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Center-of-Gravity-Based Approach for Modeling
Dynamics of Multisection Continuum Arms

Isuru S. Godage , Member, IEEE, Robert J. Webster, III, Senior Member, IEEE, and Ian D. Walker , Fellow, IEEE

Abstract—Multisection continuum arms offer complementary
characteristics to those of traditional rigid-bodied robots. Inspired
by biological appendages, such as elephant trunks and octopus
arms, these robots trade rigidity for compliance and accuracy for
safety and, therefore, exhibit strong potential for applications in
human-occupied spaces. Prior work has demonstrated their supe-
riority in operation in congested spaces and manipulation of irreg-
ularly shaped objects. However, they are yet to be widely applied
outside laboratory spaces. One key reason is that, due to compli-
ance, they are difficult to control. Sophisticated and numerically
efficient dynamic models are a necessity to implement dynamic con-
trol. In this paper, we propose a novel numerically stable center-
of-gravity-based dynamic model for variable-length multisection
continuum arms. The model can accommodate continuum robots
having any number of sections with varying physical dimensions.
The dynamic algorithm is of O (n2) complexity, runs at 9.5 kHz,
simulates six to eight times faster than real time for a three-section
continuum robot, and, therefore, is ideally suited for real-time con-
trol implementations. The model accuracy is validated numerically
against an integral-dynamic model proposed by the authors and ex-
perimentally for a three-section pneumatically actuated variable-
length multisection continuum arm. This is the first sub-real-time
dynamic model based on a smooth continuous deformation model
for variable-length multisection continuum arms.

Index Terms—Center of gravity (CoG), continuum arms,
dynamics, real time.

I. INTRODUCTION

R IGID-BODIED robots have been the backbone of the
robotic industrial revolution, which has not only signif-

icantly improved throughput, but also relieved humans of most
of the mundane, repetitive, dangerous, and dirty tasks of as-
sembly lines. Rigid-linked industrial robots have high payload
capacity and precision superior to human capabilities. However,
the lack of compliance of rigid robots renders them dangerous,
and therefore, industrial robot task spaces are often restricted
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of human presence. In addition, due to the structural rigidity,
they are poorly adaptable to environmental interaction and yield
poor performance in unstructured environments [1]. There is
currently great interest in robots that work cooperatively with
humans [2], which implies a need for inherently human-safe
robotic manipulators. Continuum robots have been proposed as
a potential solution to serve niche applications, where adapt-
ability, compliance, and human safety are critical [3]. In this
paper, we refer to continuum robots as those robotic structures
that lack rigid frames and generate motion through smooth con-
tinuous structural deformation, such as the robots reported in
[4]–[9].

Continuum arms are inspired by biological appendages such
as elephant trunks and octopus arms. Such muscular structures
are highly deformable and able to achieve complex geometrical
shapes. Despite being made entirely out of muscles, they demon-
strate compelling benchmarks in terms of forces and precision
of operation [12]–[16]. Often constructed from elastic material,
continuum arms aim to imitate such behavior by generating com-
plex smooth geometric shapes through structural deformation.
The smaller continuum robots target operation in smaller spaces
such as inside human bodies during minimally invasive surgeries
[17] and are actuated by elastic tubes or tendons. The larger vari-
ants constructed to handle macro or human body scale objects are
often powered by pneumatic muscle actuators (PMAs). PMAs,
also known as McKibben actuators, have a number of desirable
features, such as ease of design, fabrication, and high power-to-
weight ratio, and therefore are sought after in continuum arm de-
signs. In this paper, we focus on PMA-powered variable-length
multisection continuum arms. There are several key features
common to this type of manipulator. Unlike tendon-actuated
continuum arms, they are fabricated by serially stacking contin-
uum sections, where each continuum section consists of multiple
PMAs (typically three, though four actuators are also possible
[6]), and are capable of generating omnidirectional bending de-
formation independent of other sections. Since there are no back-
bones, continuum sections undergo axial length changes, extend
or contract, depending on the PMA operation mode. Fig. 1 shows
a couple of variable-length multisection continuum arm proto-
types. Due to their unique mechanical characteristics, deriving
mathematical models for these robots has been a challenge.

A. Prior Work on Dynamic Modeling of Continuum Arms

Early continuum-style (which are not truly continuum with-
out continuously bending deformation) robots have been
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Fig. 1. Examples of PMA-powered variable-length multisection continuum
arms. (a) Continuum arm developed at the Italian Institute of Technology is
used to validate the dynamic model proposed in this paper [10]. (b) OctArm-IV
[11] continuum manipulator developed at Clemson University.

discretized rigid structures [18], [19] that mimicked smooth
bending. The computational constraints that prevailed at the
time motivated numerically efficient parametric or modal ap-
proaches [20]. However, such low-dimensional methods did not
fully capture the complete task space and suffered from numer-
ical instabilities [21]. Other early continuum-style robots and
discrete-link dynamic models include [5], [14], [22].

Cosserat rod theory has been proposed to model quasi-
statics of tendon actuated inextensible flexible backbone and
concentric-tube continuum robots. The works in [6] and [23]
model the dynamics of a multibending soft manipulator. But
due to the complexity of deformable bodies, the methods re-
ported inefficient simulation times. The work reported in [24]
utilized elliptic integrals to develop kinematics and statics of
miniature single continuum section. Kane’s method was used
in [25] to model the dynamics of a tendon-actuated continuum
manipulator. The work in [26] validated a planar static Cosserat
rod model for PMA-actuated variable-length multisection con-
tinuum arms.

Another avenue to derive equations of motion (EoMs) is to
utilize energy-based methods such as the Lagrangian formula-
tion. During operation, the relative displacement between points
of a continuum body varies and thus limits the use of numeri-
cally efficient algorithms [27]. Theoretical models for inextensi-
ble rope-like mechanisms were proposed in [28], but continuum
arms have multiple degrees of freedom (DoF).

The kinematic model reported in [29] laid the foundation for
curve parametric models for variable-length continuum arms.
Nonetheless, the use of circular arc parameters resulted in com-
plex nonlinear terms and numerical instabilities for straight-arm
poses to limit the model’s extensibility for modeling dynamics.
For an in-depth treatment of the limitations of curve parametric
models, see [10]. An energy-based derivation of planar dynamic
models for OctArm variable-length continuum manipulator [11]
was reported in [30] and [31]. However, continuum arms are
capable of spatial operation, and the models were not experi-
mentally validated. In addition, the resulting EoM were nonlin-
ear, complex, and of integral nature, and therefore numerically
inefficient and unstable.

