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Kinematics for Multisection Continuum Robots
Bryan A. Jones, Member, IEEE, and Ian D. Walker, Fellow, IEEE

Abstract—We introduce a new method for synthesizing kine-
matic relationships for a general class of continuous backbone, or
continuum, robots. The resulting kinematics enable real-time task
and shape control by relating workspace (Cartesian) coordinates
to actuator inputs, such as tendon lengths or pneumatic pressures,
via robot shape coordinates. This novel approach, which carefully
considers physical manipulator constraints, avoids artifacts of
simplifying assumptions associated with previous approaches,
such as the need to fit the resulting solutions to the physical robot.
It is applicable to a wide class of existing continuum robots and
models extension, as well as bending, of individual sections. In
addition, this approach produces correct results for orientation,
in contrast to some previously published approaches. Results of
real-time implementations on two types of spatial multisection
continuum manipulators are reported.

Index Terms—Biologically inspired robots, continuum robot,
kinematics, tentacle, trunk.

I. INTRODUCTION

CONTINUUM robots, in contrast to traditional rigid-link
robots, feature a continuous backbone with no joints [24],

as illustrated in Fig. 1. In this sense, they are essentially inverte-
brate, as opposed to the vertebrate-like structure of conventional
robots. The wide range of abilities demonstrated by invertebrate
limbs, such as elephant trunks [9], [14], [28], octopus arms [19],
[23], and squid tentacles [30], have motivated a recent surge of
research activity in continuum robots. Potential applications in-
clude navigation and operation inside complex, congested en-
vironments, such as collapsed buildings in search and rescue
operations [4], [29], [32] or the human body in medical appli-
cations [25], [26]. Continuum robots also enable novel forms
of environmental interaction, via compliant and/or whole-arm
manipulation [13].

Realization of continuum robots proves to be a very inter-
esting and challenging problem. A large proportion of efforts
in the area have focused on design and construction of con-
tinuum robot hardware. To date, a number of interesting hard-
ware prototypes have been produced [1], [9], [14], [15], [19],
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Fig. 1. Clemson’s Air-OCTOR multisection continuum robot.

[22], [27], as well as several commercial products [3], [16],
[28]. These manipulators demonstrate the strong potential of
continuum robots. In comparison, efforts in modeling and real-
time algorithm development to extract the full physical poten-
tial from these robots have lagged behind. For example, almost
all previous approaches either do not address trunk orientation
and approximate positional kinematics, or solve them only for
limited kinematic models, which constrain the performance of
continuum robot hardware to reduced classes of shapes and mo-
tions, restricting their potential applicability.

Hirose and colleagues designed the serpeniod curve, which
closely matches the kinematics of a snake’s body in 2-D as
it crawls across the ground [15]. However, this paper does
not address the 3-D kinematics of the many snake-like robots
they designed, instead focusing on their planar dynamics.
Chirikjian and Burdick took the opposite approach, in which
they link the shape of a particular mathematical curve to a
high-degree-of-freedom (DOF) robot [6]–[8]. Their modal
decomposition then reduced the number of DOFs necessary
to control this curve to which a robot was fitted, such as
the 30-DOF robot discussed in their work. However, few
continuum robots match the proposed curve, limiting its ap-
plicability. Although recent work [11] extends this approach
by introducing a more convenient curve which eliminates
the problem of mode switching, this method likewise relies
on approximating the shape of an actual robot. An alternate
approach is to exactly compute the kinematics of a high-DOF
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manipulator composed of spherical joints and rigid links using
standard Denavit–Hartenberg (D-H) methods [32]; however,
this approach cannot be applied to continuum robots, which
contain no prismatic or revolute joints. The authors of [14]
returned to Hirose’s concept by choosing a curve (an arc of
a circle) which closely matches the kinematics of continuum
robots, due to the equal distribution of forces inherent in the
design of continuum robots [13], an assumption also made
throughout this paper. However, the model in [14] assumes
an inextensible backbone, does not correctly determine the
orientation of the trunk tip due to a simplifying assumption in
the model, and is limited to the particular physical design (a
unique actuator arrangement) of hardware implemented by the
authors of [14].

These approaches constrain the performance of continuum
robot hardware to reduced classes of shapes and motions, which,
in turn, has restricted their potential applicability. In this paper,
we modify and extend some of the ideas in [14] as part of a new
and quite general kinematic formulation for continuum robots.
This approach, unlike previous work, produces complete and
correct results for both task-space position and orientation. The
method fully models for the first time, to the best of our knowl-
edge, the exact kinematics of trunk sections which can extend
in length, as well as bend in two dimensions using closed-form
equations. The approach is also modular, allowing its appli-
cation to a wide range of physical realizations, including, in
particular, the common three evenly spaced tendons per sec-
tion design. In addition, the resulting Jacobians, derived via a
straightforward application of well-known D-H techniques and
the chain rule, are relatively simple and computable in real time.
This model also allows a straightforward analysis of singulari-
ties present in a continuum manipulator. In the following sec-
tions, we discuss the modeling approach, describe the various
kinematic transformations and Jacobian synthesis in detail, an-
alyze uniqueness, singularities, and accuracy, and report results
from a real-time hardware implementation on two different mul-
tisection continuum robots.

