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Abstract— In this paper, we consider the modeling of robotic
continuous “continuum” two-dimensional surfaces. We discuss
the fundamental differences between such robot surfaces and
traditional rigid link and continuum robots. We then introduce
new kinematic models for continuum robotic surfaces. We
compare the kinematic models to physical continuum surfaces
and validate their performance.

I. INTRODUCTION

The traditional approach to providing movement in both

robotics and architecture focuses on the movement of rigid

structures (e.g. manipulator links, wheels, doors, and win-

dows) along or about surfaces of 1-dimension (1-D) (i.e. lines

and axes). Consequently, functionally, traditional robot ma-

nipulators trace “jagged lines in space,” and their kinematics

identify a series of straight lines (or, for mobile robots, a

geometry of line-based movements), which, via movement

along them and at their intersections, define the end effector

(or vehicle center) location, orientation, and movement of the

robot. Physically, their rigid links typically form a jagged,

vertebrate-like backbone, with only a small portion of their

bodies having meaningful interactions with their environ-

ment. While design in these traditional areas of robotics

has focused on extracting optimal performance from specific

parts of the robot (e.g. end effector and vehicle center), in

general, the local (internal body) movement capability of

the robot is still restricted to 1-D. Even the realization that

concentrating two or more movements at the same location

(e.g. in a spherical wrist) significantly increases performance

does not overshadow the acknowledgment that although this

approach has the advantage of being relatively simple to

engineer and analyze, it is restrictive in the local movements

afforded and, thus, the spatial configurations the system can

attain. Therefore, we have begun to more deeply explore the

class of robotics known as continuum robotics with the intent

of utilizing their local movements. Furthermore, unlike our

predecessors who have explored continuum lines in space,

we have extended our research to continuum robotic surfaces.

Although we are not the only researchers currently exploring

such surfaces [1], to our knowledge, we are the first to

explore the forward kinematics of such devices. The concept

is, however, in part inspired by the creations of Oosterhuis

[2] in exploration of adaptive spaces.

† To whom all correspondence should be addressed.
J. Merino and I. D. Walker are with the Department of Electrical & Com-
puter Engineering, Clemson University, Clemson, SC 29634-0915 ((jmerino,
iwalker)@clemson.edu). A.L. Threatt and K.E. Green are with the School
of Architecture, Clemson Univsersity, Clemson, SC 29634-0915 ((anthont,
kegreen)@clemson.edu). This research was supported by the U.S. National
Science Foundation under awards IIS-SHB-1116075 and IIS-0904116.

There are a large number of unusual potential applications

for two-dimensional (2-D) robotic surfaces that would utilize

and require the local movement capabilities of a true con-

tinuum 2-D robotic surface. Reconfigurable antenna arrays

could utilize the surface to create a configuration needed for

optimal performance [3]. Robot surfaces may be developed

to optimize the aerodynamics of race cars or boats; con-

tinuum surface shells could reconfigure themselves to yield

different acoustic sounds in concert halls; continuum surface

lamps may be developed to aid in the adaptive distribution

or placement of light. Another increasingly promising appli-

cation for a continuum robot surface lies in the healthcare

realm. Robot surfaces are good candidates for adapting a

flexible surface that lies in the hard shell of the bio-mask

[4]. Also, the ability of a robot surface to continuously

adapt its shape could transform the nature of over-the-

bed tables found in both healthcare facilities and at home,

significantly improving the lives of people with impaired

mobility [5]. Programmable robotic surfaces and slings could

revolutionize rehabilitation in numerous conditions, such as

stroke therapy. Therefore, the development of such robotic

surfaces is of significant interest.

We are not claiming that conventional robotic (and other)

systems do not involve the movement of surfaces. Indeed,

probably the best-known and still the most successful ma-

nipulation system - the parallel jaw end-effector - is based

on the movement of surfaces (i.e. the jaws of the gripper).

For mobile robots, the “rubber meets the road,” literally, via

surface contact between tire and ground. Also, the effect

of surface-fingertip contact has been discussed extensively

in the multi-fingered manipulation community. However, in

none of these cases can the shape of the robot surface be

actively controlled and reconfigured. Particularly for human-

robot interaction, we believe that the current ”missing dimen-

sion” in robot movements (2-D) will be essential for complex

applications.

