution space of the inverse 
kinematics problem, providing the possibility of using this 
solution space for choosing configurations of the trunk 
which avoid obstacles, minimize trunk curvature, or maxi-
mize some other desirable trunk characteristic. 

The well-known difficulty of deriving the inverse kine-
matics for an arbitrary rigid-link robot stems from the com-
plex nature of the non-linear equations involved. These 
complex non-linear equations can be resolved into simple 
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Fig. 4 – A single section of continuum trunk that lies entirely in xz plane 
obtained by rotating end-point P about the z axis by φ−  (see Fig. 2). Observ-
ing C P x′ ′ ′ and applying law of cosines, ( ) ( )cos x r rπ θ ′− = − . Therefore, 

( )1 1cos xθ κ κ− −′= − . 
 

x

z

y

O

1p
2p  

3p1l

2l
3l  

2r
1r  

 
Fig. 5 – Figure showing the rigid-link configuration of a robot with link 
lengths 1l , 2l , and 3l . The tip of the robot lies at 3p . 
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inequalities for any rigid-link robot composed of spherical 
joints by following a geometric approach as detailed in [14, 
15]. Observing that each section of a continuum robot con-
sists of the equivalent of a spherical joint, this paper applies 
the solution procedure in [14, 15] to a three-section contin-
uum robot by modeling it as a three-link rigid-link robot 
composed of spherical joints. The endpoints of each of the 
rigid links produced by this algorithm then provide the nec-
essary endpoints for the multi-section inverse kinematics 
algorithm described in the previous section which fits a 
trunk to these endpoints. 

A. Overview 
To formally stating the problem solved in this section: 

given the endpoint 3p  and the link lengths 1 3l −  of a three-link 
rigid-link robot composed of spherical joints, find the end-
points 1p  and 2p  of the first and second links of the rigid-link 
robot as shown in Fig. 5. The procedure begins by forming 
two triangles from 1 2Op p  and 2 3Op p  based on this infor-
mation, where 1r  represents unknown length. Inequalities on 
1r  given in (4) define one dimension of the resulting solution 
space. Choosing any value which satisfies these constraints 
completes the first step. Next, knowing the lengths 1r , 2r , and 
3l  which define one triangle and the coordinate of two of its 
endpoints (O and 3p ), the second step gives the second di-
mension of the solution space as an arbitrary rotation of 2p  
about 3Op  and computes a specific 2p  given that rotation 
angle. In the final step, 1p  is determined as a rotation of the 
other triangle about 2Op , completing the solution. 

B. Derivation 
Given a desired end-point 3p  and lengths 1l , 2l , and 3l  shown 

in Fig. 5 which specify fixed lengths of the straight lines 

joining the start-point and endpoint of sections one, two, and 
three respectively, this algorithm computes per-section end-
points 1p  and 2p . Referring to Fig. 5, length 2 3r p=  while 
triangle inequality theorems for 2 3Op p  and 1 2Op p 1r  bound 
length 1r  as 
 

 2 3 1 2 3

1 2 1 1 2

r l r r l

l l r l l

+ ≥ ≥ −

+ ≥ ≥ −
 (4) 

 
Step 1: Choose any 1r  which satisfies the inequalities 

above. A complete solution space that includes all possible 
configurations of the robot can be built by repeating the rest 
of the derivation using all valid values of 1r . The equality 
sign observed in the inequalities (4) implies a “flat” triangle 
consisting of a single line and corresponds to a singular con-
figuration of robot, as discussed in section V and illustrated 
in Fig. 8 and Fig. 9. 

Step 2: With 3p , 1r , 2r , and 3l  fixed, triangle 2 3Op p  con-
strains 2p  to lie on a circle formed by rotating 2p  about 3Op . 
Choose any dihedral angle 1θ  which gives the rotation of 

2 3Op p  about 3Op  and therefore determines the location of 
2p . 
To calculate 2p  from 1θ , first rotate the coordinate frame 

OXYZ  to OX Y Z′ ′ ′ in such a way that 3Op′  aligns with the 
positive z axis. In this configuration, apply 1θ  as a rotation 
about the +z axis. Finally, perform the inverse rotations to 
return to OXYZ with 2p  now determined. 

