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Viscoelastic effects in circular edge waves
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Surface waves are excited at the boundary of a mechanically vibrated cylindrical container
and are referred to as edge waves. Resonant waves are considered, which are formed
by a travelling wave formed at the edge and constructively interfering with its centre
reflection. These waves exhibit an axisymmetric spatial structure defined by the mode
number n. Viscoelastic effects are investigated using two materials with tunable properties;
(1) glycerol/water mixtures (viscosity) and (ii) agarose gels (elasticity). Long-exposure
white-light imaging is used to quantify the magnitude of the wave slope from which
frequency-response diagrams are obtained via frequency sweeps. Resonance peaks and
bandwidths are identified. These results show that for a given n, the resonance frequency
decreases with viscosity and increases with elasticity. The amplitude of the resonance
peaks are much lower for gels and decrease further with mode number, indicating that
much larger driving amplitudes are needed to overcome the elasticity and excite edge
waves. The natural frequencies for a viscoelastic fluid in a cylindrical container with
a pinned contact-line are computed from a theoretical model that depends upon the
dimensionless Ohnesorge number O#h, elastocapillary number Ec and Bond number Bo.
All show good agreement with experimental observations. The eigenvalue problem is
equivalent to the classic damped-driven oscillator model on linear operators with viscosity
appearing as a damping force and elasticity and surface tension as restorative forces,
consistent with our physical interpretation of these viscoelastic effects.
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1. Introduction

Capillary-gravity waves appear on the surface of a liquid and exhibit a dispersion
relationship with a continuous spectrum, reflecting a balance between the liquid inertia
and restorative forces of surface tension and gravity (Lamb 1932). When constrained by
a finite-size tank, these waves tend to conform to the container geometry and exhibit a
discrete spectrum described by an integer-valued mode number pair (Case & Parkinson
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1957; Mei & Liu 1973). Mechanically excited waves can be formed in experiment by
vertically oscillating a tank filled with liquid having a meniscus pinned at the tank edge,
thereby creating a travelling wave that propagates inward in the radial direction. These
are referred to as edge waves and have frequency equal to that of the driving frequency,
i.e. they are harmonic, as long as the forcing amplitude is below the Faraday wave
threshold (Faraday 1831; Benjamin & Ursell 1954). When the container has a circular
geometry, the waves propagate radially inward and reflect back out at the centre of the
tank, causing wave interference. Resonance occurs when the driving frequency is equal to
one of the resonance frequencies, in which case these waves interact constructively and
form a standing wave described by the number of fixed circular nodes. Off resonance,
the wave amplitude decreases, but is finite, and is characterised by its frequency-response
diagram. In this paper, we are interested in the frequency response of circular edge waves
in viscoelastic materials.

Bioprinting technologies exploit surface-wave patterns to assemble organoid cells (Chen
et al. 2015) for tissue engineering applications (Guven et al. 2015). In these technologies,
the working material is often a soft gel (polymeric fluid), such as agarose or alginate,
which is capable of sustaining biological function (Murphy & Atala 2014; Fan et al. 2016).
Accordingly, it is important to understand the surface-wave dynamics on such materials in
order to advance these technologies. Our work directly addresses this point and we report
the first, to the best of the authors’ knowledge, experimental observation of edge waves in
soft gels. A viscoelastic material exhibits both viscosity and elasticity, as defined by the
complex modulus G" + iG” determined from rheological tests (Mezger 2006). Here G’ is
the storage modulus and G” the loss modulus, which describe the elasticity and viscosity,
respectively, which often depend upon the frequency of applied shear. In our experiments,
we select materials that exhibit constant rheological properties over the range of driving
frequencies explored and whose rheological properties can be varied via concentration
so that we can explore viscous and elastic effects independently over a wide range of
properties. Specifically, we investigate (i) glycerol/water mixtures which give a range of
viscosity p at essentially zero elasticity and (ii) agarose gels whose gel concentration gives
arange of shear modulus G with relatively small viscosities, as illustrated in figure 1. Both
materials are subject to surface-tension forces and this gives rise to two dimensionless
numbers that define the viscoelastic properties (McKinley 2005), the Ohnesorge number
Oh = pu/+/pRo and elastocapillary number Ec = GR/o, where R is the length scale.
When Ec ~ 1, elastic forces and surface-tension forces are comparable and this belongs to
the study of elastocapillarity (Style e al. 2017; Bico, Reyssat & Roman 2018). Agarose gel
is a commonly used material for such studies because G’ is typically orders of magnitude
larger than G” meaning that elastocapillarity can be investigated largely independent of
viscous effects (Grzelka, Bostwick & Daniels 2017; Shao et al. 2019, 2020). These are
referred to as ‘inviscid elastic fluids’.

Edge waves are excited in experiment whenever the meniscus makes a contact-angle
o #90° and these are observed for small driving amplitude. At driving amplitudes larger
than those explored here, sub-harmonic Faraday waves form, and these have been studied
extensively for Newtonian liquids (Douady & Fauve 1988; Douady 1990; Christiansen,
Alstrgm & Levinsen 1992; Edwards & Fauve 1994; Kumar & Bajaj 1995; Perlin & Schultz
2000; Westra, Binks & Van De Water 2003), though there are far fewer studies for complex
fluids, perhaps because the presence of elasticity in gels is likely to lead to more complex
behaviour.

Generally speaking, the motion of a liquid interface held by surface tension obeys
an operator equation that resembles the damped-driven oscillator (DDO) (Bostwick &
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Figure 1. Illustration of viscoelastic behaviour of the materials explored in this investigation in the shear
modulus G versus viscosity p parameter space.

