
Abstract— In this paper, a section of a continuum arm is 
modeled using lumped model elements (masses, springs and 
dampers). The model, although an approximation for a 
continuum structure, can be used to conveniently analyze the 
dynamics of the arm with selectable tradeoff in accuracy of 
modeling. Principles of lagrangian dynamics are used to 
derive the expressions for the generalized forces in the system.  
Simulation results using the model are compared with the 
physical measurements of a continuum arm prototype built 
using McKibben actuators. A brief discussion on how this 
relatively simple model can be more realizable when 
compared to other techniques of modeling continuum arms is 
also presented in the paper.   

I. INTRODUCTION

ONTINUUM  robots represent a class of robots that have 
a bio-inspired form characterized by flexible 

backbones and high degrees of freedom structures [1].  
Such robots have potential applications in whole arm 
grasping and manipulation in unstructured environments 
such as rescue operations. For a detailed description of 
robots built that resemble biological trunk, tentacles and 
tongue, see [2],[3],[4],[5] and [6].  Theoretically, the 
compliant nature of a continuum robot provides infinite 
degrees of freedom to these devices. However, there is a 
limitation set by the practical inability to incorporate 
infinite actuators in the device. Most of these robots are 
consequently underactuated, or in other words they can 
achieve a wide range of configurations with relatively few 
control inputs.  For example, the Octarm VI continuum 
manipulator (figure 1) has nine independent degrees of 
freedom with only three sections. 
 Continuum manipulators differ fundamentally 
from rigid link and hyper-redundant robots by having an 
unconventional structure that lacks links and joints. Hence, 
standard techniques like the Denavit-Hartenberg (D-H) 
algorithm cannot be directly applied for developing 
continuum arm kinematics. Moreover, the design of each 
continuum arm varies w.r.t the flexible backbone present in 
the system, the positioning, type and number of actuators. 
The constraints imposed by these factors make the set of 
reachable configurations and nature of movements unique 
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to every continuum robot. This makes it difficult to 
formulate generalized kinematic or dynamic models for 
continuum robot hardware. Chirikjian and Burdick were the 
first to introduce a method for modeling the kinematics of a 
continuum structure by representing the curve-shaping 
function using modal functions [7]. Mochiyama used 
Serret-Frenet formulae to develop kinematics of hyper-
degrees of freedom manipulator [8]. For details on the more 
manipulator-specific kinematics of the Rice/Clemson 
“Elephant trunk” manipulator, see [9],[10],[11]. For the Air 
Octor and Octarm continuum robots, more general forward 
and inverse kinematics have been developed by 
incorporating the transformations of each section of the 
manipulator (using D-H parameters of an equivalent virtual 
rigid link robot) and expressing those in terms of the 
continuum manipulator section parameters [12]. The net 
result of the work in [7]-[12] is the establishment of a 
general set of kinematic algorithms for continuum robots. 

Fig. 1. Octarm VI  continuum manipulator 
  

Thus, the kinematics of a few prototypes of continuum 
manipulators has been developed and basic control 
strategies now exist based on these. Recently, the 
development of analytical models to analyze continuum 
arm dynamics is actively being focused on by several 
researchers in this field. The first approach to this was 
proposed by Chirikjian, based on an infinite degree of 
freedom model [13]. In [14],  Newton Euler equations 
along with a Cosserat beam model were used to model the 
dynamics of an eel-like robot. Later, 3D position tracking 
and motion control with feedback for the eel-like robot 
were developed [15].  Also based on Cosserat theory of 
elastic rods, a non-closed form, geometrically exact model 
was developed in [16].  A novel method of modeling planar 
motion of snake-like robots using virtual work principles 
and by the addition of a nominal mechanism to snake-like 
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robot body is presented in [17]. A detailed account of 
closed-form Lagrangian dynamic models for continuum 
robots is covered in [18], [19] and [20]. Tatlicioglu’s work 
([19] and [20]) extended the model developed by 
Mochiyama and Suzuki for Continuum Robots that have 
extensibility as an additional degree of freedom. However, 
the fundamental approach of modeling full continuum arm 
dynamics based on classical or continuum mechanics is not 
favorable due to the magnitude of complexity involved.  
There is a pressing need to adopt a completely different 
modeling scheme or to introduce sufficient assumptions in 
the model which will make its realization feasible with an 
acceptable compromise in its accuracy. While Tatlicioglu’s 
work utilized a geometric model of a Continuum Robot, we 
have used a linearized dynamic model of the actuators as 
the building blocks of the section’s model.  