This initial transformation to OX Y Z′ ′ ′ can be achieved by 
performing two consecutive rotations first about the y axis 
then about the z axis by angles 1β−  and  1α−  respectively, 
which are calculated in (7)-(10). 

Due to this rotation, 3p′ now lies on the +z axis, at a dis-
tance of 2r  from O as shown in Fig. 6, making its location 
[ ]T

20 0 r . Considering 2 3Op p′ ′, point 2p′ can be any point 

on the circle around the z axis centered at 1n ′ with radius 
equal to height 1h . Since 2p′ can be any point around the z 
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Fig. 6 – The rigid link robot after a transformation of coordinate frames 
from OXYZ  to ′ ′ ′OX Y Z  to align 3Op  along the +z axis. Links in the trans-
formed coordinate frame are indicated by dashed lines. Point 2p′ is placed in 
the yz plane and 3p′ lies on the z axis; therefore, 2 3Op p′ ′ is present in the yz 
plane
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Fig. 7 – Results of the algorithms in section III.A and IV.B. Graphic (a) 
illustrates the result of IV.B exhibiting the orientation of triangles 2 3Op p  
and 1 2Op p  in 3-D space. 2 3Op p  and 1 2Op p  lie in two different planes in 
space inclined at an angle to each other. The angles of orientation of the 
triangular planes are termed dihedral angles. Items (b) and (c) illustrate a 
continuum trunk fit to the skeleton in (a) from differing perspectives. 
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axis, begin by placing it in the yz plane. Applying the law of 
cosines, ( )( )1 2 2 2

1 2 1 3 1 2cos 2r r l r rγ −= + − . The location of 2p′ is 

therefore [ ]T
1 10 h d  where 1 1 1cosd r γ=  and 1 1 1sinh r γ= . 

After rotating 2p′ about the z axis by 1θ , the following equa-
tion rotates the coordinate frame back to OXYZ  to obtain the 
coordinates of 2p : 

 
 

1 1 12 , , 2z y zp pα β θ− ′= ,R R R , (5) 
 
where ,ω θR  represents a rotation about axis ω  by angle θ . 
Substituting the individual transformation matrices in equa-
tion (5) yields 
 

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

2 1 2

c c c s s s c c c s s c

p c c s s c s c s c c s s p

s c s s c

θ β α θ α θ β α θ α β α

θ β α θ α θ β α θ α β α

β θ θ β β

⎡ ⎤+ −
⎢ ⎥ ′= − +⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

, (6) 

 
where coscθ θ=  and sinsθ θ= . The rotation angles, taken 
from a standard axis/angle rotation, are  
  
 2 2

1 1 1 1sin y x yk k kα = + , (7) 
  
 2 2

1 1 1 1cos x x yk k kα = + , (8) 
 
 2 2

1 1 1sin x yk kβ = + , and (9) 
 
 1 1cos zkβ = , (10) 
 
where 

T

1 1 1 1x y zk k k k⎡ ⎤= ⎣ ⎦  is a unit vector along 3Op . 
Step 3: Choose dihedral angle 2θ  which orients 1 2Op p  in 

3-D space by following a similar process. After rotation 
such that 2Op  is aligned with +z axis, applying the law of 
cosines produces ( )1 2 2 2

2 1 2 1 1 2cos ( ) 2r l l r lγ −= + − . The loca-

tion of 1p′ is therefore [ ]2 20 Th d  where  2 1 2cosd l γ=  and 

2 1 2sinh l γ= . The position 1 1p p′= R  where R is given in (6) 
and 1k  in (7)-(10) is replaced by 2k , a unit vector along 2Op . 
 

V. RESULTS 
The OctArm continuum trunk [13] consists of a pneumati-
cally-actuated, three-section, intrinsically-actuated trunk. 
Pressure regulation values control length and bending of 
each section while string encoders measure the resulting 
curvature for feedback to a PC-104-based control system. A 
remote PC accepts user input via joystick and relays desired 
trunk postures to the OctArm system; the remote PC also 
displays a real-time, 3D model of the expected trunk shape. 