Prior work by the first author proposed a modal method to
overcome the numerical instabilities and inefficiencies present

in curve parametric models [32]. Therein, the terms of the
homogeneous transformation matrix (HTM) of continuum
sections were approximated by multivariate polynomials [10],
[32], where the degree of polynomials could be chosen to meet
desired error metrics. The model laid the foundation for formu-
lating EoMs of variable-length continuum sections [33]–[35].
The extended recursive formulation was later validated for
a variable-length multisection continuum manipulator [36],
where the integral terms are presolved to improve numerical
performance.

Numerically efficient (via rigid body dynamic algorithms)
lumped models have also been applied for continuum robots.
However, such models require a large number of discrete joints
to approximate the deformation [14], [22], [37]. Some work
has attempted to trade numerical efficiency for modeling ac-
curacy by using relatively few rigid segments [38], [39]. How-
ever, such lumped parametric approaches lose unique features of
continuum arms such as smooth bending.

The key motivation of this paper is to introduce a lumped
model without betraying the continuous nature of the result-
ing expressions. Our prior work introduced a center of gravity
(CoG)-based modeling approach for a single-section continuum
arm [40], [41]. Therein, the EoMs were derived for a point mass
at the CoG of the continuum section. Thus, instead of an inte-
gral formulation, the process resulted in a compact model and
superior numerical efficiency. In the derivation process, due to
the physical dimensions of the robot, we did not consider the
angular kinetic energy, as the energy contribution was less than
3%. But this will not be the case for all continuum arms. Besides,
the model was limited to a single-section continuum arm, where
multisection continuum arms are required for performing useful
tasks such as whole arm manipulation [42] and spatial trajectory
tracking [32].

B. Contributions

In this paper, we extend and generalize our CoG-based spa-
tial dynamic model derived for a single continuum section [41],
evaluate against the integral dynamics proposed in [36] to ver-
ify the numerical accuracy and computational efficiency, and
validate the model against spatial dynamic responses of the pro-
totype arm shown in Fig. 1(a). Beyond our prior work reported
in [36], [40], and [41], the proposed dynamic model:

1) theoretically accommodates variable-length multisection
continuum arms with any number of sections and a wide
range of length and radii combinations;

2) considers both linear and angular kinetic energies of a
continuum arm at the CoG for better energy accuracy;

3) achieves energy matching via a series of energy-shaping
coefficients that are constant for any variable-length
multisection continuum arm;

4) employs the results from [36] to systematically and
recursively derive the EoM;

5) demonstratesO (n2
)

complexity for the first time for a dy-
namic model for a three-section continuum arm based on
continuous (nondiscretized) deformation representation;

6) runs at 9.5 kHz (step execution rate);
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TABLE I
NOMENCLATURE OF MATHEMATICAL SYMBOLS

� Subscript i represents the ith continuum section parameters, whereas superscript stands
for terms associated with up to the ith continuum section.
∗Lowercase, boldface italics (i.e., qj ) denote vectors and regular lowercase italics (i.e.,
lijor h) denote vector/matrix elements or constants. Matrices are denoted by boldface
uppercase letters (i.e., T, Mω

i ).
‡ Homogeneous transformation matrix (HTM).
All quantities are represented in metric units.

TABLE II
NOMENCLATURE OF MATHEMATICAL OPERATORS

7) achieves sub-real-time dynamic simulation in the
MATLAB Simulink environment.

Therefore, the proposed model unifies the ideas of lumped
parametric approaches of discrete rigid-bodied robotics and con-
tinuous (integral) approaches of continuum robotics and is ex-
pected to lay a strong numerical and algorithmic foundation for
implementing real-time dynamic control schemes.

II. KINEMATICS OF CENTERS OF GRAVITY

A. System Model and Assumptions

Tables I and II list the nomenclatures of mathematical
symbols and operators employed in this paper. Fig. 2(a) shows
the schematic of a multisection continuum arm with n ∈ Z+

sections. The sections are numbered starting from the base
continuum section (index 1) attached to the task-space coordi-
nate system, {O}. Any ith continuum section [see Fig. 2(b)]
is assumed to be actuated by three extending PMAs, which are
mounted on plates situated at either end at ri ∈ R+ distance

Fig. 2. (a) Schematic of a multisection continuum arm. (b) Schematic of an
infinitesimally thin slice the CoG of any ith continuum section. The linear (σi)
and angular (γi) offsets at continuum sections joints are also shown.

from the neutral axis and 2π
3 rad apart. Let the unactuated

length of PMAs be L ∈ R+, the maximum length change
lmax, and the joint-space vector of the continuum section,
qi = [li1, li2, li3]

T , where lij ∈ [0, lmax] ∀j ∈ {1, 2, 3}. The
joint where the (i+ 1) th continuum section is attached intro-
duces σi ∈ R+

0 linear displacement along and γi ∈ R0 angular
displacement about the +Z-axis of {Oi}. As the PMAs are
constrained to maintain ri clearance normal to the neutral axis,
differential length changes cause the section to bend or extend
(when length changes are equal) [11]. The subsequent deriva-
tions rely on the assumptions that the continuum sections bend
in circular arc shapes, have no backbone, have constant circular
cross section, are kinematically independent, and have constant
mass mi ∈ R+ and variable, but uniform linear density.1 In
addition, PMAs were operated high pressure (high stiffness) and
mounted vertically to ensure constant-curvature deformation.
Similarly, in application situations involving object manipula-
tion, velocity and payload bounds can be enforced to achieve
the same.

B. Recursive Velocities, Jacobians, and Hessians

The kinematics of continuum arms has been well studied over
the years [17], [29], [43], [44]. Here, we provide a review of the
modal kinematics for multisection continuum arms.

The deformation of a continuum section can be defined by the
curve parametersλ (qi) ∈ R+ radius of the circular arc,φ (qi) ∈
R+

0 angle subtended by the circular arc, and θ (qi) ∈ (−π, π]2

[see Fig. 2(b)]. Employing the curve parameters, the HTM of
{O′

i} along the neutral axis of the ith continuum section at ξi ∈
[0, 1] with respect to {Oi}, Ti : (qi, ξi) �→ SE3, is computed as

Ti = RZ (θi)PX (λi)RY (ξiφi)PX (−λi)RZ (θi) · · ·

PZ (σi)RZ (γi) =

[
Ri pi

0 1

]
(1)

where PX ∈ SE3, RZ ∈ SO3, and RY ∈ SO3 are HTM that
denotes translation along the +X-axis, rotation about the +Z-
and +Y -axes, respectively. Ri (qi, ξi) ∈ R3 × 3 is the rotation
matrix and pi (qi, ξi) ∈ R3 is the position vector. The scalar

1These are reasonable assumptions under typical operating conditions without
large external forces, as shown in [10] and [36].

