AST 475/875 Homework #3

Due F, Sept 3^{rd} in class

Using χ^2 for Astronomical Hypothesis Testing

Boesgaard & King (2002) looked at correlations between Be and Li in Hyades open cluster F and early G dwarfs. The plot to the right shows the Hyades data in the temperature range 5850-6680 K as open circles. Previous field star results are shown as solid squares and circles, and they are alleged to show the relation $A(Be)=0.359 \times A(Li) + 0.146$ shown as the dashed line in the figure.

Use the table of Hyades data below, to address the following:

- a) Use a χ^2 test to test the hypothesis that the Hyades data follows the field star-defined relation. Namely, with what quantitative confidence can you say that the field star relation fits the Hyades data?
- b) Regardless of the actual result, if the Hyades data were not well-fit by the field star relation as determined from the χ^2 test, briefly describe how you might develop a feeling for whether an alarmingly high χ^2 value is due to a) an inappropriate choice of fitting function, or b) too much scatter about an otherwise adequate fitting function?

Star	A(Li)	σ	A(Be)	σ
vB 10	2.76	0.05	1.08	0.05
vB 19	3.01	0.05	1.04	0.09
vB 31	2.96	0.05	1.25	0.05
vB 48	3.04	0.05	1.28	0.09
vB 59	2.86	0.05	1.14	0.06
vB 61	3.18	0.05	1.20	0.10
vB 62	3.14	0.05	1.15	0.05
vB 65	3.07	0.05	1.20	0.06
vB 66	2.78	0.05	1.11	0.06
vB 77	2.46	0.05	0.98	0.10
vB 78	2.61	0.05	0.85	0.10
vB 81	2.24	0.05	0.92	0.10
vB 86	2.40	0.05	0.82	0.10
vB 113	2.84	0.05	1.15	0.06
vB 121	3.27	0.05	1.25	0.07

vB 124	2.06	0.05	0.70	0.10
vB 128	2.25	0.05	0.90	0.10

Note/Tip: You have uncertainties in the x coordinate here? How do you treat these—i.e., how would you include them in a χ^2 test that only looks at the y residuals? A "trick" that is often done (rightly or wrongly) is to "convert" the x uncertainties into an additional y uncertainty via the slope of the y versus x relation: sigma (y) = slope * sigma (x) and then add the "y" uncertainties in quadrature thusly: [sigma(y) total]² = [sigma(y)]² + [sigma(y)']²