II. MODULAR APPROACH

Deriving kinematics using the method introduced in this
paper involves two steps. First, this work extends an earlier
method [14] by formulating the trunk kinematics problem as
a series of substitutions applied to a modified homogenous
transformation matrix computed using a D-H-type approach.
As in [14], this formulation also relies on the assumption that
the trunk bends with constant curvature, due to the compliance
of the trunk [13]. Second, velocity kinematics are developed by
first determining the Jacobian using standard techniques based
on the D-H table, then by chaining together the Jacobians pro-
duced by computing derivates of each succeeding substitution.
The following paragraphs outline this approach, while the next
section develops the resulting equations in detail.

In conventional manipulator forward kinematics, a standard
homogenous transformation matrix produced via a D-H
table is used to transform local shape coordinates into task
coordinates , representing both end-effector position and ori-
entation. This is based on a series of independent rotations

Fig. 2. Manipulator variables , , and , where gives the rotation in the
plane. Three cables of length , running in straight lines between equidistant

cable guides, are also shown.

and translations with one independent variable per joint at
each of the joints. However, continuum robots lack explicit
joints, with the equivalent to rotations and translations
being an arc of constant curvature modeled by trunk parameters
, , and , where gives trunk length, determines curvature,

and determines the angle of curvature, as shown in Fig. 2.
A critical question for continuum robot kinematics is how to
modify conventional robot kinematics to fit this case.

A fundamental concept exploited in this paper, first intro-
duced by [14], is to fit a conceptual conventional rigid-link
manipulator to the continuous backbone of a continuum
robot. Using simple geometric arguments, the work in [14]
determined the relationship between
D-H table parameters and and the trunk parameters ,

, and . Implicit substitution enables computation of trunk
tip position and orientation as a function of , , and as

. This allows the use of modified
D-H procedures to relate end-effector task coordinates to robot
shape [14].

Next, to map , , and to specific continuum robot hard-
ware, another transformation is necessary, which varies based
on the construction of the robot, demonstrating the modularity
of this approach. For the Clemson Elephant Trunk manipulator,
the work in [14] determined a mapping to
compute , , and , given the length of the four cables which
control each trunk section. That work, while innovative, was
limited to the unique actuator arrangement in the robot in [14],
and assumed constant trunk length, which restricted the gen-
erality of the results. In this paper, we introduce an analogous
mapping initially reported in [18] and [19] of
from the lengths of each of the three cables per section to
trunk parameters , , and illustrated in Fig. 2 for a class of
designs typified by the Clemson Air-OCTOR robot shown in
Fig. 1. This particular actuator arrangement is quite common
across a wide variation in continuum robot-hardware realiza-
tions [3], [16], [23], [27], [28]. Alternatively, a third mapping

between the air pressure in each of the three
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McKibben actuators in a section of the OctArm manipulator
[23] (shown in Fig. 20) may be used. Therefore, the work in this
paper which builds on the above mapping from [18] and [19] is
more generally applicable than the results in [14].

In summary, these forward kinematic transformations relate
trunk tip position and orientation to the cable length or pres-
sure of the robot, according to the information flow

(1)

or, more formally

(2)

The corresponding transformations are fully developed and an-
alyzed in the next section.

In forward velocity kinematics, the goal in the context of con-
tinuum robots is to relate trunk-tip linear and angular velocity

to either cable velocities or actuator pressures through a
Jacobian, so that or . Following the approach
of (1), this can be accomplished through a series of Jacobians
according to the information flow

(3)

That is, a straightforward application of the chain rule [21] to
(2) yields

or

(4)

where . This formulation reveals an advan-
tage of this approach: different Jacobian “modules,” such as

for the Clemson Elephant Trunk, for Air-OCTOR, or
for OctArm, allow different hardware realizations across a

range of continuum hardware designs to be easily plugged into
the derivation.

The use of standard techniques produces the Jacobian
from an appropriate D-H formulation, while and are
directly computed as partial derivatives of and . Section V
presents each of these Jacobians in more detail. Initially, in Sec-
tion III, we describe the first transformations, relating to ,
and then relating to . Section V then presents
transformations between and actuator input variables.

III. VERTEBRATE-TO-INVERTEBRATE (SHAPE)
TRANSFORMATION: MODIFIED D-H KINEMATICS

The following paragraphs discuss the derivation of a new D-H
formulation which fits a conceptual “virtual” (but convenient for
calculation, as we shall see) rigid-link robot to the continuum
backbone. Given this modified D-H formulation, we then de-
velop geometrical solutions which relate the D-H model to the
shape of a continuum trunk. The D-H table explicitly described
in this paper is for a single section of a continuum arm. The
model for the complete, multisection arm is formed by mul-
tiplying the single-section D-H transformation matrices in the
conventional manner.