2As shown in [10], the curve parameters are also functions of unactuated
length of PMAs, Li, and radius of continuum section, ri, but are not included
in the notation (constants for a given continuum arm) for brevity.



1100 IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 5, OCTOBER 2019

ξi denotes points along the neutral axis, where ξi = 0 is the
base where {O′

i} ≡ {Oi} and ξi = 1 is the tip of the continuum
section. We then apply the 13th-order multivariate Taylor series
expansion on the terms of (1) to obtain a numerically efficient
and stable modal form of the HTM [10].

Employing the continuum section HTM given in (1) and prin-
ciples of kinematics of serial robot chains, the HTM of any ith
section with respect to the task-space coordinate system {O},
Ti :

(
qi, ξi

) �→ SE3, is given by

Ti =
i∏

k=1

Ti =

[
Ri pi

0 1

]
(2)

where Ri
(
qi, ξi

) ∈ R3 × 3 and pi

(
qi, ξi

) ∈ R3 define the po-
sition and orientation of {O′

i} along the neutral axis at ξi of the
ith continuum section, respectively.

The HTM in (2) can be expanded to obtain the recursive form
of the kinematics as

Ri = Ri−1Ri

pi = pi−1 +Ri−1pi (3)

where Ri−1
(
qi−1

) ∈ R3 × 3 and pi

(
qi−1

) ∈ R3 are the sec-
tion tip rotation matrix and the position vector of the preced-
ing continuum section, respectively. Notice the absence of ξi as
ξk = 1∀k < i, as per the definition of ξi [10]. Also, from now
on, the dependence variables are not included in the equations
for reasons of brevity.

Exploiting the integral Lagrangian formulation [36], we con-
sider a thin disc at ξi (which lies on the XY plane of {O′

i}.
Utilizing (3), the angular and linear body velocities with respect
to {O′

i}, ωi

(
qi, q̇i

) ∈ R3 and υi

(
qi, q̇i

) ∈ R3, respectively,
can be defined as

Ωi = RT
i

(
Ωi−1Ri + Ṙi

)

υi = RT
i (υi−1 +Ωi−1pi + ṗi) (4)

where we define Ωi

(
qi, q̇i

) ∈ R3 × 3 and ωi = Ω∨
i for ease

of subsequent development of the EoM. The derivations are
outlined in Appendixes A and B.

As shown in [36], Jacobians and Hessians play a critical role in
recursive development of the EoM. Applying the standard tech-
niques, the angular and linear velocity Jacobians, Jω

i

(
qi, ξi

) ∈
R3 × 3n and Jυ

i

(
qi, ξi

) ∈ R3 × 3n, respectively, are derived. We
use the propertyωi = Ω∨

i to defineJΩ
i

(
qi, ξi

) ∈ R3 × 9n, in the
development of the EoM, and it is given by

JΩ
i = RT

i

[
JΩ
i−1Ri Ri,qi

]
(5)

where Jω
i =

(
JΩ
i

)∨
and JΩ

i−1

(
qi−1

) ∈ R3 × 9(n−1). Appendix
C details the derivation.

Taking the partial derivative of (5) with respect to qi, the
angular body velocity Hessian,HΩ

i = JΩ
i,qi

(
qi, ξi

) ∈ R9n × 9n,
is given by

HΩ
i =

⎡

⎣
RT

i H
Ω
i−1Ri 0

RT
i,qi

JΩ
i−1Ri · · · RT

i,qi
Ri,qT

i
· · ·

+RT
i J

Ω
i−1Ri,qi

+RT
i Ri,qT

i ,qi

⎤

⎦ (6)

where HΩ
i−1

(
qi−1

) ∈ R9(n−1) × 9(n−1). Refer to Appendix E
for the derivation.

Similarly, the linear velocity Jacobian,Jυ
i , and Hessian,Hυ

i =
Jυ
i,qi

(
qi, ξi

) ∈ R9n × 3n, are given by

Jυ
i = RT

i

[
Jυ
i−1 + JΩ

i−1pi pi,qT
i

]
(7)

Hυ
i =

⎡

⎣
RT

i

(
Hυ

i−1 +HΩ
i−1pi

)
0

RT
i,qi

(
Jυ
i−1 + JΩ

i−1pi

) · · · RT
i,qi

pi,qT
i
· · ·

+RT
i J

Ω
i−1pi,qi

+RT
i pi,qT

i ,qi

⎤

⎦ (8)

where Jυ
i−1(q

i−1, ξi) ∈ R3×3(n−1), Hυ
i−1(q

i−1) ∈
R9(n−1)×3(n−1), and the derivation is listed in Appendixes
D and F.

C. Extension for Kinematics of Centers of Gravity

Similar to Section II-B, without losing generality, we derive
the kinematics for the CoG of any ith section. We define a coordi-
nate system at the CoG,

{
Oi

}
, whose HTM, Ti : (qi) �→ SE3,

with respect to {Oi} is defined as

Ti =

∫
Ti =

[
Ri pi

0 1

]
(9)

where Ri =
∫
Ri (qi) ∈ R3 × 3 is the resultant rotation ma-

trix and pi =
∫
pi (qi) ∈ R3 is the position vector [40]. Note

that the CoG is a function of qi and, therefore, varies as the
continuum section deforms.

To derive the kinematics of the CoG coordinate frame,
{
Oi

}
,

with respect to {O}, we can combine Ti with the general HTM
given in (2). From the definition,

{
O′

i−1|ξi−1=1

} ≡ {Oi} [see
Fig. 2(b)], and therefore, CoG of the ith section relative to {O},

T
i
:
(
qi
) �→ SE3, can be defined as

T
i
=

∫
Ti−1Ti =

(
i−1∏

k=1

Tk

)(∫
Ti

)
=

[
R

i
pi

0 1

]

(10)

where R
i (
qi
) ∈ R3 × 3 is orientation and pi

(
qi
) ∈ R3 are

position matrices of the CoG coordinate frame.