Consequently, we make the argument for an alternative de-

sign approach based on the actuation of flexible, continuous

2-D surfaces, which promises the aforementioned new and

novel applications for both robotics and architecture. Just as

the concept of robotic surfaces is not new, the concept of

continuum robots is not new [6]. In recent years, significant

theoretical understanding [7],[8],[9],[10],[11],[12],[13],[14],

[15], [16], [17], [18], [19] and practical development [20],

[21] of “trunk and tentacle” robots has been achieved. While

numerous physical designs have been proposed [22], [23],

[24], [25] and demonstrated [26], [27], [28], [29], [30],

[31], the common overall design goal has been to create

the effect of a continuous “invertebrate-like” backbone, as
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opposed to the “vertebrate-like” backbone of conventional

manipulators. This led to a core innovation of allowing

movement along curved lines as opposed to the rigid, straight

lines of traditional robots, which, in turn, allows continuum

robots to better match their configuration (i.e. shape) to their

environments [32], [33]. However, despite the novel capa-

bilities offered by this emerging class of continuum robots,

they also remain, in essence, “lines in space.” Extending upon

this, we herein explore a new class of 2-D continuum robots,

“programmable surfaces in space.”

Aside from their lack of localized movement, one may

wonder why the more conventional, traditional design ap-

proaches could not be adapted for the aforementioned ap-

plications. Conventional robot structures prove to be too

rigid and inflexible (away from their joints) to generate

the smooth, compliant and safe movements desired from

the proposed applications. The key difference between the

previously discussed examples of surface contact and the

continuum-robot surfaces we propose is that the 2-D shape of

the continuum-robot surfaces need to be actively controlled,

as distinguished from the fixed plane of the parallel jaw

gripper or the passive compliance of tires and typical soft

fingertips. In short, this active-shaping of the surface in 2-

D distinguishes our approach from previously engineered

surfaces (e.g. rudders, sails, and fins for marine robots, and

various “robotic walls”) [34], [35], [36], [37], [38]. This is

important because, for instance, in stroke rehabilitation, it is

believed that the 2-D movement capabilities throughout the

robotic continuum surface will allow the patient to feel more

comfortable and supported while exercising the injured limb.

However, the fundamental problem of how to build robot

surfaces that will allow such reconfigurations to be realized

has received little attention in the robotic literature. Further,

to effectively deploy such surfaces, kinematic models will

be necessary to plan and control desired configurations. The

forward kinematic models for continuum surfaces introduced

herein are an initial step in achieving this goal; we introduce

a new kinematic model for continuum robotic surfaces and

validate it via hardware realizations.

II. BASE KINEMATIC MODEL

In this paper, we specifically consider and model 2-D

continuum robotic surfaces actuated by tendons or mus-

cles embedded within the surface. Our physical prototypes

(detailed in Section V) are actuated by McKibben (air-)

muscles, which are pneumatic artificial muscles. However,

the modeling approach applies to any physical actuation

scheme which results in locally constant curvature.

A. Discrete/Continuous Base Models

The phrases ”muscle location” and ”muscle arrangement”

will be used throughout this paper to describe the continuum

surface. The term ”muscle location” describes the location

at which the muscle is placed within the continuum surface.

The muscle location, not the coordinates of points on the

surface, will be characterized by three values y,z,φ ∈ R,

represented as (y, z, φ); y and z represent the y-coordinate

and z-coordinate values of the tube end of the muscle (the

end in which the air tube enters), and φ represents the angle

that the muscle has been rotated counter-clockwise from the

z-axis, around the x-axis, where the fixed point of rotation is

(y, z). The term ”muscle arrangement” is used to describe a

set of multiple muscle locations. We consider how muscles

located at different points on the continuum surface combine

to produce different effects on the movement of the surface.

The first step in developing the forward kinematics for

continuum surfaces involves defining the base continuum

kinematic model from which the new kinematics will build.