Fig. 3. Continuum robot section, shown as a thick, semitransparent line, is
modeled by a coupled link/joint arrangement.

This new model, shown in Fig. 3, is based on a rigid-link
arm composed of two revolute joints with intersecting axes, fol-
lowed by a prismatic joint and completed with two more rev-
olute joints, also with intersecting axes, whose joint variables
are coupled to those of the first two revolute joints. This differs
from the rigid-link system used in [14], where the approxima-
tion of a torsional term in the first link of the D-H table pro-
duces incorrect angular information in the resulting matrix, as
shown by Fig. 4. This torsional model, while a good approxima-
tion (another interesting approximate Jacobian is introduced in
[20]), does not reflect the torsion-free construction of continuum
robot backbones, yielding an incorrect orientation term. The
kinematic arrangement introduced in this paper more precisely
matches the capabilities of real continuum arms by modeling
trunk bending as a bending about two axes, just as the actual
robotic mechanism bends, therefore producing physically cor-
rect results for orientation, compared with the approach in [14],
which models bending as a torsion followed by a single-axis
bend.

The first two revolute joints which lie at the base of a trunk
section point the local coordinate frame toward the section’s
tip. Next, the prismatic joint translates the local frame to the tip
of the trunk. The final two revolute joints then orient the local
frame to point along the tangent of the trunk section’s tip, so that
following trunk sections will be properly oriented. However,
the first and last pairs of variables in this model are coupled,
due to the constraints of the conceptual rigid-link robot fitting a
constant-curvature continuous backbone. Therefore, the model
contains only three independent variables, rather than five. This
demonstrates the symmetry in the rigid-link model, reflecting
that in the trunk section. Although the D-H approach above
aligns trunk extension along the local axis, geometrical trans-
formations in (7) cause it to extend along the axis. Therefore,
the addition of a fixed rotation about the axis at the beginning
of the D-H table causes the trunk to extend along the axis after
transformations in (7), following the convention established in
[14]. The fixed rotation at the end of the table then orients the
tip coordinate frame to match the tip coordinate frame in [14].

This approach yields the D-H table given in Table I, illustrated
in Fig. 5, which results in the homogenous transformation ma-
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Fig. 4. Comparison of orientational terms. Illustration (a) shows the results due to rotation of the trunk from using formulas taken from [14]. Local
coordinates axes at the trunk tip indicate that the trunk torsionally rotates about the base frame axis. However, the continuum robots discussed in this paper are
mechanically constructed to be torsion-free, resulting in a local coordinate frame which rotates as shown in illustration (b), seeming to spin about the tip of the
axis. Videos at IEEE Xplore more clearly illustrate these effects.

TABLE I
NEW D-H TABLE, WHERE ASTERISKS REPRESENT JOINT

VARIABLES. ADDITIONAL UNNUMBERED LINKS ORIENT

TRUNK EXTENSION ALONG THE AXIS

Fig. 5. Coordinate axes for D-H table given in Table I, where the circled U
shows an axis extending upward from the page.

trix of (5), shown at the bottom of the page, where
and . We note again here that the last two joint vari-
ables will be coupled to the first two, specifically that
and .

Thus (5) represents the kinematics for a “virtual” rigid-link
robot whose initial and final conditions align with the real trunk

Fig. 6. Determining a geometrical transformation between D-H parameters
and trunk parameters. The semitransparent line shows the actual trunk section
modeled by the geometry.

section. The next stage is to relate the joint variables of the vir-
tual robot to the shape variables , , and for the actual con-
tinuum section.

Thus, we now derive a transformation which relates the D-H
parameters and to trunk parameters , , and . For this,
consider Fig. 6. As shown in [14] by the translational terms in
rows 1 and 2 of column 4 of the 2-D Jacobian given in [14, eq.
(19)], the coordinates of the trunk in the 2-D plane are
labeled in Fig. 6 as . Also from [14],
the distance from the base to the tip of the trunk is

(6)

(5)
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as labeled in Fig. 6. Per the figure, note that the consideration of
simple triangles yields the identities and

. Lengths and can also be found
from triangles in the diagram as
and , where the choice of
matches the convention established by [14] of defining the 2-D
D-H table to bend along the axis. Substituting and solving
using the trigonometric identities
and
gives and

. Again from (6), the necessary trans-
lation is the distance from the trunk’s base to its tip, so
that . The final two rotations, and ,
simply repeat the rotations determined for and , but in
reverse order, so that and . The addition of

is necessary to correct for the choice made to bend the trunk
along the axis in [14]. Summarizing, the found for the
second arrow of (1) is

(7)

Substituting (7) into (5) produces (8), shown at the bottom of
the page.