Akin to (3), the recursive forms of R
i

and pi are given by

R
i
= Ri−1Ri

pi = pi−1 +Ri−1pi (11)

where Ri−1 and pi−1 are formulated from (3).
Similar to (4), the angular and linear body velocities of the

CoG (relative to
{
Oi

}
), ωi

(
qi, q̇i

) ∈ R3 and υi

(
qi, q̇i

) ∈ R3

can be derived as

Ωi = R
T
i

(
Ωi−1Ri + Ṙi

)

υi = R
T
i

(
υi−1 +Ωi−1pi + ṗi

)
(12)

where υi−1 and Ωi−1, defined in (4), are linear and angular
velocities at the tip of the (i− 1) th continuum section, respec-
tively. Here too, we employ the relationship ωi = Ω

∨
i to com-

pute Ωi

(
qi, q̇i

) ∈ R3 × 3.
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Analogous to (5)–(8), the angular body velocity Jaco-

bian of CoG, J
Ω
i

(
qi
) ∈ R3 × 9n, Hessian H

Ω
i

(
qi
) ∈ R9n × 9n,

linear body velocity Jacobian, J
υ
i

(
qi
) ∈ R3 × 3n, and Hes-

sian H
υ
i

(
qi
) ∈ R9n × 3n, are, respectively, given by (13)–(16)

as

J
Ω
i = R

T
i

[
JΩ
i−1Ri Ri,qT

i

]
(13)

H
Ω
i =

⎡

⎢
⎣

R
T
i H

Ω
i−1Ri 0

R
T
i,qi

JΩ
i−1Ri · · · RT

i,qi
Ri,qT

i
· · ·

+R
T
i J

Ω
i−1Ri,qi

+R
T
i Ri,qT

i ,qi

⎤

⎥
⎦ (14)

J
υ
i = R

T
i

[
Jυ
i−1 + JΩ

i−1pi pi,qT
i

]
(15)

H
υ
i =

⎡

⎢
⎣

R
T
i

(
Hυ

i−1 +HΩ
i−1pi

)
0

R
T
i,qi

(
Jυ
i−1 + JΩ

i−1pi

) · · · RT
i,qi

pi,qT
i
· · ·

+R
T
i J

Ω
i−1pi,qi

+R
T
i pi,qT

i ,qi

⎤

⎥
⎦ . (16)

D. Case Study: Point Versus Nonpoint Mass at the CoG

Consider the CoG velocities depicted in (12) when Ωi−1 =
[0, 0, ωz] with ωz 
= 0, υi−1 = 0, qi = 0, and q̇i = 0. Physi-
cally, this refers to a nonactuating ith continuum section (essen-
tially a cylinder of lengthLi0 and radius ri, whose CoG is located
at the midpoint, i.e., pi =

[
0, 0, Li0

2

]
, of the neutral axis, where

the tip of the (i− 1) th section rotates in place without transla-
tion. This scenario is theoretically possible and demonstrated in
[10], where kinematic decoupling is present in multisection con-
tinuum arms. From (12), the CoG velocities becomeΩi = Ωi−1

and υi = 0. The kinetic energies of the ith section then become
Kω

i = 1
4mir

2
i ω

2
z andKυ

i = 0. If a point mass is considered at the
CoG, it will result in Kω

i = Kυ
i = 0. As a result, a point-mass

model is inadequate for modeling multisection continuum arms.
Thus, in this paper, we will consider a hypothetical thin disc of
massmi and radius ri on theXY plane of

{
Oi

}
with its geomet-

ric center coinciding the origin of
{
Oi

}
, i.e., at the CoG [see

Fig. 2(b)]. The kinetic energies then become Kω
i = 1

4mir
2
i ω

2
z

and Kυ
i = 0 to match that of the actual continuum section en-

ergy. Employing the disc model at the CoG, Section III derives
the energy-shaping coefficients [40] to match energies to that of
the integral model reported in [36].

III. DERIVE ENERGY BALANCE OF THE COG-BASED SYSTEM

A. Continuum Section Kinetic Energy: Integral and
CoG-Based Models

Without losing generality, we next derive the kinetic ener-
gies, angular and linear, for any ith continuum section. Then,
we compare the terms to formulate the energy scaling condi-
tions. Analogous to [36], to find the kinetic energy of the con-
tinuum section using an integral approach, we will consider an
infinitesimally thin disc of radius ri along the length of the con-
tinuum section. By applying the body velocities given by (4),
the energy computed for a disc is then integrated with respect
to ξi to compute the section energy. The angular kinetic energy,

Kω
i :
(
qi, q̇i

) �→ R+
0 , is given by

Kω
i =

∫ (
1

2
ωT

i Mω
i ωi

)
=

1

2
IxxT2

(∫
ΩT

i Ωi

)

=
1

2
IxxT2

(∫
RT

i Ω
T
i−1Ωi−1Ri · · ·

+2

∫
ṘT

i Ωi−1Ri +

∫
ṘT

i Ṙi

)
(17)

where Ixx = 1
4mir

2
i is the moment of inertia about the X-axis

of {O′
i}.

Using the angular velocity given in (12), the angular kinetic
energy of the disc at the CoG, Kω

i :
(
qi, q̇i

) �→ R+
0 , becomes

Kω
i =

1

2
ωT

i Mω
i ωi =

1

2
IxxT2

(
Ω

T
i Ωi

)

=
1

2
IxxT2

(
R

T
i Ω

T
i−1Ωi−1Ri + 2Ṙ

T

i Ωi−1Ri + Ṙ
T

i Ṙi

)

(18)

Similarly, using the linear body velocity in (4), the linear ki-
netic energy of the continuous model, Kυ

i :
(
qi, q̇i

) �→ R+
0 , can

be computed as

Kυ
i =

∫ (
1

2
υT
i Mυ

i υi

)

=
1

2
mi

(
υT
i−1υi−1 + 2υT

i−1Ωi−1pi + 2υT
i−1ṗi · · ·

+

∫
pT
i Ω

T
i−1Ωi−1pi + 2

∫
pT
i Ω

T
i−1ṗi +

∫
ṗT
i ṗi

)

(19)

where Mυ
i = miI3. Additionally, the CoG model’s linear

kinetic energy, Kυ
i :
(
qi, q̇i

) �→ R+
0 , is derived as

Kυ
i =

1

2
υT
i Mυ

i υi =
1

2
mi

(
υT
i−1υi−1 + 2υT

i−1Ωi−1pi · · ·

+2υT
i−1ṗi + pT

i Ω
T
i−1Ωi−1pi + 2pT

i Ω
T
i−1ṗi + ṗ

T
i ṗi

)
.