This model is restricted to the kinematics for a line in space

but will herein be extended to define the kinematics for a

continuum surface. This model is similar to [39]; however,

it differs in the manner in which the angle of rotation is

referenced. Also, note that, like [39], we assume constant

curvature and constant length of the muscles.

Fig. 1. Representation of the Discrete Kinematics

For the conventional, planar, discrete (rigid link) case,

illustrated in Figure 1, the (x, y) coordinates of a joint on

the backbone can be expressed as

x =
l0
n

k∑
i=1

cos

i∑
j=1

qi; y =
l0
n

k∑
i=1

sin

i∑
j=1

qi, (1)

where l0 ∈ R
+ represents the length of the manipulator,

n ∈ R
+ represents the number of links in the manipulator,∑i

j=1 qi represents the orientation of the ith, where i ∈
[1, n], link measured counter-clockwise from the base frame

x-axis, and (x, y) represents the position of the kth, where

k ∈ [1, n], joint of the manipulator measured in the base

frame. Note, all link lengths are equal.

For the continuous case, the number of links approaches

infinity. Correspondingly, as seen in [39], the equations will

no longer be discrete.

B. Modified Kinematic Equations

For the development of our continuum surface models

in the following sections, the direction from which θ(s)
is referenced will be altered from its definition in [39]

to reference the angles as counter-clockwise from the y-

axis as opposed to clockwise. This modification is made to

be representative of our physical continuum surfaces - the

continuum surface was hung perpendicular to the floor - that

were tested in our lab. This change, illustrated in Figure 2,

results in the following kinematics:
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x(s) =

∫ s

0

sin(

∫ σ

0

k(v) dv) dσ (2)

y(s) =

∫ s

0

−cos(

∫ σ

0

k(v) dv) dσ, (3)

where x(s), y(s) ∈ R jointly represent the position vector

to the point associated with arclength s ∈ [0, l0] from the

origin. The expression

θ(s) =

∫ s

0

k(σ)dσ, (4)

where θ(s) ∈ R, represents the orientation of the tangent to

the curve at each value of s, and it is measured as counter-

clockwise from the y-axis. In equations (2), (3), and (4),

k(•) ∈ R represents the curvature function.

The only difference between equations (2) and (3) and

the continuous equations that result from [39] is that the

y(s) terms are of opposite sign to one another; our y(s) is

negative whereas the y(s) from [39] is positive.

These kinematic formulas are used for muscles that are

located at (0, z, 90), in which z ∈ (0, zmax), where zmax

corresponds to the maximum z-coordinate position at which

an edge of the surface lies (which corresponds to the length

of the surface). Similarly, ymin will correspond to the most

negative y-coordinate position at which an edge of the

surface lies (which corresponds to the width of the surface).

Fig. 2. Representation of the Continuum Kinematics

III. EXTENSION TO A CONTINUUM SURFACE

A pneumatically driven continuum surface can be viewed

as a collection of curves in space, which are induced by

and are parallel to pneumatic muscles embedded within and

actuating the surface. We present the idea that the curvatures

of the lines induced by the muscle(s) will be calculated

via an interpolation function; this concept is portrayed in

Figure 3. Depending on the position and/or arrangement of

the muscle(s), either a cubic or an exponential interpolation

function will be used, subsequently, to calculate the cur-

vatures of the lines induced by the pneumatic muscle(s);

muscle position and/or arrangement affect the shapes that

are created along the edges of the surface when the muscles

are actuated. The use of one function over the other depends

on the position, and in one case the arrangement, of the

actuating muscles within the surface. The calculation of the

curvatures is necessary to compute the coordinates of any

point on the continuum surface after it is actuated.