Thus, by fitting a particular “phantom” rigid-link manipulator
to a constant-curvature continuum robot section, we are able
to use a modified version of the classical D-H procedure to re-
late end-effector (task) coordinates to robot shape. For conven-
tional rigid-link manipulators, this is directly achieved via the
dependence of on . However, since shape has a different
meaning for continuum robots, the extra transformation has
been made, so that is now an explicit function of .
The next section discusses the derivation of and , which
allows the further transformation into as a function of either
cable lengths or actuator pressures.

IV. SHAPE-TO-INPUT TRANSFORMATIONS

Controlling the shape of the manipulator requires a kine-
matic model relating shape in terms of extension and bending
to actuator inputs. This section outlines a new kinematic model,
tailored to three-tendon, 120 configuration manipulator hard-
ware, as illustrated by Fig. 2. The model is both new and novel,
compared with previous models developed in [12] and [14],
which were tailored to four-tendon sections, and therefore not

Fig. 7. Bent section of trunk.

applicable to the more general design in this paper. Likewise,
this model extends the three-cable kinematics in both the
trimole sensor [29], Hirose’s Elastor cable kinematics [15], and
various active endoscopes [5], [25], [26] by determining trunk
length based on an assumption of constant curvature.

Given three known cable lengths , , and in a section of
the design, the constant distance from the center of the trunk to
the location of the cables, and , the number of segments in this
trunk section, the following analysis allows computation of the
resulting trunk length , curvature , and direction of curvature

, as illustrated in Fig. 2. The three cables are assumed to lie
equally spaced around the trunk, separated by angles of 120 . In
addition, the curvature in each section of the trunk is assumed
to be uniform, so that trunk sections can be modeled as arcs
of varying-radii circles. This is typically achieved in hardware
by distributing bending forces equally along the trunk, using
pneumatic pressure or springs [13].

This section discusses computation of , , and in three
steps. First, equations are presented which determine per-cable
curvatures , , and , related to the trunk’s curvature. Next,
from these distances, the curvature at angle is derived. Fi-
nally, additional equations compute the trunk length from .
Throughout this analysis, the problem of solving geometrical
problems posed by the trunk is accomplished by analyzing a set
of 2-D slices of the problem, which allow computation of the
desired quantities.

A. Computation of Per-Cable Curvatures

Consider one bent segment in a section of the trunk, as illus-
trated by Fig. 7. This figure shows three cables, spaced at 120
intervals around the trunk, connecting two segments in a sec-
tion of the trunk. The figure includes a plane , which passes
through the point at which cable 1 connects to the trunk and is

(8)
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Fig. 8. Top-down view of trunk.

perpendicular to the other two cables. This plane exists due to
the design of the trunk, which places the three cables at fixed
intervals about the circumference of the trunk, insuring that all
three cables parallel each other.

The curvature of the trunk can be calculated from , the
height of the point in Fig. 8 above the plane . Finding this
value requires knowledge of and , the heights of the at-
tachment points of cables 2 and 3 above the plane, as shown in
Fig. 7. The lengths and by which cables 2 and 3 ex-
ceed the length of cable 1 are equally distributed above the
plane shown in Fig. 7 and below a second plane, not shown in
the figure, which contains the bottom attachment point of cable
1 and is perpendicular to cables 2 and 3. Therefore, the total
length of cables 2 and 3 along the entire section of an -seg-
ment trunk section can be expressed in terms of and as

(9)

(10)

Note that because the plane passes through the trunk at the at-
tachment point of cable 1, by definition.

Examining Fig. 8, which shows a 2-D slice of the trunk
viewed looking down on its top segment, reveals
and . As shown in Fig. 9, viewing a different 2-D
slice perpendicular to plane in Fig. 8 which contains the
dotted line in Fig. 8 allows determination of .
Likewise, . Height is equidistant from
these two points, so its height is their average, producing

(11)

Note that may be negative at some orientations of the trunk,
where . Though unexpected, the following geomet-
rical uses of are correct in this case.

Based on the assumptions, curvature of the trunk segment is
evenly distributed along each of the segments in the trunk sec-
tion. Therefore, the curvature of each segment remains con-

Fig. 9. Height of points 1 and 2 above plane.

Fig. 10. Geometry of bent trunk section.

stant along the section. The curvature of a section is defined as
, where is the radius of a circle which fits the arc

produced by the bending of a trunk section. Consider a virtual
cable of length as shown in the figure, attached to the center
of a cross section of the trunk and traveling from top to bottom
of a segment of the trunk. At some as yet unknown angle , the
situation shown in Fig. 10 exists, where an isosceles triangle
with sides of length and subtends degrees of
an arc of the circle formed by the trunk. Considering plane
containing the circle which forms the top of the trunk shown
in Fig. 8, note the leg of this triangle which lies in this plane.
This leg can be viewed as the vector in polar coordinates
in plane , where the origin of the plane is at point . The mag-
nitude of corresponding vectors , , and , notated ,
which pass through the attachment points for cables 1–3 allow
determination of via coordinate transformations detailed in
the next section.