(20)

B. Minimize Energy Difference Between the Integral and
CoG-Based Models

In this section, utilizing the energies derived in Section III-A,
we systematically derive scalars to match the kinetic energy of
the CoG models to that of the integral model. Unlike the single-
section case [40] however, the kinetic energy is dependent on
the velocities of the ith section, as well as the previous sections.
Consider the angular energy difference between the models,
derived for the ith continuum section, given by

Kω
i −Kω

i =
1

2
IxxT2

(∫
ṘT

i Ṙi − βω
3 Ṙ

T

i Ṙi · · ·

+ 2

∫
RT

i Ω
T
i−1Ωi−1Ri − 2βω

1 R
T
i Ω

T
i−1Ωi−1Ri · · ·

+

∫
ṘT

i Ωi−1Ri − βω
2 Ṙ

T

i Ωi−1Ri

)
(21)
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whereβω
k ∀k ∈ {1, 2, 3} are the energy-shaping coefficients that

we apply to the CoG energy terms to match the energies.
Note that, in this case, unlike the single-section case reported

in [41], we have three terms that do not get canceled when taking
the difference. Likewise, the linear kinetic energy difference is
computed as

Kυ
i −Kυ

i =
1

2
mi

(∫
pT
i Ω

T
i−1Ωi−1pi − βυ

1p
T
i Ω

T
i−1Ωi−1pi · · ·

+ 2

∫
pT
i Ω

T
i−1ṗi − 2βυ

2p
T
i Ω

T
i−1ṗi · · ·

+

∫
ṗT
i ṗi − βυ

3 ṗ
T
i ṗi

)
. (22)

Notice that some terms are canceled due to the absence of
products of integrable terms, thus resulting in three remaining
terms. We introduce the energy-shaping coefficients, βυ

k ∀k ∈
{1, 2, 3}, for each of those terms. The coefficients, introduced
in (21) and (22), will be solved in the latter part of this section
through a multivariate optimization routine.

1) Generate Random Sample Set: Including the physi-
cal robot parameters such as Li0, li, and ri, the energy
differences given by (21) and (22) become functions of
(αl, αr, qi, q̇i,Ωi−1) ∈ R11, where αl =

max(li)
Li0

and αr = ri
Li0

are the normalized length and radius of the continuum section.
Similarly, we generate 107 random combinations ofαr ∈ [ 1

20 ,
1
2 ],

αl ∈ [ 1
20 ,6παr], qi ∈ [0, αlLi0], and q̇i ∈ [0, Li0]. The upper

bound of αl limits the maximum bending angle of continuum
sections to 4π

3 . Also, note that Ωi−1 depends on
(
qi−1, q̇i−1

)
,

and for a general ith section, it is not possible to sample the joint-
space variables since i is arbitrary. To overcome this challenge,
we generate random Ωi−1, where each component is chosen
from the range

[−102, 102
]
. Note that these parametric bounds

for Ωi−1 and αl, though arbitrary and unrealistically large for
physical continuum arms, were chosen to ensure the rigor and
generality of the proposed model and within the error bounds of
the 13th-order modal shape functions used in this paper. How-
ever, one may increase this bound (which would also require ad-
justing the order of modal shape functions of the HTM elements
to meet the desired position and orientation error metrics at the
tip at the maximum bending). More details related to choosing
expansion order and errors can be found in [10].

2) Computing the Energy-Shaping Coefficients: For the
random combinations of joint-space variables and physical
parameters generated in the previous step, corresponding ki-
netic energy differences of the integral and CoG-based mod-
els, depicted in (21) and (22), are computed. As suggested by
the definitions, for the ease of comparison of corresponding
terms, we computed the three residual terms of each of ki-
netic energy differences separately. For instance, in the case
of Kω

i , terms T2(
∫
RT

i Ω
T
i−1Ωi−1Ri), 2T2(

∫
ṘT

i Ωi−1Ri),
and T2(

∫
ṘT

i Ṙi) are computed separately. Similarly, for Kω
i ,

T2(R
T
i Ω

T
i−1Ωi−1Ri), 2T2(Ṙ

T

i Ωi−1Ri), and T2(Ṙ
T

i Ṙi) are
computed separately. Then, the sum of these terms, scaled by
1
2Ixx, will yield the energy difference, Kω

i −Kω
i . The same ap-

proach is followed for the linear kinetic energy difference given

Fig. 3. Comparison of the ratios of energy terms given by (22): (a)∫
pT
i ΩT

i−1Ωi−1pi versus pT
i ΩT

i−1Ωi−1pi, R
2 = 0.998 (where R2 is the

coefficient of determination, also known as R-squared), (b)
∫
pT
i ΩT

i−1ṗi

versus pT
i ΩT

i−1ṗi, R2 = 0.9966, and (c)
∫
ṗT
i ṗi versus ṗ

T
i ṗiR

2 =
0.9984. Similarly, the comparison of the ratio of energy terms given by

(21): (d)
∫
ṘT

i Ṙi versus ˙
R

T

i
˙
Ri, R2 = 0.9993, (e) 2

∫
RT

i ΩT
i−1Ωi−1Ri

versus 2R
T
i ΩT

i−1Ωi−1Ri, R2 = 0.9975, and (f)
∫
ṘT

i Ωi−1Ri versus

˙
R

T

i Ωi−1Ri, R2 = 0.9914. The strong correlation between the terms are ev-
idenced by less than 5 × 10−4 (<0.036% normalized to coefficients) 95%
confidence intervals for each fit.

by (22) and scaled by mi

2 . The corresponding terms for the inte-
gral system and the CoG-based system are then plotted against
each other in Fig. 3.

It can be seen that, despite the variation of the physical shape
(max (lij) and ri), there are proportional relationships between
the matching terms of the two analytical models. This indicates
us that the fundamental variable-length continuum section be-
havior across the two systems is proportional and independent
of the physical shape. The proportional constants can be com-
puted in two ways. One approach is to consider matching terms
individually and compute the least-squares linear fit. The other
approach is to consider the kinetic energy of the entire system
and find the optimal coefficients that would minimize the cu-
mulative energy difference. In this paper, we have opted for the
latter approach, since it provided a slight, though negligible, im-
provement in energy matching. We formulated our optimization
problem in MATLAB 2017a and used global optimization
on the in-built fmincon multivariate constrained optimiza-
tion subroutine using the objective function Kυ

i −Kυ
i (β

υ) +
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Fig. 4. Normalized energy difference between the integral and CoG-based
modeling approaches for a ten-section continuum arm. (a) Energy difference
for 106 randomly selected joint-space displacement and velocity samples.
(b) Histogram of the normalized energy difference for the same samples.

Kω
i −Kω

i (βω) for all 107 parametric combinations. Noting the
direct proportionality, we bounded the scalar range to [0, 1] for
numerical efficiency. The resultant energy-shaping coefficient
values are shown in Fig. 3.

Notice that the proportional coefficient of Fig. 3(f) is slightly
more aggressive than what the data suggest. The reason is the
difference of the ratio of contributions from individual terms.
For instance, the contribution of the term mi

2

∫
ṗT
i ṗi is orders

of magnitude greater than that of the term 1
2IxxT2(

∫
ṘT

i Ṙi).
The system-wide energy consideration would then place more
emphasis on larger contributors to yield optimal energy scalars,
and this explains the suboptimal results of the termwise com-
putation of proportional coefficients. However, based on our
computations, given the strong correlation of the energy terms
(< ±0.036% normalized 95% bound) between the two model-
ing approaches, either method produces sufficient accuracy for
practical purposes.