A. Interpolation

The interpolation procedure proposed for continuum sur-

faces is of the general form:

k(z) = g(
z

zmax
)k1 + g(1− z

zmax
)k2. (5)

In equation (5), k(z) ∈ R is the curvature of the curve

induced at coordinate z ∈ [0, zmax], and k1 ∈ R
+ and

k2 ∈ R
+ are the curvature values of muscles located on the

surface. Note: the values of k1 and k2 are dependent upon

the characteristics of the pneumatic muscles (for example, the

length) as well as the pressure inside of the muscles. Further

research is necessary to develop functions to calculate these

values; our values were determined via experimentation. For

two muscles that lie along the same axis, at different ends

of the axis, the combined effect of equation (5) acts as a

weighted average of the effects of two muscles. These effects

are conveyed by the monotonic g(•) ∈ [0, 1]. For cubic

interpolation, the term g( z
zzmax

) corresponds to the effect

given by an inducing muscle (when unpressurized) that lies

along either the negative y-axis at z = 0 or along the z-axis

at y = 0; and, the term g(1− z
zmax

) reflects the effect given

by an inducing muscle that lies along the negative y-axis at

z = zmax or along the z-axis at y = ymin. The effect is

reversed for exponential interpolation.

We adopt the convention that k1 ∈ R will always represent

the greater curvature value; so, in (5), the curvature of a given

muscle will either multiply the g( z
zzmax

) term or the g(1−
z

zmax
) term, depending on the location of the muscle with the

greatest curvature. Note that this is only for cases where two

muscles are parallel. Additionally, the term parallel muscles

refers to two parallel muscles in the sense that the muscles lie

parallel to each other on the plane of an unactuated surface.

B. Phantom Muscle Concept

A phantom muscle is defined as an imaginary muscle

with a curvature value that is a fraction of the curvature

value of an actual muscle (1/4 the value of the muscle’s

curvature in our subsequent examples) and lies at the side

of the surface opposite from the actual muscle. When only

one muscle is present, it was observed in practice that the

actuated muscle induces a slight curvature at the side of

the surface opposite from the muscle where the curvature

value is assumed to be zero by simple interpolation. Thus,

Fig. 3. Representation of the Curves Induced Across a Surface
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to analytically represent this, a ’phantom muscle’ is used.

Utilizing the adopted convention expressed in Section III A,

k1 will influence the function that corresponds to the location

of the real muscle, and k2 will influence the function that

corresponds to the location of the phantom muscle.
1) Cubic Interpolation: For two muscle locations and the

parallel muscle arrangement, it was empirically determined

that cubic interpolation is an effective means by which the

induced curvature values for the surface could be calculated.

We use the cubic function1 g(z) = 2|z|3 − 3z2 + 1.

The surface interpolation function kc(z) becomes:

kc(z) = (2| z

zmax
|3 − 3

z

zmax

2
+ 1)k1

+(2|zmax − z

zmax
|3 − 3(

zmax − z

zmax
)2 + 1)k2 . (6)

For the parallel muscle arrangement shown in Figure 4,

k1 and k2 directly represent the curvatures of the muscles.

However, a more general function is developed for muscles

that lie along one of the axes and somewhere between

the boundaries of the surface. For muscle locations where

the muscle lies in the center of the surface, a piecewise

function is used to represent the overall surface. When a

muscle does not lie on an edge of the surface, the muscle

splits the surface into two parts. One portion will utilize an

interpolation function where k1 is the gain for the g( z
zmax

)
term, and for the other, k1 will be the gain for the g(1− z

zmax
)

term; therefore, two phantom muscles will be required. The

interpolation function for these muscle locations is:

kcmid
=

⎧⎪⎪⎨
⎪⎪⎩

g( z
zloc

)k2 + g( zloc−z
zloc

)k1
z ∈ [0, zloc]

g( z−zloc
zmax−zloc

)k1 + g( zmax−z
zmax−zloc

)k2
z ∈ [zloc, zmax],

(7)

where zloc ∈ [0, zmax] is the z-coordinate of the muscle.
2) Exponential Interpolation: While testing some physi-

cal prototypes, it was observed that there are cases where

muscle locations induce curvatures within the surface whose

values take a shape that could be better represented by an

exponential function. In these cases, only one real muscle

(this muscle must lie along the edge of the surface) will be

inducing curvatures along the surface that are parallel to this

real muscle. Therefore, only one curvature value, that of the

inducing muscle, will be known. For these muscle locations,

the other curvature value will be that of the phantom muscle.