To compute , rotate a second plane , shown in Fig. 10,
which is perpendicular to plane containing and ,
about from angle to an absolute angle of 90 , the lo-
cation of cable 1, so that the plane now contains and .
Fig. 11 shows the contents of plane after rotation, which con-
tains an isosceles triangle with sides and . Similar to the
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Fig. 11. Determination of .

reasoning in (9) and (10), the length of this virtual cable can
be divided into , the length of cable 1 in one trunk segment,
and , the height this virtual cable extends above the plane an-
chored by , so that

(12)

Relating this to the smaller similar triangle in the figure yields
. Substituting in (11) gives

. Noting that ,
. Repeating the process with the assumption

that instead of as before

(13)

Similarly, by assuming

(14)

B. Computation of and , Trunk Segment Curvature and
Angle of Curvature

To convert the per-cable curvatures into , the angle at
which the trunk bends, as illustrated in Fig. 2, and , the curva-
ture at angle , consider determining and based on a coor-
dinate transformation of values just derived for , , and .
Note that the positions of cables 1–3 on the circumference of
the trunk, with respect to the axis, are 90 , 210 and , as
shown in Fig. 12. Viewing these curvatures in plane as vector
quantities by noting the angle relative to the axis along which
each curvature extends yields , ,
and . Using the change of basis matrix

to convert to a standard orthogonal basis so that
yields and

. In polar form, and

Fig. 12. Unit vectors along which vectors lie.

Fig. 13. Computing .

. Substituting (13) and (14), then simplifying,
yields

(15)

(16)

C. Computation of , the Length of a Trunk Section

Each section of the trunk has segments. In each segment,
the cable runs in a straight line from one cable guide to the next.
Solving for the cable length in one section allows determination
of the cable length in all sections. Therefore, consider just one
section of the trunk, whose length is therefore .

Bending the trunk produces the geometry shown in Fig. 10.
From (12), . Substituting from (11) yields

(17)

Note that in a circle of radius , the angle subtended by a
portion of the circumference of length obeys the relationship

. To compute for the outer circle shown in
Fig. 10, substitute , , and into the above
equation, and solve for to obtain

(18)

Examination of the triangle drawn inside the outer circle of
Fig. 10, shown in Fig. 13, reveals that

. Substituting (18) and solving yields
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Fig. 14. Plane containing circle and reference plane.

. Substituting from (15) and (17) yields in
terms of cable lengths as

(19)

Note that in the limiting case when the cable lengths are equal,
the terms under the square root go to zero so that

Together, (15), (16), and (19) comprise the function
for a cable-actuated robot.

Because pneumatic actuators bend continuously, the deriva-
tion for as defined in (1) can be found by increasing the
number of cable guides to infinity. Examining the limiting case
when of yields identical expressions for (15) and
(16), while (19) becomes

(20)

Therefore, is defined by (15), (16), and (20).

D. Inverse Kinematics (Manipulator Curvature to Cable
Lengths)

Consider the manipulator section shown in Fig. 2. Given the
length of one section of the manipulator, the curvature of that
section, the angle at which the curvature lies , the distance
from the center of the manipulator to the location of the cables,
and the number of segments in this manipulator section , this
section discusses the computation of the lengths of the three
cables , , and due to the configuration of the manipulator
section. This is the inverse kinematics problem.

As shown in Fig. 14, the top of one segment in a section of
the elephant trunk lies in plane . Heights can be measured
from a second plane , which is parallel to plane shown in
Fig. 7. These two planes intersect along a single line tangent
to height , as shown in the figure. Viewing these two planes

Fig. 15. Projecting along a line parallel to the tangent shown in Fig. 16.

Fig. 16. End-on view of planar intersection shown in Fig. 13.

end-on as in Fig. 16, note that heights measured from plane
to a point on do not change when following any line on
parallel to this tangent. For example, as illustrated in Fig. 15,
projecting the height along a line parallel to the tangent at

gives , where is the height at a point along the
line connecting and . Knowledge of the slope of the line
created by viewing plane end-on and of a position on this line
allows computation of the height of this position above plane ,
which appears as horizontal line in the figure. Therefore, the
height of an arbitrary point on the circle such as can
be determined by projecting the point along a line parallel to the
tangent of onto the diagonal line in Fig. 16, then applying the
slope-intercept form of that line to find the point’s height.

In the forward kinematics derivation, the height
was chosen to anchor the plane, as shown in Figs. 7–9. For
the inverse kinematics derivation, the plane will be anchored
by instead. Examining the isosceles triangle with
sides and shown in Fig. 10 creates Fig. 17, which
reveals . Substituting (18) and solving
produces . Projecting these points onto
the diagonal line of Fig. 16 allows the line to be defined as

. Also note from Fig. 15
that . Substituting and simplifying
shows that .

Similar to the reasoning in (9) and (10), the length of cable 1
can be divided into , the length of a virtual cable attached

at angle on the circumference of the manipulator and running
the length of the manipulator, and , the height cable 1 ex-
tends above the plane anchored by , so that .
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Fig. 17. Triangle from Fig. 10 used to relate to .