The work illustrated in this paper derives inspiration 
from modeling of biological segments using discrete 
mechanical elements [21],[22]. The principal modeling idea 
is to slice a continuum structure into a finite number of 
similar modules and represent each module using lumped 
parameter elements. This model will be seen to be quite 
effective, at the cost of retention of some complexity issues. 
Useful features of the approach and issues impeding further 
development are discussed in later sections of this paper.  

II. DYNAMIC MODEL-AN OVERVIEW

This work is primarily intended to study the dynamics of 
general continuum robots. To ground the results on real 
hardware, the model herein is focused on the Octarm VI 
continuum robot [12], [23]. Hence, the parameters and 
constraints implemented in this model conform to that of 
Octarm VI. Octarm VI is a three section continuum robot. 
Each section is made up of three McKibben actuators tied 
together along their lengths. A section of the device extends 
when there are equal pressure levels in all three actuators 
and bends when there are different pressure levels in the 
actuators (noticing that there is no torsion along the length 
of the arm). Since each section bends in space to form a 
constant curvature section its analysis can be restricted to a 
plane during these movements (the orientation of the plane 
changes as the robot moves). Therefore, a planar model is 
effective for the case of a single continuum robot section, 
the subject of the analysis in this paper. The shape of a 
section of the continuum arm is parameterized by the 
variables, s - length of arc, κ - curvature and φ – 
orientation. In the 2-D single-section case, orientation (φ) 
can be neglected. 

Two actuators are sufficient to model planar operation of 
a single-section of a continuum arm. We model each 
actuator as a Mckibben actuator, as realized in the Octarm 
hardware. Each such pneumatic actuator has air-filled latex 
tubing enclosed in a braided sleeve. The inherent 
compliance and damping of the actuator will be represented 

by a linear spring and damper combination. Thus each 
module in the model has a pair of linear spring and damper 
struts. The actuators maintain a nearly constant diameter at 
all pressure levels and this is accounted for in the model by 
constraining the distance between the two spring and 
damper struts. The length of arc (s) of each module is the 
average length of the two actuators. Another parameter, θ, 

is introduced to account for bending such that
1 s

=
κ θ

.  

Fig. 2.  Octarm VI, individual actuators and planar 
equivalent prototype 

  

Fig. 3. Parameters in spatial and planar configurations 
(originally appeared in [23]) 

III. DERIVATION OF THE THREE-MODULE MODEL

The continuum section analytical model developed here 
consists of three modules stacked together in series. In 
general, the model will be a more exact replication of the 
behavior of a continuum arm with a greater number of 
modules included in series. However, we will show that 
three modules effectively represent the dynamic behavior 
of the hardware, so more complex models are not 
motivated. 

The generalized co-ordinates in the system are, 

i is , θ       for i=1,2,3

The subscript, i denotes the module number. The 
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generalized forces corresponding to the generalized co-
ordinates are, 

i is θQ , Q    for i=1,2,3

There is a generalized force and a generalized torque in 
the system which imparts a linear velocity and a bending 
torque respectively. The forces 1i 2iF , F  for i=1,2,3                          

represent the input forces due to air muscles in the system. 
Since air-pressure is uniform throughout the entire length 
of each of the actuators, the corresponding input forces 
acting in all the three modules should be same. Thus, the 
constant curvature bend exhibited by the section is 
incorporated inherently within the model. 