The exponential interpolation function is:

ke(z) =
z

zmax

e
z

zmax

e1
k1 +

zmax − z

zmax

e
zmax−z
zmax

e1
k2, (8)

where ke(z) ∈ R.

Depending on the muscle location, k1 and k2 will be as-

sociated with different portions of the interpolation function.

If k1 is the gain for g( z
zmax

), the exponential function will

be denoted as kemax
∈ R

+. If k1 is the gain for g(1− z
zmax

),
the exponential function will be denoted as ke0 ∈ R

+.

1Credit for this interpolation function is given to David W. Jacobs, at the
University of Maryland.

Our models thus far have been developed for when there

is only one muscle on the surface or for the case of parallel

muscles. When multiple muscles are added to the surface

to form non-parallel muscle arrangements, the superposition

principle is employed. (For each point along the surface, the

effects incurred from one muscle are added to the effects

incurred from the other muscle at that same point.)

IV. EXAMPLES

In this section, we examine and assess the effectiveness of

the core kinematic models by comparing a variety of muscle

arrangements that actuate a physical square continuum sur-

face with the associated three-dimensional models. We detail

the kinematics for each muscle arrangement.

The physical prototypes developed for this testing were

created by sewing off-the-shelf McKibben muscles, which

were built in our lab, onto mattress foam. Different flexible

surfaces were tested, and it was determined that the mattress

foam yielded the best performance.

A. Parallel Muscle Arrangement

The kinematics for this muscle arrangement are (Fig. 4):

Fig. 4. Parallel Muscle Arrangement

xparallel(z, s) =

∫ s

0

sin(

∫ σ

0

kc(z) dz) dσ (9)

yparallel(z, s) =

∫ s

0

−cos(

∫ σ

0

kc(z) dz) dσ, (10)

where xparallel ∈ R and yparallel ∈ R.

B. Perpendicular Muscle Arrangement

Fig. 5. Perpendicular Muscle Arrangement
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This muscle arrangement superimposes the x-coordinate

values for muscles 1 and 2, which are at locations (0,zmax,

90) and (0,zmax,180), respectively. Notice that muscle 2 in

this arrangement produces curves that are slightly different

to the curves described by the modified kinematic equations

in Section II. Therefore, it is necessary to develop the

kinematic formulas for scenarios where a muscle is located

at (y, zmax, 180), where y ∈ (0, ymin). The key differences

between curves generated by a muscle in this location and

one in the location seen in the base kinematic model is that

the muscle lies along the z − axis, and it is shifted upward

by zmax. So, the kinematics for muscles in this location are:

x(s) =

∫ (zmax−s)

0

sin(

∫ σ

0

k(v) dv) dσ (11)

z(s) = zmax −
∫ (zmax−s)

0

cos(

∫ σ

0

k(v) dv) dσ. (12)

The kinematic equations for muscle 1 are (Figure 5):

x(0,zmax,90)(sy, sz) =

∫ sy

0

sin(

∫ σ

0

kemax(sz) dy) dσ (13)

y(0,zmax,90)(sy, sz) =

∫ sy

0

−cos(

∫ σ

0

kemax(sz) dy) dσ

(14)

z(0,zmax,90)(sy, sz) = sz. (15)

The kinematics for muscle 2 are:

x(0,zmax,180)(sy, sz) =

∫ (zmax−sz)

0

sin(

∫ σ

0

ke0(sy) dz) dσ

(16)

z(0,zmax,180)(sy, sz) =

{
zmax

− ∫ (zmax−sz)

0
cos(

∫ σ

0
ke0(sy) dz) dσ

(17)

y(0,zmax,180)(sy, sz) = sy. (18)

In this muscle arrangement, only the x-direction is influenced

by both muscles; therefore, the x-components are superim-

posed, and the kinematics for this muscle arrangement are:

xperp(sy, sz) = x(0,zmax,90) + x(0,zmax,180) (19)

yperp(sy, sz) = y(0,zmax,90) (20)

zperp(sy, sz) = z(0,zmax,180). (21)

C. Plus-Shaped Muscle Arrangement

Fig. 6. Plus-Shape Muscles

This muscle arrangement also superimposes the effects on

the x-component from muscles 1 and 2, which are at loca-

tions (0,0.5zmax, 90) and (0.5ymin, zmax,180), respectively.