Fig. 18. Triangle from Fig. 10 used to determine length .

To find , note that the length of a cable attached to the cir-
cumference of the manipulator at the point of maximum curva-
ture forms the triangle shown in the inner circle of Fig. 10,
redrawn in Fig. 18, yielding .
Therefore, substituting (18), the cable length can be computed
as . Substituting and simplifying

(21)

Likewise, rotating to 210 and 330 to find and , the
heights of the attachment points of cables 2 and 3, then re-
solving produces

and (22)

(23)

Note that because , in the limiting case

. In the same way

This completes the derivation for a cable-actuator robot such as
Air-OCTOR of as defined in (1),
where , , and are given in (21)–(23) above.

Because pneumatic actuators bend continuously, the deriva-
tion for as defined in (1) can be found by increasing the
number of cable guides to infinity. Examining the limiting case
when of (21)–(23) yields

(24)

Now that all the relationships in (1) describing the forward
kinematics for a trunk have been determined, the next section
will discuss the derivation of the forward velocity kinematics.

V. JACOBIAN DEVELOPMENT

As overviewed by (3) and (4), straightforward application of
the chain rule with necessary substitutions yields the Jacobian

(25)

where and are the time derivates of length or pressure, and
the notation implies the selection of either ( ) or ( ). Each
Jacobian in the chain of Jacobians must be computed. Com-
puting the Jacobian which relates to and produced by clas-
sical D-H techniques based on the D-H table in Table I yields

(26)
where and . Computing

from (7) yields

(27)
where and

. Computing re-
sults in long terms, and is omitted for brevity.

Next, substituting (7) into (26), then multiplying by (27) pro-
duces

(28)

Finally, substituting for either cable lengths or pressures
into (28) and multiplying by produces the final Jacobian,
which satisfies (25). Due to its length, this result is omitted.
However, the procedure is quite straightforward, and leads
to computationally tractable solutions, as discussed in the
following section. Notice that by including our more general
formulation for , the resulting approach is applicable to a
much wider class of continuum robots than the approach in
[14].
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VI. DISCUSSION AND IMPLEMENTATION

A. Uniqueness

There are a number of ways in which some of the results of
the derivation developed in this paper can be obtained. This
section reviews alternative representations, approaches, and
derivations.

First, the parameters chosen to represent an arc in 3-D are not
unique. Rather than describe the arc in terms of its length , cur-
vature , and angle of curvature , as shown in Fig. 2 (a polar
representation), the arc could be described using a Cartesian co-
ordinates in terms of length , curvature along the axis ,
and curvature along the axis . Or, instead of arc length ,
the number of radians subtended by the arc could be used. A
number of other approaches are possible [2]; the choice of rep-
resentation in this paper was motivated by both a desire to main-
tain a common scheme with previous work such as [14], and by
the ease of modifying the angle of curvature to compensate for
rotations relative to the home (typically user) coordinate frame,
due to the way in which the robot is mounted, where actuators
are placed in each section of the robot, and where the mobile
platform base is placed relative to the home frame.

Likewise, the backbone presented in Section III as the
D-H table given by Table I and transformations in Fig. 6
and (7) is not unique. An alternative approach, for example,
is to append a counter-torsional term of to the
four-link D-H table developed by [14]. A second approach
is to abandon the backbone-fitting method, finding the posi-
tion and orientation of the trunk tip through other methods.
For example, rotating the trunk-tip position in plane in
Fig. 6 of about the axis
by produces the same positional results as the backbone
approach. Using a differential curve representation, such as the
Serret–Frenet, can also produce identical positional results, as
shown by [14]. Likewise, an integral representation, such as
those developed by Chirikjian and Burdick [8] or in [13], can
be used to obtain identical positional results. Following the
approach of [8], this integral representation can then be factored
into a modal decomposition, whose modal functions consist of
arc length , angle of curvature , and the product of arc length
and curvature , where gives the angle subtended by
the arc representing the trunk. However, this model for the
trunk is exact, instead of the approximate model introduced by
[8], leading to greater ability to precisely specify trunk shape.
Additionally, our directly physically motivated “backbone
approach” produces enhanced insight into the mechanics of the
trunk. For example, trunk sections in this paper are chosen not
as arbitrary points, as in [8], but at the interface between two
groups of McKibben actuators, again carefully modeling the
physical construction of the trunk.

The orientation of the tip and the computation of its angular
velocity requires additional work when the backbone approach
is not followed. One approach, detailed in [8], is to include a ro-
tated frame which allows specification of orientation, indepen-
dent of the frame produced by the curve’s mathematical rep-
resentation. The angular velocity is then defined by

, where gives the rotation matrix of the frame and

describes factoring a skew-symmetric matrix to a three-pa-
rameter vector . Factoring the resulting into a Jacobian then
yields results parallel to those obtained using the backbone ap-
proach. The backbone method was chosen in our approach be-
cause it provides a good method for computing the kinematics
of a wide range of continuum manipulators, including those not
considered in our work, simply by modifying the appropriate
D-H entries and geometrical transformations to match a new de-
sign. In comparison, finding a correct orientation frame is non-
trivial and involves additional computations to develop angular
velocity.