One difficulty faced when evaluating the trunk in the field 
[13] was the inability to command the trunk to avoid obsta-
cles while maintaining tip position for insertion or inspec-

tion tasks. Although traditional Jacobian null-space tech-
niques could be used, these lack a user-centric method of 
specifying how the trunk should be shaped to avoid these 
obstacles. To remedy this, the single-section kinematics de-
scribed in this section were implemented by adding an addi-
tional control mode to the user interface routines described 
in [16]. In this mode, the operator can select trunk sections 
to move using the inverse kinematic algorithms given in 
section II and then control resulting trunk movement via the 
joystick. 

A maneuver designed to illustrate potential obstacle 
avoidance techniques produced using these algorithms is 
pictured in Fig. 1. Beginning with a straight trunk shown in 
Fig. 1(a), the user then selected the second to last section of 
the trunk and moved it to the left via the joystick, while the 
algorithm kept all other points stationary. Thus shaped, the 
tip of the trunk could now be moved around an obstacle lo-
cated at the bend in the second section. 

To assess the suitability of the multi-section inverse kine-
matics algorithms presented for operation in real time, tim-
ing results for the multi-section algorithm obtained on a 3.0 
GHz Pentium 4 show that the algorithm requires 0.3 ms to 
execute for a 3 section continuum robot, making it emi-
nently suitable for real-time application. However, this algo-
rithm has not yet been evaluated on the actual robot. 

In addition, the algorithms and derivations in section III.A 
and IV.B were implemented in Matlab and visualized in a 
3D graphics library. Fig. 7 shows a three section continuum 
manipulator starting at origin and reaching to [ ]T1 1 11  
with rigid-link lengths of 1 5l = , 2 4l = , and 3 3l =  and dihe-
dral angles 1 2 / 3θ π=  and 2 0θ = . The output of the proce-
dure given in section IV.B is shown in Fig. 7(a) where 1p , 

2p , and 3p  are indicated as small red spheres. This shows 
triangles 2 3Op p  and 1 2Op p  in 3D space with orientations 
2 3π  and 0 respectively. Fig. 7(b) shows the final output 
from algorithm III.A where a continuum manipulator can be 

P1 

P2 

P3

(a) 

(b) 

P2 

P1 

P3 

 

 
Fig. 8 – Simulation results illustrating the possible singular configurations. 
In (a), algorithms in both  section III.A and in IV.B result in singular con-
figuration where the rigid-link robot as well as the continuum trunk are 
stretched completely in order to reach the farthest tip location. In (b), only 
the rigid-link robot assumes a singular configuration with all the links ex-
tended in a straight line.
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seen along the skeleton obtained from applying derivation 
IV.B. Singular configurations explored in Fig. 9 illustrate a 
case with a “flat” triangle (when 1 1 2r l l= + ); as a result 

1 2Op p  is no longer present. Two different singular configu-
rations are illustrated in Fig. 8. Fig. 8(a) is a case where both 
III.A and IV.B achieve a singular configuration when robot 
is reaching the farthest point it can go to by stretching com-
pletely. Fig. 8(b) is a case where only IV.B produces a sin-
gular configuration with all rigid links in one line.  

VI. CONCLUSION/POTENTIAL APPLICATIONS 
The unique nature of a hyper-redundant continuum trunk 
presents both daunting challenges and fascinating opportuni-
ties for grasping and manipulation of a wide range of ob-
jects. Given a desired tip position, algorithms presented in 
this paper provide a simple, closed-form solution to move a 
single trunk section (which possesses three degrees of free-
dom) to the given endpoint. The ability to choose the end-
point for each section of a multi-section trunk allows fine 
control of trunk shape for obstacle avoidance, grasping, and 
related tasks as illustrated in Fig. 1. Additional algorithms 
allow specification of a single end-point for the entire trunk 
and provide insight into the solution space of the system. 
These inverse kinematics tools provide a foundation for ad-
ditional exploration into methods to make use of the marvel-
ous dexterity present in continuum manipulators. 
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Fig. 9 – Item (a) shows a singular configuration of the rigid-link robot pro-
duced by a “flat” triangle configuration where 1 1 2r l l= + . Image (b) shows 
the continuum trunk developed from the knowledge of end-points given in 
(a). Red, green, and blue coordinate axis represent x, y, and z axis respec-
tively. Red, green, and blue sections of trunk represent sections 1, 2, and 3 
respectively. 
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