The kinematic equations for muscle 1 are (Figure 6):

x(0,0.5zmax,90)(sy, sz) =

∫ sy

0

sin(

∫ σ

0

kcmid
(sz) dy) dσ

(22)

y(0,0.5zmax,90)(sy, sz) =

∫ sy

0

−cos(

∫ σ

0

kcmid
(sz) dy) dσ

(23)

z(0,0.5zmax,90)(sy, sz) = sz. (24)

The kinematics for muscle 2 are:

x(0.5ymin,zmax,180)(sy, sz) =∫ (zmax−sz)

0

sin(

∫ σ

0

kcmid
(sy) dz) dσ (25)

z(0.5ymin,zmax,180)(sy, sz) = zmax

−
∫ (zmax−sz)

0

cos(

∫ σ

0

kcmid
(sy) dz) dσ (26)

y(0.5ymin,zmax,180)(sy, sz) = sy. (27)

In this muscle arrangement, the x-direction is the direction

influenced by both muscles; therefore, the x-components are

superimposed, and the kinematics for this arrangement are:

xplus(sy, sz) = x(0,0.5zmax,90) + x(0.5ymin,zmax,180) (28)

yplus(sy, sz) = y(0,0.5zmax,90) (29)

zplus(sy, sz) = z(0.5ymin,zmax,180). (30)

D. φ-Degree Angle Muscle Arrangement

Fig. 7. 135-Degree Angle Muscle Arrangement

The kinematic model for muscles located at nonparallel or

nonorthogonal angles is more complex. Consider a muscle

that lies at φ degrees - φ was defined in Section II A. In this

case, the curves induced by the muscle are not parallel to the

major axes of the plane in which the surface lies. So, it was

envisioned that the induced curves under the actuation of the

φ-degree muscle can be thought of as being rotated versions

of two different sets of induced curves, and we assume that

each set occupies one half of the surface (Figure 8).
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Fig. 8. Breakdown of the 135-Degree Angle Kinematics

Figure 8, which shows a muscle with φ = 135, illustrates

that the curves induced by muscle 2 in Figure 7 can be

viewed as rotated versions of the curves induced by muscles

located at (0,zmax,180) and (0,zmax,90). Each set of induced

curves occupies a portion of the surface, which is divided

by the line y = − z
tan((φ−90)◦) +

zmax

tan((φ−90)◦) . When given

the point on the surface2 (sy, sz) - where sy ∈ [0, ymin]
and sz ∈ [0, zmax] are the arclengths along the muscle in

the y and z directions, respectively - for which we want to

calculate the curvature, we are required to do one of two

steps, dependent upon in which region the point lies: 1)

calculate the y-coordinate, which we will denote as yposition,

at which the rotated line (on which the point lies) intersects

the line z = zmax if the point lies in region 1 or 2) calculate

the z-coordinate, which we will denote as zposition, at which

the rotated line (on which the point lies) intersects the line

y = 0 if the point lies in region 2. These concepts are visually

presented in parts (a) and (b) of Figure 9 for a muscle with

φ = 135, respectively. The intersection point, which is

Fig. 9. How to Calculate the Axis Intercepts for Interpolation Calculation

denoted by either yposition or zposition based on in which

region the point lies, is derived as either:

ylength = (zmax − |sz1|) ∗ tan((180− φ)◦) (31)

yposition = sy1 − ylength (32)

or

2Note, we will represent a point that lies in region 1 as (sy1, sz1) and
a point that lies in region 2 as (sy2, sz2).

Fig. 10. Calculating the Arclengths of the Generated Curves Calculation

zlength = |sy2| ∗ tan((φ− 90)◦) (33)

zposition = sz2 + zlength, (34)

where ylength ∈ R, yposition ∈ R, zlength ∈ R, and

zposition ∈ R.