B. Accuracy

Two concerns affect the accuracy of a continuum robot, de-
fined as the distance between desired and achieved locations in
the workspace. First, error due to the compliance of the manip-
ulator, in contrast to the rigid construction of traditional robot,
is significant; second, the nature of the modeling process must
be examined for possible sources of error.

The first category of accuracy errors, as discussed in [33],
arises from the construction of the robot. Traditional robots,
due to their extremely rigid design, can achieve very high ac-
curacy and repeatability. For example, a trunk-like high-DOF
manipulator [32] can be expected to achieve very high accuracy.
Continuum robots, due to their soft, compliant design, cannot.
However, high accuracy is not the intended niche of continuum
robots. They are generally poor as high-accuracy positioning
tools when compared with traditional rigid-link robots. Instead,
their compliance can be used to reduce the accuracy needed to
perform manipulation tasks in unstructured environments by al-
lowing the inherent flexibility of the manipulator to compensate
for a lack of precise knowledge of objects to be grasped.

The second category of errors arises due to the modeling ap-
proach. Some approaches discussed in the introduction, such
as [8], model the robot as an arbitrary curve, then perform an
error-minimizing fitting process to match the actual robot to the
curve. In contrast, this paper chooses a curve (an arc of a circle)
which the manipulator naturally assumes due to its design, as
forces due to pneumatic pressure, for example, are equally dis-
tributed into a constant curvature along each section of the robot
[13]. Therefore, this approach does not suffer from significant
errors due to a fitting process. However, this model assumes the
absence of external forces which can bend the trunk in a non-
circular fashion, leading to errors. For example, when the trunk
grasps a noncircular object such as a box, it no longer bends in a
circular arc. Likewise, when it supports a gravity load, either the
mass of the trunk itself or of a payload the trunk is carrying, the
trunk sags in a noncircular fashion [26]. Finally, this kinematic
analysis ignores all dynamics effects due to inertial, centrifugal,
and Coriolis forces. Unfortunately, dynamics in the 3-D case re-
main in integral-differential form, rendering them unsuitable for
real-time control [13], [17], or can be computed only as an ap-
proximation in closed form [7]. However, as discussed above,
these issues are less significant for continuum robots designed
for operation in unstructured environments, than for traditional
rigid-link manipulators which operate primarily in structured
environments.
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C. Singularities

Robots constructed of a combination of revolute joints typi-
cally exhibit singularities at their workspace boundaries, in ad-
dition to inherent singularities due to their mechanical design.
Because the continuum robots analyzed in this paper can theo-
retically extend to any arbitrary arc length , they do not possess
workspace boundary singularities. Actuator length limits, how-
ever, impose workspace constraints, but they do not enter into
the kinematics formulation. The only singular configuration oc-
curs when the trunk is straight ( ). In this case, velocities
normal to the angle of trunk curvature cannot be produced.
However, the angle of curvature is essentially meaningless when
the trunk is not curved, so this configuration presents no prac-
tical problems. An alternate representation for the trunk, for ex-
ample, as two orthogonal curvatures and discussed in
Section VI-A, would eliminate this singularity.

D. Simulation Results

As a prelude to implementation on continuum robot hard-
ware such as the Clemson Air-Octor robot [18] or the Penn State
OctArm robot [23], the Jacobians derived in the previous sec-
tion were symbolically computed using Maple 9.5. First, a D-H
table for an -section trunk is determined. Given that table, a
second routine then computes by applying standard Jaco-
bian techniques to the table. Next, a set of -section geometrical
transformations representing are computed, and their Jaco-
bian computed. The product is then computed
by substituting into , then multiplying. Finally, is
formed for an -section trunk, substitutions are made, then the
product is formed. This symbolically computed
matrix is then transformed into C code using Maple’s Code-
Generation package. The resulting code, which has undergone
common subexpression elimination via the optimize option to
CodeGeneration, is then combined with a CLapack call to solve
(25) as

(29)

for or using a QR rotation with column pivoting. This code
is then placed in a Simulink block, which becomes part of a
block diagram which reads from a joystick, computes the
resulting based on the Jacobian, then updates a OpenIn-
ventor-based simulation of the trunk and also computes actuator
torques or pneumatic pressures necessary to achieve the desired

. Fig. 19 illustrates the results of this simulation, as the trunk
is moved along the axis.

The performance of the algorithm is excellent. On a 2.8-GHz
Pentium 4 processor for a three-section trunk, which has nine
DOFs, the Jacobian is computed, then is computed based
on a given 3-DOF linear velocity in 0.163 ms. Therefore, this
algorithm can easily be included in a real-time control system,
as detailed in the following paragraphs.