3) Numerical Validation of Energy-Shaping Coefficients: In
this section, we statistically validate the coefficients generated
in the previous section for a ten-section continuum robot model.
For an n-section continuum arm, 6n variables are required to
compute the kinetic energy (3n joint-space displacements and
velocities each). Assuming L0 = 0.15 m, ri = 0.0125 m, and
mi = 0.1 kg [physical parameters corresponding to the proto-
type arm shown in Fig. 1(a)], here, we generate 106 random
sample values based on uniform distribution (to ensure ac-
curate statistical distribution of error) within [0, 0.07m] and
[−L0, L0]ms−1 for q and q̇, respectively, for the continuum
arm numerical model. The difference of the complete system
kinetic energies is computed by taking the cumulative of sec-
tionwise energy differences given by (21) and (22). The energy
difference percentages, normalized to max (Kυ

i +Kω
i ), for each

sample, are then computed and plotted in Fig. 4(a). Note that
max(Kυ

i +Kω
i ) is not the absolute maximum kinetic energy

for the given robot, but rather it is a statistical upper bound,
and therefore, the energy percentage errors computed here are
conservative, and the actual error is likely to be significantly
lower in practice. The percentage error distribution is shown
in Fig. 4(b). The figure shows that the energy difference is es-
sentially negligible with less than 10−7 mean percentage error.
The results show that the computed energy scalars are accu-
rate and applicable for arbitrary length continuum arms without
undesirable error propagation, eliminating the need for complex
integral terms.

C. Potential Energy of Continuum Sections

As reported in [36], a continuum arm is subjected to gravi-
tational and elastic potential energies. Elastic potential energy,
given by Pe = 1

2q
TKeq, only depends on q and is, therefore,

independent of the modeling approach herein. The gravitational
potential energy for the integral and CoG-based model can be
defined as Pg

i =
∫
mig

Tpi and Pg
i = mig

Tpi, respectively.
Note that Pg

i does not contain products of integrable terms.
Therefore, Pg

i can be simplified to Pg
i = mig

T
(∫

pi
)

and,
from the definition (10), then becomes Pg

i = mig
T
(
pi
)
= Pg

i .
Thus, the gravitational potential energy is identical in both
models.

IV. RECURSIVE FORMULATION OF EOMS

This section utilizes the energy relationships derived in
Section III-B2 to formulate the recursive form of the EoM. Let
the Lagrangian of the system using the CoG-based model be
K − P . Then, the EoM in standard form is given by

Mq̈ +Cq̇ +G = τ (23)

where M ∈ R3n × 3n, C ∈ R3n × 3n, G ∈ R3n × 1, and τ ∈
R3n × 1 are generalized inertia matrix, centrifugal and Coriolis
force matrix, conservative force matrix, and joint-space input
force vector, respectively.

From the theorems derived in [36], we can decompose these
matrices into sectionwise contributions as M =

∑
Mi, C =∑

Ci, and G =
∑

Gi, respectively. In this section, we derive
the sectionwise contributions in recursive form to compute the
EoM in (23). Note that the CoG-based model was derived by
integrating the integral terms with respect to ξ, a scalar (see
Section II-C). As a result, the joint-space terms between the
integral Lagrangian and CoG-based models remain unaffected
during EoM formulation via Lagrangian principles.

A. Generalized Inertia Matrix
(
Mi

)

Analogous to the integral modeling approach [36], we can
define the ith section kinetic energy to be the sum of the scaled
(using the energy scalars to match the integral model) angular
and linear kinetic energies, Ki = Kυ

i +Kω
i . Thus, by applying

the partial derivatives with respect to the joint-space velocities
on Ki, we obtain the generalized inertia matrix contributions as

Mi = M
ω
i +M

υ
i . Using the angular velocity Jacobian, J

Ω
i and

the scalar coefficients derived in Section III-B2, we can derive
M

ω
i as

M
ω
i = IxxT2

[
βω
1 σ

ω
11 βω

2 σ
ω
12

βω
2 σ

ω
12

T βω
3 σ

ω
22

]

(24)

where σω
11 =

(
JΩ
i−1Ri

)T
JΩ
i−1Ri, σω

12 =
(
JΩ
i−1Ri

)T
Ri,qT

i
,

and σω
22 = R

T
i,qT

i
Ri,qT

i
.

Equivalently, by applying the recursive form of the Jacobian
in (15) and the energy scalars derived in Section III-B2, we can
derive M

υ
i as

M
υ
i = mi

[
συ
11 συ

12

συ
12

T συ
22

]

(25)
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TABLE III
TERMS ASSOCIATED WITH (27) AND (28)

where συ
11 = Jυ

i−1
T (Jυ

i−1+2JΩ
i−1pi) + βυ

1 (J
Ω
i−1pi)

TJΩ
i−1pi,

συ
12 =

(
Jυ
i−1 + βυ

2J
Ω
i−1pi

)T
pi,qT

i
, and συ

22 = βυ
3p

T
i,qT

i
pi,qT

i
.

B. Coriolis and Centrifugal Force Matrix
(
Ci

)

Using partial derivatives of Mi, the Christoffel symbols of
the second kind are used to derive the Ci elements as

[
Ci

]
jk

=
1

2

3i∑

h=1

([
Mi

]
kj,qh

+
[
Mi

]
kh,qj

−[Mi

]
hj,qk

)
q̇h.

(26)

Noting thatMi = M
ω
i +M

υ
i , by applying partial derivatives

with respect to h ∈ qi, we get Mi,h = M
ω
i,h +M

υ
i,h. Hence,

considering the variable with respect to which the partial deriva-
tion is carried out, we can obtain M

ω
i,h as

M
ω
i,h = IxxT2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
ηω11 ηω12

ηω12
T ηω22

]

, h ∈ qi−1

[
γω
11 γω

12

γω
12

T γω
22

]

, h ∈ qi

(27)

where (HΩ
i−1)h = JΩ

i−1,h is the submatrix ofHΩ
i−1 and the terms

are listed in Table III.
Similarly, M

υ
i,h is given by

M
υ
i,h = mi

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
ηυ11 ηυ12

ηυ12
T ηυ22

]

, h ∈ qi−1

[
γυ
11 γυ

12

γυ
12

T γυ
22

]

, h ∈ qi

(28)

where
(
Hυ

i−1

)
h
=
(
Jυ
i−1

)
,h

is the submatrix of Hυ
i−1 and the

terms are listed in Table III.

Algorithm 1: Outline of the CoG-Based EoM Derivation
via Recursive Lagrangian Formulation.