Fig. 4. Analytical Model of a section of a Continuum 
Arm 

  
The other model parameters are, 

l - Length of the rigid rod connecting the two struts

1ik , i=1,2,3  - Spring constant of actuator1 

2ik , i=1,2,3  - Spring constant of actuator2 

1ic , i=1,2,3  - Damping coefficient of actuator1 

2ic , i=1,2,3  - Damping coefficient of actuator2 

im ,i=1,2,3  - Mass in each module 

iI ,i=1,2,3  - Moment of inertia of the rigid rod in each 

module 
The mass of the arm is modeled as being concentrated at 

three points whose co-ordinates referenced w.r.t a global 
inertial frame ( N ) located at the base of the arm are given 
below,  

�
1

N
3m 1P =s n  (1) 

� ( ) �
2

N
1 3m 2 1 1 2 1P =s sinθ n + s +s cosθ n  (2) 

( )( ) �

( )( ) �
3

N
1m 2 1 3 1 2

31 2 1 3 1 2

P = s sinθ +s sin θ +θ n +

s +s cosθ +s cos θ +θ n
(3) 

                                                                            The position vector of each mass is initially defined in a 
frame local to the module in which it is present. These local 
frames are located at the base of each module and oriented 
along the parameter ‘s’ of that module. The rotations and 
the translations between the local frames and the base 
frame (located at point O) are given in appendix.  

By differentiating the position vectors, we obtain the 
linear velocities. The kinetic energy( T ) of the system 
comprises of linear kinetic energy terms and rotational 
kinetic energy terms which are due to rotation of the rigid 
rod connecting the two actuators.  

2 2
11 2 2 1 2 1 1

2
1 2 1 2 1 1 3 2 1

2 1 1 3 1 2 3 1 2 1

2
3 1 2 2 1 2 1 2 1 1

3 1 2 3 1 2

T=(1/2)m s +(1/2)m ((s sinθ +s cosθ θ ) +

(s +s cosθ -s sinθ θ ) )+(1/2)m ((s sinθ

+s cosθ θ +s sin(θ +θ )+s cos(θ +θ )θ +

s cos(θ +θ )θ ) +(s +s cosθ -s sinθ θ +

s cos(θ +θ )-s sin(θ +θ

�� �
�� � �

� ��
� �� �

�
1 3 1

2 2 2 2
2 2 1 1 2 1 2

2 2 2
3 1 2 3

)θ -s sin(θ +

θ )θ ) )+(1/2)I θ +(1/2)I (θ +θ )+

(1/2)I (θ +θ +θ )

�

� � � �

� � �

(4)  

The potential energy ( P ) of the system is the sum of the 
gravitational potential energy and the spring energy. A 
small angle assumption is made throughout the derivation. 
This allows us to express the displacement of springs and 
the velocities associated with dampers in terms of the 
system parameters.  

1 1 2 1 2 1 3 1 2 1

2
3 1 1 11 1 1 01

2
21 1 1 01 12 2 2

2 2
02 22 2 2 02 13 3

2
3 03 23 3

P=-m gs -m g(s +s cosθ )-m g(s +s cosθ +

s cos(θ +θ ))+(1/2)k (s +(l/2)θ -s ) +

(1/2)k (s -(l/2)θ -s ) +(1/2)k (s +(l/2)θ -

s ) +(1/2)k (s -(l/2)θ -s ) +(1/2)k (s +

(l/2)θ -s ) +(1/2)k (s -(l/2 2
3 03)θ -s )

(5) 

where, 01 02 03s ,s and s  are the initial values of 

1 2 3s ,s and s  respectively.  

Due to viscous damping in the system, Rayleigh’s 
dissipation function is given by,  

2 2
11 1 1 21 1 1

2 2
12 2 2 22 2 2

2 2
13 3 3 23 3 3

D=(1/2)c (s +(l/2)θ ) +(1/2)c (s -(l/2)θ ) +

(1/2)c (s +(l/2)θ ) +(1/2)c (s -(l/2)θ ) +

(1/2)c (s +(l/2)θ ) +(1/2)c (s -(l/2)θ )

� �� �
� �� �
� �� �

(6) 

The generalized forces in the system corresponding to 
the generalized co-ordinates are expressed as appropriately 
weighted combinations of the input forces. For details on 
the derivation, refer to the appendix.  