E. Implementation

Using the Mathwork’s Real Time Workshop, the Simulink
block diagram which contains code to solve inverse velocity
kinematics was transformed into a C program, which outputs

Fig. 19. OpenInventor-based trunk simulation showing the trunk, under
Jacobian control, moving along a straight-line workspace trajectory. Arrows
indicate the axes local to each trunk section.

computed motor torques as voltages through a Servo-To-Go dig-
ital-to-analog board, and feeds motor encoder positions back to
the control loop. The C code was then compiled as real-time ex-
ecutable under the QNX Momentics real-time operating system.
The code runs efficiently in a real-time control loop operating
at 500 Hz, providing responsive control to user input through
a joystick. The following paragraphs detail the approach to im-
plementation for both the cable-driven Air-Octor and the pneu-
matically actuated OctArm continuum robots.

The two-section Air-Octor robot [18] shown in Fig. 1 con-
sists of a central hollow chamber, constructed of dryer hose,
into which air pressure is blown, enabling variation of each sec-
tion’s stiffness. Helically wrapped metal coils within the hose
allow the tube to extend along its length, but not to change its
diameter. Surrounding this chamber, a second chamber of ferret
tubing, again with helically wrapped metal coils, provides at-
tachment points for a series of eight cable guides for each sec-
tion. Six motors, three for each of the two sections, are arranged
around the top of the robot at 60 intervals. Each motor also
includes an encoder to measure the length of cable paid out of
a spool attached to the motor shaft through a gearing mecha-
nism. Three cables terminate at the first section, while the other
three run through the first section, terminating at the second sec-
tion, allowing shape control of both sections. A simple propor-
tional-integral-derivative loop servos desired cable lengths to
actual lengths. Implementation of inverse cable kinematics em-
bodied in (21)–(23) map from desired trunk shape, specified by
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Fig. 20. OctArm mounted on the Talon mobile platform. Courtesy of Chris
Rahn.

a joystick through several non-Jacobian control modes useful
for whole-arm manipulation [10], to desired cable lengths. In
addition, Jacobian (28) and (29) allow end-point control of the
two-section robot based on joystick input.

The OctArm manipulator [23] shown in Fig. 20 consists of
three or four sections, depending on the design. Each section
is actuated by joining three McKibben actuators which extend
only in length between two end plates, so that the trunk can ex-
tend or bend in any direction. Air pressure is regulated using
a set of valves which maintain a desired pressure, input as a
voltage. Shape feedback is still in development, so the arm runs
open loop. The length of each section of the arm was measured
by inflating all three actuators in a section to a given pressure,
then measuring length. A third-order polynomial fit of this mea-
sured length-to-pressure relationship was then used to transform
desired actuator lengths to pressures. Equation (24) allows con-
trol of trunk shape via the joystick for whole-arm grasping algo-
rithms [10] or, using (29), end-point control using the Jacobian.

The arms prove quite capable in practice. Fig. 20 illustrates
OctArm, mounted on the Foster–Miller Talon mobile platform,
performing a simple grasping task. Extensive experiments pic-
tured in Fig. 21 were carried out to examine the abilities of the
manipulator. Use of the robot based on the algorithms discussed
in this paper enabled biologically inspired behavior, such as a
prey strike, whole-arm grasping over a wide range of object
sizes, tunnel observation using a tip-mounted camera, and tele-
operation using cameras mounted at the trunk base.

Prior to the analysis and algorithm development reported in
this paper, the two hardware platforms were operated in a sec-
tion-by-section fashion, with the operator moving only one sec-
tion of the robot at any time. This proved to be a slow, labo-

Fig. 21. Abilities of the robot, such as (a) hook-style grasping, (b) large-object
grasping and whole-arm manipulation, (c) prey capture, and (d) hole exploration
using a tip-mounted camera view shown in the lower left corner of (d).

rious, and often unsuccessful approach. Implementation of the
approach described in this paper transformed the operation of
the hardware, enabling successful operation over a wide range
of missions, as shown in Figs. 20 and 21. Additionally, the
ability to directly match the underlying models to the hardware
constraints, particularly the constant-curvature sections, via rel-
atively simple models has allowed us to adapt easily to other
effects of strong practical importance, such as actuator travel
limits. This will be reported on in future papers.

VII. CONCLUSION

In this paper, we have presented a new and complete ap-
proach to kinematic development for continuum robots. The ap-
proach extends previous work by modeling extension, as well
as bending, of sections of the arm, and by presenting a com-
plete, correct solution for orientation, as well as position. The
approach allows for simple adaptation to a wide class of existing
designs, through the inclusion of a “shape-to-actuator” module.
Novel examples of such modules for pneumatically actuated and
tendon-based sections are described. The resulting Jacobians are
relatively simple and amenable to computation in real time, en-
abling real-time kinematic control at the velocity level. Imple-
mentations on two spatial continuum robots are summarized.
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