Thus, the interpolation function is based on the following:

If sy > − sz
tan((φ−90)◦) +

zmax

tan((φ−90)◦) ,

then keφ(sy, sz) = ke0(yposition);
(35)

if sy ≤ − sz
tan((φ−90)◦) +

zmax

tan((φ−90)◦) ,

then keφ(sy, sz) = kemax
(zposition),

where keφ(sy, sz) ∈ R.

Typically, once we have the interpolation function, we can

use that function in conjunction with the kinematic formulas

generated earlier. However, the basic kinematic models do

not take into account that each curve generated by the φ-

degree muscle is not the same length; this is why simply

rotating the kinematics that correspond to a muscle located

at (0, zmax, 90) by φ degrees around the x-axis will not

suffice. Therefore, we must perform extra steps to calculate

the length, which will be denoted as either l1 or l2, of the

curve on which the point on the surface in question lies;

that calculated length will then be used to calculate the

corresponding arc lengths of the unrotated induced curve,

which will be denoted as (sy1 180, sz1 180) if the point is in

region 1 or (sy2 90, sz2 90) if the point is in region 2. From

parts (a) and (b) of Figure 10, one can see that the lengths

of the induced curves for regions 1 and 2, respectively, are

calculated as:

l1 =
zmax − |sz1|

cos((180− φ)◦)
(36)

l2 =
|sy2|

cos((φ− 90)◦)
, (37)

where l1 ∈ R
+ and l2 ∈ R

+. From this, sy1 180 and sz2 90

become yposition and zposition, respectively, and sz1 180 and

sy2 90 become zmax − l1 and l2, respectively.
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Once the corresponding arc lengths on the unrotated in-

duced curves have been calculated, we can use the kinematics

for a muscle located at (0, zmax, 180) (region 1) or the

kinematics for a muscle located at (0, zmax, 90) (region 2)

to calculate the y- or z-coordinate post-actuation for the

unrotated induced curves; if the point lies in region 1, the

coordinates will be denoted as (y1 180, z1 180), and if the

point lies in region 1, the coordinates will be denoted as

(y2 90, z2 90). Lastly, we must rotate the coordinates for the

unrotated induced curves to their new coordinates on the φ-

degree rotated curve. From parts (c) and (d) of Figure 10 we

can see how the coordinates are rotated:

y1 = (z(0,zmax,180)(sy1 180, sz1 180)− zmax)sin((180− φ)◦)
−(yposition)

(38)

z1 = zmax + (z(0,zmax,180)(sy1 180, sz1 180)
−zmax)cos((180− φ)◦), (39)

and

y2 = y(0,zmax,90)(sy2 90, sz2 90)cos((φ− 90)◦) (40)

z2 = zposition + y(0,zmax,90)(sy2 90, sz2 90)sin((φ− 90)◦).
(41)

The actuation of muscle 2 induces movement in the x-,

negative y-, and z-directions. For this muscle, the x-, negative

y-, and z- displacements are dependent upon whether the

induced curve lies in the lower left or upper right half

of the surface. For muscle 1, displacement only occurs in

the negative y- and x-directions as previously discussed.

Therefore, the kinematics for the overall surface will take

the displacements for each muscle in the x- and negative

y-directions and superimpose them, and the z-coordinate

will be the calculated z-coordinate for muscle 2. So, the

kinematics for this arrangement are:

If sy > − sz
tan((φ−90)◦) +

zmax

tan((φ−90)◦) ,

then xφ(sy, sz) =
∫ l1
0

sin(
∫ σ

0
keφ(yposition) dz) dσ

+x(0,zmax,90)(sy1, sz1);

if sy ≤ − sz
tan((φ−90)◦) +

zmax

tan((φ−90)◦) ,

then xφ(sy, sz) =
∫ l2
0

sin(
∫ σ

0
keφ(zposition) dy) dσ

+x(0,zmax,90)(sy2, sz2),
(42)

where xφ(sy, sz) ∈ R.

If sy > − sz
tan((φ−90)◦) +

zmax

tan((φ−90)◦) ,

then yφ(sy, sz) = y1 + (sy + y(0,zmax,90)(sy1, sz1));

if sy ≤ − sz
tan((φ−90)◦) +

zmax

tan((φ−90)◦) ,

then yφ(sy, sz) = y2 + (sy + y(0,zmax,90)(sy2, sz2)),
(43)

where yφ(sy, sz) ∈ R.