1s 11 21 12 22 1

13 23 1 2

Q =F +F +(F +F )cosθ +

(F +F )cos(θ +θ )
(7) 
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2s 12 22 13 23 2Q =F +F +(F +F )cos(θ ) (8) 

3s 13 23Q =F +F (9) 

1θ 11 21 12 22

13 23 2 2 13 23

Q =(l/2)(F -F )+(l/2)(F -F )+

(l/2)(F -F )+s sinθ (F +F )
(10) 

2θ 12 22 13 23Q =(l/2)(F -F )+(l/2)(F -F ) (11) 

3θ 13 23Q =(l/2)(F -F ) (12) 

It can be evinced from the force expressions that the total 
input forces acting on each module can be resolved into an 
additive component along the direction of extension and a 
subtractive component that results in a torque. For the first 
module, there is an additional torque produced by forces in 
the third module.  

The model resulting from the application of Lagrange’s 
equations of motion obtained for this system can be 
grouped in the form, 

coeffF τ=D(q)q+C(q)q+G(q)�� � (13) 

Where, τ  is a vector of input forces and q  is a vector of 

generalized co-ordinates. The force coefficient matrix coeffF

transforms the input forces to the generalized forces and 
torques in the system. The inertia matrix, D is composed of 
four block matrices. The block matrices that correspond to 
pure linear accelerations and pure angular accelerations in 
the system (on the top left and on the bottom right) are 
symmetric. The matrix C contains coefficients of the first 
order derivatives of the generalized co-ordinates. Since the 
system is nonlinear, many elements of  C contain first order 
derivatives of the generalized co-ordinates. The remaining 
terms in the dynamic equations resulting from gravitational 
potential energies and spring energies are collected in the 
matrix G. In the following examples, this highly coupled 
nonlinear system of differential equations is solved 
numerically using SIMULINK. The problem being 
moderately stiff, ode23t solver is chosen as the optimum 
solver. Also, the dynamic plots of the state variables 
obtained using different solvers were compared with the 
plot of the explicit solution of the model with equal input 
forces and it was confirmed that the dynamics obtained 
using ode23t solver matched the explicit solution. 

V. MODEL VALIDATION AND NUMERICAL RESULTS

Having identified the parameters that define the shape of 
the continuum arm, a simple prototype replicating the 
dynamics of a single section of the Octarm was built to 
validate the model. Two McKibben actuators of identical 
sizes were coupled together along their length. These 
actuators were assembled by enclosing a high temperature 
silicon rubber tubing inside a polyester mesh sleeve and 
one of its ends was sealed with a brass stopper and a brass 
connecter was fit to the other end that connects to the 
pressure adapter, thereby to the pressure lines. A 

compressor was used as a pressure source and the air flow 
in each of the actuator was regulated by a pressure regulator 
(ITV3010-01N11L4) that was controlled by an Arduino 
microcontroller (Arduino Duemilanove with ATMega328). 
The dimensions of the actuator are tabulated in TABLE I. 

The initial displacements ( 0is ) of all three modules are 

taken as one-third of the unpressurized muscle length and 
the initial orientations ( 0iθ ) are taken as 0. Since the 

variation of mass with increase in air pressure is negligible, 
we split the value as twice the mass of an unpressurized 
muscle between the masses in the model.  The masses of 
the terminal modules are made 0.06 Kg heavier than the 
mass of the second module since the brass connectors at 
either ends of the actuator constitute 60 % of the actuator 
weight. The value of l is two times the diameter of the 
sleeve.   