FOR i FROM 1 TO n DO
compute pi, Ri, pi, Ri, and partial derivatives
compute Mi = Mi + (Mω

i +Mυ
i )

compute Gi = Gi + (Gp
i +Ge

i )
FOR h FROM 1 TO n DO

compute Mi,h

update Jυ
i ,J

ω
i , pi, and Ri

FOR i FROM 1 TO n DO
compute Ci= f (Mi,h)

SOLVE
Mq̈ +

(
C+D

)
q̇ +G = τ

C. Conservative Force Matrix (Gi)

The total potential energy of a continuum section is Pi =
Pg
i + Pe

i , wherePg
i andPe

i are gravitational and elastic potential
energies. Therefore, Gi can be written as Gi = Gg

i +Ge
i [36].

For the ith section, Pg
i can be written as Pg

i = mig
Tpi. As

there are no products of integrable terms, Gg
i is identical for

both integral and CoG-based models and given by

Gg
i
T
=
(
mig

Tpi
)
,(qi)T

= mig
TRi−1

[
Jυ
i−1 + JΩ

i−1pi pi,qT
i

]
(29)

where the derivation is included in Appendix G.
The elastic potential energy, Pe = 1

2q
TKeq, is independent

of mass or the relative position in the task-space. Hence, similar
to Gg

i , Ge
i identical in both integral and CoG-based systems and

could be readily formulated as

Ge
i = Pe

i,qi
= Keqi. (30)

D. Numerical Simulation Model

The EoM numerical model was implemented in MATLAB
2017a on a computer with Intel i7-4910MQ (2.9 GHz) and
32-GB RAM. The HTM was implemented in Maple 16 [45] sym-
bolically and manipulated to derive the CoG-based terms and
the partial derivatives thereof. Similarly, the kinematic terms of
the ith section used for computing the forward kinematics [i.e.,
Jacobians given by (5) and (7) and Hessians given by (6) and (8)]
were computed by making ξi = 1. Algorithm 1, implemented
in the MATLAB Simulink environment, is used to numerically
solve the EoM using the integrated ODE15s solver. Fig. 5(a)
compares the CoG-based model against the integral dynamics
model reported in [36], where the former is of O (n2

)
, whereas

the latter is O (n3
)
. For a single-section system (three DoFs),

both models show similar computation cost, but the numeri-
cal efficiency of the proposed model is evident for multisection
continuum arms. The performance gain achieved by the pro-
posed model relative to the integral dynamics model is plotted
in Fig. 5(b). It can be seen that the CoG model is ideally suited
for simulating dynamics of multisection continuum arms. The
dynamic parameters and coefficients, such as Ke

i and Di, are
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Fig. 5. (a) Time complexity comparison and (b) performance gain of CoG-
based dynamics against integral Lagrangian dynamics as the number of contin-
uum sections (i.e., DoF) increase.

difficult to measure or accurately estimate solely through phys-
ical and material properties. Therefore, such parameters were
identified through an iterative system characterization process.
In addition, input force τ is computed as τ = PA, where P is
the input pressure vector, and A = 2.2 × 10−4 m2 is the PMA
cross-sectional area. The reader is referred to [36] for a detailed
discussion of the process including the information regarding
the experimental setup and continuum arm shape measurement
techniques.

V. COMPARISON TO EXPERIMENTAL RESULTS AND

INTEGRAL DYNAMICS

Fig. 1(a) shows the prototype continuum arm utilized in the
following experiments. We use the data reported in [36] and
compare the proposed CoG-based dynamics against the integral
dynamics and the experimental results therein. Readers are re-
ferred to [36] for side-by-side visual comparison of resulting
continuum arm motion.

The first experiment involves sectionwise actuation of all the
sections on the y = 0 plane. The joint-space variables (physi-
cally the PMA’s of continuum sections), l33, l22, and l11, are sup-
plied with 600, 500, and 500 kPa step pressure inputs at t = 0 s,
t = 3.2 s, and t = 7.55 s, respectively. The EoM given in (23),
derived using the proposed CoG-based approach, is the provided
the same pressure input to simulate the forward dynamics. The
simulation took 1.13 s to complete, which is 6.69 times faster
than real time. The resultant joint-space trajectories are then
applied to the kinematic model given by (23) to compute the
associated tip task-space trajectories. The section tip coordinate
task-space trajectories, measured using a two-camera setup [36]
(illustrated in various shaped discrete markers), are then com-
pared to the simulated task-space trajectories (drawn in solid
lines) in Fig. 6. In addition, the task-space trajectories computed
by the integral dynamics [36] are also included to compare the
performance of the two approaches (shown in dotted lines). The
errors between the experimental data versus CoG-based model
and integral dynamics are also shown in each of the subplots
for ease of comparison. It can be seen that the difference in er-
rors and simulated results between the two numerical models is
negligible. The aggregated error, plotted in the bottom subplot,
shows the maximum error among the three tip positions and the
mean of the position errors of all sections. It can be seen that the
proposed model matches the integral dynamics proposed in [36].

Fig. 6. Tip coordinate (X: blue, Y : black, and Z: red) trajectories of contin-
uum sections for the first experiment. Experimental X , Y , and Z trajectories
for each section tips are denoted by +, ◦, and × marks, respectively. Integral
dynamic simulation results are shown in dashed (- -) lines, whereas CoG-based
dynamic simulation results are shown in solid lines of the same colors. Tip
trajectory plots include the position errors (Euclidean distance between experi-
mental and simulation data) at each tip for integral dynamics (magenta * marks)
and CoG-based dynamics (solid magenta lines). The mean (dashed lines)and
maximum (solid lines) of the tip errors for the integral (blue) and CoG-based
(red) dynamics are shown in the bottom plot.

Similar plots are generated for two further experiments detailed
below.

The second experiment involves the actuation of the distal
and mid section in two nonparallel bending planes, while the
base section remains unactuated. Step pressure inputs of 300 and
500 kPa were applied to l23 at t = 0 s and l33 at t = 3.3 s, re-
spectively. The resulting experimental and simulated task-space
trajectories (using both integral dynamics and CoG-based dy-
namics) are shown in Fig. 7. The base section, though unactu-
ated, deforms passively to balance the dynamic forces induced
by the other moving sections and weight of the arm due to grav-
ity, which is correctly modeled by both integral and CoG-based
dynamic models. The numerical computation was 7.8 times
faster than real time and completed within 0.89 s. Both models
show comparable errors during the transient phase of the step
response, but both models correctly simulate the steady-state
dynamics afterward. The error in this experiment also varies
during the step input transient stages, but section settles down
quickly.