If sy > − sz
tan((φ−90)◦) +

zmax

tan((φ−90)◦) ,

then zφ(sy, sz) = z1,

if sy ≤ − sz
tan((φ−90)◦) +

zmax

tan((φ−90)◦) ,

then zφ(sy, sz) = z2,
(44)

where zφ(sy, sz) ∈ R.

V. QUANTITATIVE ANALYSIS

Fig. 11. Configurations of Continuum Surface Hardware (top row), with
Results of Corresponding Kinematic Model Predictions (bottom row), for
Key Configurations Reported in Section IV

In order to assess the precision of our continuum surface

kinematics, we performed quantitative analysis using the

Microsoft Kinect sensor. For this, 25 points were selected

on the surface; each point was either 8 or 10 cm from the

previous point on a 36 cm-sided square surface. For each

muscle arrangement, two sets of data were collected. The

first set measured the depth (the distance of the point on

the surface from the sensor) of the unactuated surface. The

second set, similarly, measured the depth of the points on the

actuated surface by using a computer program that allowed

the user to choose feature points in two different image

frames. The clicks in the first image frame captured the

depth for the unactuated surface at each point, and those in

the second image frame captured the depth for the actuated

surface at each point. The sensor was positioned directly in

front of, at the same height as, and parallel to the surface.
To calculate the distance that each point on the surface

had moved in the x-direction (the height the surface moved),

the actuated data was subtracted from the unactuated data.

Once the x-distance data had been calculated for each

point, the x-distances for the same points were calculated

using the appropriate kinematic model (muscle arrangement

dependent); then, the mean square error (MSE) between them

was calculated. Additionally, the MSE between the same

kinematic data and the physical data for an unactuated sur-

face, which would have x-distances of zero, was calculated

for comparison; this MSE would represent the worst-case

scenario and should, therefore, be larger than the MSE for

the actuated surface. Table I shows an analysis of the data.

TABLE I

MEAN SQUARED ERROR BETWEEN THE KINEMATIC HEIGHT DATA AND

THE PHYSICAL HEIGHT DATA WHEN THE SURFACE IS UNACTUATED

AND ACTUATED (MSE) [M2]

Muscle Arrangement Perpendicular Parallel φ = 30◦ Plus
Unactuated Surface 0.2896 0.2135 0.3480 0.4005
Actuated Surface 0.0958 0.0459 0.2204 0.2895

From Table I, the model/hardware MSEs are small, relative

to the reference MSE for the flat, unactuated surface. This
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shows that the kinematics for the different muscle arrange-

ments approximate the height data (x-coordinate) well. The

y- and z-coordinate data is consistent with the kinematics

developed by [39] and was, therefore, not taken into account.

However, the kinematics for the φ◦ and Plus arrangements

did not approximate as well as those for the parallel and

perpendicular arrangements. For the φ◦ and Plus arrange-

ments, the increased discrepancy is likely due not only to

the complexity of the shape of the surfaces after actuation

but also to the assumptions made for the interpolation equa-

tions. Experimentation and fine tuning of the interpolation

functions are likely to improve these results. More generally,

the curvature value of the mathematical model is an approxi-

mation of the curvature value of the physical surface; a slight

mismatch between the actual and approximated curvature

values affects the degree to which the physical and kinematic

data match. Also, as with any sensor, the precision can be an

issue. Lastly, and more importantly, two main assumptions

were made about the surface kinematics, which simplify the

mathematics, and, thereby, introduce error into the results:

constant curvature and constant length.

VI. CONCLUSION

In this paper, we have introduced new (forward) kinematic

models for continuum robot surfaces. Although the models

do not fit the physical surfaces exactly, the results illustrate

that the developed models approximate the shape of the

physical continuum surface models very well. In the near

future, we plan to develop the kinematics for arbitrary muscle

arrangements, to increase kinematic precision, and to begin

inverse kinematics development.
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