TABLE I 
PROTOTYPE DIMENSIONS

Parameters of a single actuator Value 
Muscle length (including terminals) 0.5207 m 
Muscle length (excluding terminals) 0.3937 m 
Muscle diameter 0.0171 m 
Mass of the actuator (unpressurized) 0.18 Kg 
Variation in mass from 101.6 kPa to 344.737 kPa 1.1% 
Inner and outer diameters of silicon tubing 9.5 mm, 12.7 mm 
Diameter of the mesh sleeve 12.7 mm 

To determine the stiffness constant, the actuator was 
loaded in steps of 1 pound increments at its lower end (with 
its upper end clamped) and the corresponding 
displacements were measured. The force-displacement 
relationship is approximately linear and the slope of the line 
fit to the data by least squares method is taken as the value 
of the stiffness constant. The increase in stiffness with 
pressure is close to linearity and a least square curve fit is 
used to calculate the stiffness constant at various actuation 
levels in the model.    

The next important parameter to be characterized was the 
force F exerted by the muscles. The muscle actuation is 
intrinsic, the most dominant factors inflicting a change in 
the force being the pressure level and the braid angle. Chou 
and Hannaford were the first to derive a force expression 
for McKibben actuators by modeling the shape of a 
contractor muscle as a cylinder whose diameter and length 
are expressed by the parameters of the mesh [25].  
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Fig. 5. Actuator Stiffness Characterization 

Contractors are air muscles that contract in length and 
expand in diameter when pressurized. In contrast to this, 
the extensor muscles considered in this paper and prevalent 
in continuum robots increase in length at a nearly constant 
diameter when pressurized. However, since the physical 
compositions of both the actuators are same, we have 
followed a similar procedure described in [25] to derive a 
force-pressure relationship. Employing the concept of 
virtual work, 

rP dV=FdL (14) 

where rP  is the relative pressure (difference between the 

actuator pressure and the atmospheric pressure), dV and dL 
are the changes in volume and length respectively. For an 
extensor, the diameter is observed to be nearly constant 
throughout the range of working pressures (from 101.35 

kPa to 448.15 kPa). Hence, 
2D dL

dV
4

π
= , where D is the 

diameter of the sleeve. Thus the force required to obstruct 

the extension of the muscle is, 
2

rD P
F

4

π
= . Theoretically, 

this force is equally divided between the three modules and 
the stiffness constant of springs in each module is thrice 
that of the actuator. To account for the above, we have 
multiplied the force by 0.1 in each module.  The damping 
coefficients are tuned so that the model is critically 
damped.  

The actuators are set to desired pressure levels by 
programming the Arduino to send appropriate PWM 
signals to its analog outputs that are connected to the 
control inputs of the pressure regulators. The length of the 
arc was measured by running a thread along the groove 
formed at the centre by the coupled actuators. The 
orientation was measured using a protractor. In few cases, 
images of the prototype were clicked and orientation angles 
were found using image processing in MATLAB. 

The is and iθ  of all three modules in the model are 

summed up to obtain the overall length of arc (s) and 
orientation ( θ ) of the arm. The numerical solution for 
different inputs and the actual values measured on the 
prototype are tabulated in TABLE II and III.  

The first module had the highest displacement (followed 
by the second and third modules, respectively) in most of 
simulation cases except for several when gravitational 
effects were not considered in the system.  These were the 

cases with large pressure difference in the two actuators 
which caused more bending and hence a decrease in 
displacement of module one. With gravity included in the 
system, the orientation angles in the terminal modules were 
almost the same and greater than that in the second module. 
However since the displacement decreases from first 
module to third module, the radius of curvature is almost 
the same in first and second modules and the third module 
has more curvature than the other two.  This is exactly the 
shape of the real device, which curls more near the tip with 
a nearly constant curvature throughout the rest of its 
structure. Without gravity in the system, the angles 
decreased from module one to three. This indicates a nearly 
constant curvature (since the displacements also decrease in 
the same order) throughout the length of the actuator – this  
is also observed in the physical model when operated on a 
horizontal surface. 