The third experiment extends the second and includes the ac-
tuation of the base section. The prototype and the dynamic model
are provided pressure step inputs of 500, 300, and 300 kPa are,
respectively, to actuators l33 at t = 0 s , l23 at t = 2.55 s, and l11
at t = 5.05 s and maintained during the experiment, and cause
the continuum arm sections to deform in nonparallel planes.
Fig. 8 compares the integral and CoG-based dynamics against
the experimental results reported in [36]. The simulation only
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Fig. 7. Tip coordinate (X: blue, Y : black, and Z: red) trajectories of contin-
uum sections for the second experiment. The legend is the same as Fig. 6.

Fig. 8. Tip coordinate (X: blue, Y : black, and Z: red) trajectories of contin-
uum sections for the third experiment. The legend is the same as Fig. 6.

took 1.3 s to complete this 7.9-s-long experiment, which is 7.3
times faster than real time. It can be seen that the CoG-based dy-
namics agrees with both the integral dynamics and experimental
results. These experimental and empirical data demonstrate that
the proposed numerically efficient CoG-based dynamic model
for variable-length multisection continuum arms successfully
simulates both the transient and steady-state dynamic behaviors
well.

VI. CONCLUSION

Multisection continuum arms have strong potential for use in
human-friendly spaces. Despite continued research, they have
yet to make their mark outside the laboratory settings. A key rea-
son for this is the lack of numerically efficient dynamic models
that can be used in sub-real-time. Accuracy, numerical stabil-
ity, and efficiency are critical for dynamic models to be used
in dynamic control. Limited research has been conducted on
physically accurate dynamic modeling of multisection contin-
uum arm experimental validation thereof. In this paper, a novel
CoG-based dynamic model was proposed. The work extended
our prior work on CoG-based modeling of a single continuum
section to derive a general model that can be used not only on
arbitrarily long continuum arms, but also such robots of vary-
ing physical sizes. The results show that the model accommo-
dates arbitrarily long variable-length multisection continuum
arms and various length–radii combinations, considers both lin-
ear and angular kinetic energies at the CoGs of sections for
more accuracy in energy computation, matches energy through
a series of constant (for any variable-length multisection contin-
uum arm) energy-shaping coefficients, derives the EoM terms
recursively, attains O (n2

)
complexity for continuous (nondis-

cretized) dynamic model for variable-length arms, and is six
to eight times numerically efficient than real time for a three-
section continuum arm model (suitable for implementing dy-
namic control schemes) and runs at 9.5 kHz. The model was
experimentally validated on a three-section continuum arm and
showed that results agree well with both the robot output and
the integral dynamic models.

APPENDIX

MATHEMATICAL DERIVATIONS

A. Recursive Angular Body Velocity

Ωi = RiT Ṙi

=
(
Ri−1Ri

)T (
Ṙi−1Ri +Ri−1Ṙi

)

= Ri

{(
Ri−1T Ṙi−1

)
Ri +

(
Ri−1TRi−1

)
Ṙi

}

= RT
i

(
Ωi−1Ri + Ṙi

)
. (31)

B. Recursive Linear body Velocity

υi = RiT ṗi

=
(
Ri−1Ri

)T (
ṗi−1 + Ṙi−1Ri +Ri−1ṗi

)

= RT
i

{(
Ri−1T ṗi−1

)
Ri +

(
Ri−1T Ṙi−1

)
pi · · ·

+
(
Ri−1TRi−1

)
ṗi

}

= RT
i (vi−1 +Ωi−1pi + ṗi) . (32)
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C. Recursive Angular Body Velocity Jacobian

JΩ
i = Ω

i,(q̇i)
T

= RT
i

(
Ωi−1Ri + Ṙi

)

,(q̇i)
T

= RT
i

[
Ω

i−1,(q̇i−1)
TRi Ṙi,q̇T

i

]

= RT
i

[
JΩ
i−1Ri Ri,qi

]
. (33)

D. Recursive Linear Body Velocity Jacobian

Jυ
i = υ

i,(q̇i)
T

= RT
i (υi−1 +Ωi−1pi + ṗi) ,(q̇i)

T from (4)

= RT
i

[
υ
i−1,(q̇i−1)

T +Ω
i−1,(q̇i−1)

T pi ṗi,q̇T
i

]

= RT
i

[
Jυ
i−1 + JΩ

i−1pi pi,qT
i

]
. (34)

E. Recursive Angular Body Velocity Hessian

HΩ
i = JΩ

i,qi

=
(
RT

i

[
JΩ
i−1Ri Ri,qT

i

])
,qi

=

⎡

⎢
⎣
RT

i

(
JΩ
i−1,qi−1

)
Ri Ri,qT

i ,qi−1

RT
i,qi

JΩ
i−1Ri · · · RT

i,qi
Ri,qT

i
· · ·

+RT
i J

Ω
i−1Ri,qi

+RT
i Ri,qT

i ,qi

⎤

⎥
⎦

=

⎡

⎣
RT

i H
Ω
i−1Ri 0

RT
i,qi

JΩ
i−1Ri · · · RT

i,qi
Ri,qT

i
· · ·

+RT
i J

Ω
i−1Ri,qi

+RT
i Ri,qT

i ,qi

⎤

⎦ . (35)

F. Linear Body Velocity Hessian

Hυ
i = Jυ

i,qi

=
(
RT

i

[
Jυ
i−1 + JΩ

i−1pi pi

])
,qi

=

⎡

⎢
⎣
RT

i

(
Jυ
i−1,qi−1 + JΩ

i−1,qi−1pi

) (
RT

i pi,qT
i

)

,qi−1

RT
i,qi

(
Jυ
i−1 + JΩ

i−1pi

) · · · RT
i,qi

pi,qT
i
· · ·

+RT
i J

Ω
i−1pi,qi

+RT
i pi,qT

i ,qi

⎤

⎥
⎦

=

⎡

⎣
RT

i

(
Hυ

i−1 +HΩ
i−1pi

)
0

RT
i,qi

(
Jυ
i−1 + JΩ

i−1pi

) · · ·RT
i,qi

pi,qT
i
· · ·

+RT
i J

Ω
i−1pi,qi

+RT
i pi,qT

i ,qi

⎤

⎦ . (36)

G. Conservative Force Vector, (Gg
i )

Gg
i
T
= mig

T
(
pi
)
,(qi)T

= mig
TR

i
{
R

iT (
pi
)
,(qi)T

}

= mig
TR

i
Jυ
i−1

= mig
T
(
Ri−1Ri

)
RT

i

[
Jυ
i−1 + JΩ

i−1pi R
i−1pi,qT

i

]

= mig
TRi−1

(
RiR

T
i

) [
Jυ
i−1 + JΩ

i−1pi R
i−1pi,qT

i

]

= mig
TRi−1

([
Jυ
i−1 + JΩ

i−1pi R
i−1pi,qT

i

])
. (37)
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