TABLE II 
MEASUREMENTS AND NUMERICAL SOLUTIONS FOR CASES WITH GRAVITY 

IN THE SYSTEM

Pressure in 
actuator1 
(in kPa) 

Pressure in 
actuator2 
(in kPa) 

Measured values Simulation results 
s 
(in m) 

θ (in 
degrees) 

s 
(in m) 

θ (in 
degrees) 

103.421 103.421 0.405 0 0.418 0 
172.362 172.362 0.435 0 0.438 0 
310.261 310.261 0.463 0 0.457 0 
137.894 103.421 0.425 6.6 0.421 8.9 
206.841 103.421 0.430 23 0.431 20.1 
344.735 137.894 0.449 26.3 0.447 23.3 
344.735 275.788 0.469 3.4 0.457 4.7 

TABLE III 
MEASUREMENTS AND NUMERICAL SOLUTIONS FOR CASES WITHOUT 

GRAVITY IN THE SYSTEM

Pressure in 
actuator1 
(in kPa) 

Pressure in 
actuator2 
(in kPa) 

Measured values Simulation results 
s 
(in m) 

θ (in 
degrees) 

s 
(in m) 

θ (in 
degrees) 

103.421 103.421 0.402 0 0.401 0 
172.362 172.362 0.432 0 0.426 0 
310.261 310.261 0.461 0 0.451 0 
137.894 103.421 0.413 52.7 0.404 41.9 
206.841 103.421 0.429 84.5 0.398 118 
344.735 137.894 0.445 99.9 0.385 212 
344.735 275.788 0.468 27 0.447 29.7 

From the results, it can be inferred that the overall length of 
the arm (s) obtained from the model is very close to the 
values measured from the device. Our orientation measures 
from the physical device had a considerable error margin 
and hence it is unclear how well the model fits the device. 
The large difference in angles in some cases is attributed to 
the inability of the device to bend more overcoming the 
friction offered by the horizontal surface. However, since 
continuum robots are mostly operated in a spatial 
environment, we conclude that the model gives sufficiently 
precise information about the overall configuration of the 
arm. Although the analytical model can be refined by 
adding more modules, a three module model appears 
sufficient to give a general sense of the structure of the arm 
as well as its configuration details.  
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VI. CONCLUSION

We have introduced a new approach to modeling the 
dynamics of sections of continuum robots. The approach is 
based on lumped model elements (masses, springs and 
dampers). The model, although an approximation for a 
continuum structure, is seen to conveniently analyze the 
dynamics of the arm with selectable tradeoff in accuracy of 
modeling. Simulation results using the model are compared 
with the physical measurements of a continuum arm 
prototype built using McKibben actuators. The relatively 
simple model (compared to other techniques of modeling 
continuum robots) demonstrates good approximation to the 
physical situation. 

APPENDIX

The rotation matrices between the local frames (

1 2 3l ,l  and l ) and the base frame (N) are given below, 

1 2

3

1 1
N N

l l

1 1

1 2 1 2
N

l

1 2 1 2

1 0 0 cos(θ ) 0 sin(θ )

R = 0 1 0 ;  R = 0 1 0

0 0 1 -sin(θ ) 0 cos(θ )

cos(θ +θ ) 0 sin(θ +θ )

R = 0 1 0

-sin(θ +θ ) 0 cos(θ +θ )

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

The translations are given as follows, 

1 2 3

2 1
N N N

l l l

1 1 2 1

0 0 s sinθ
T = 0 ;  T = 0 ;  T = 0

0 s s +s cosθ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

An expression for generalized forces, kQ in terms of 

applied forces, jF for a system having ‘p’ number of forces 

and ‘n’ number of generalized co-ordinates  is given below 
[24], 

p
j

k j
j 1 k

r
Q F . ,

q=

∂
=

∂
∑

�
�

         k=1,2,...,n

 The points at which the actuator forces act ( jr ) are 

expressed in their respective local frames and then rotated 
and translated to be referenced in the base inertial frame.  
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