Steen 2015),
M+ D+ K = A, (1.1)

where A is the scaled driving frequency, A the driving amplitude, M the liquid inertia
operator, D dissipation operator and K the restorative force operator that encompasses
capillarity. Viscous effects enter through D and elastic effects through K. The presence of
a meniscus can introduce dynamic wetting effects associated with a moving contact-line.
Here a constitutive law is typically imposed that relates the dynamic contact-angle « to
the contact-line speed Ucy, o = f(Ucr) of which the pinned contact-line is a limiting
case. Interestingly, dynamic wetting introduces contact-line dissipation, even for inviscid
liquids, which was first realised by Davis (1980) and Hocking (1987). This dissipation
can be absorbed into the dissipation operator D and its effects have been reported in the
frequency response for driven sessile drops (Lyubimov, Lyubimova & Shklyaev 2006;
Bostwick & Steen 2016). The edge waves studied here have a pinned contact-line, i.e.
no dynamic contact-line effects, such that the sole source of dissipation is due to viscosity.

With regard to edge waves in circular containers, Henderson & Miles (1994) have
theoretically investigated the case of a Stokes boundary layer with fixed contact-line
with an interface that is either clean or contaminated with surfactant, and predicted
the natural frequencies and damping ratios, which Martel, Nicolas & Vega (1998) have
extended to include higher-order viscous effects. Kidambi (2009h) showed how the static
contact angle affects the spectrum for a viscous liquid. With regard to moving contact-line
modelling, Nicolds (2005) analysed the large Bond number limit for an inviscid fluid and
has contrasted the case of free versus pinned contact-line and Kidambi (2009a) showed
the existence of damping in an inviscid fluid owing to dynamic wetting effects. Recent
work by Michel, Pétrélis & Fauve (2016) has shown the damping of surface waves by
a meniscus. In our experiments, the contact-line is pinned and we develop a model for
the natural frequencies of a viscoelastic material in a cylindrical container with a pinned
contact-line. Several solution methods exist to address the pinned contact-line including a
variational approach using a Lagrange multiplier (Benjamin & Scott 1979; Graham-Eagle
1983), the introduction of a singular pressure at the contact-line (Prosperetti 2012), and
a Rayleigh—Ritz minimisation procedure over a constrained function space (Bostwick &
Steen 2013a,b). We use the latter approach in our theoretical development.

Lastly, we mention the utility of using surface waves to distribute particulates (Wright
& Saylor 2003; Saylor & Kinard 2005), which can be extended to distributing cells in
tissue engineering applications and surfactants (Strickland, Shearer & Daniels 2015) on
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thin liquid films. Picard & Davoust (2007) have proposed using meniscus waves as a DNA
biosensor, whereby the surface rheology is connected to biomolecules (Picard & Davoust
2006). Edge waves have also been used to measure liquid properties (Shmyrov et al. 2019)
and surfactant properties (Saylor, Szeri & Foulks 2000). The flows associated with a
meniscus can be complex as shown by Huang et al. (2020) for the case of a streaming
flow.

We begin this paper by describing the experimental set-up and imaging techniques
to quantify the magnitude of the wave field in § 2. Experimental results are reported
in §3 where we present frequency-response diagrams for our glycerol/water mixtures
and agarose gels showing how viscosity and elasticity affect the resonance peaks and
associated bandwidths. Complex resonance behaviours are reported for gels including a
nonlinear side-band instability characterised by multiple resonance peaks for the same
mode number. In §4, we develop a theoretical model to predict the natural frequency
and surface mode shapes of a viscoelastic fluid in a cylindrical container with a pinned
contact-line. Comparisons between theoretical predictions and experimental observations
are made and show good agreement. Lastly, we offer some concluding remarks in § 5.

2. Experiment

Edge waves were investigated using the experimental set-up shown in figure 2, which
consists of a circular Plexiglas tank of radius R = 35 mm and depth H = 22 mm mounted
on a Labworks ET-139 electrodynamic shaker, which provides vertical vibration of the
tank, controllable in amplitude and frequency. Experiments were conducted for a range of
driving frequency f; = 4.0-22.9 Hz. The shaker is driven by an Agilent 33220A function
generator, Labworks PA-141 amplifier combination. The acceleration of the shaker A
[m s~2] was monitored using an PCB 352C33 accelerometer and a PCB 482C05 signal
conditioner combination.

Glycerol/water mixtures and agarose gels were used to investigate the effect of viscosity
and elasticity, respectively. These materials were chosen specifically for the ability to
control the viscosity and shear modulus over a range of values, as discussed earlier.
Doubly distilled water was used to prepare both the glycerol/water mixtures and agarose
gels. One of the glycerol/water mixture cases was the limiting case of pure water. It is
well known that adventitious surfactants can accumulate on pure water surfaces thereby
affecting the surface tension. To avoid this we took care to use only doubly distilled water
in all experiments, to clean out the tank after every experiment, and to limit the amount
of time used to conduct an experiment. The material properties for the glycerol/water
mixtures explored here are listed in table 1, where w is the viscosity, p the density and
o the surface tension (Takamura ef al. 2012). The Ohnesorge number Oh = /+/pRo is a
measure of the relative importance of viscosity and surface tension and for our experiments
Oh = 0.00064-0.0145. The Bond number Bo = pgR? /o ranges from Bo = 170.8-223.7.
The agarose hydrogels used in our experiments were prepared by dissolving agarose
powder (Sigma Aldrich, Type VI-A) in doubly distilled water at 90 °C for an hour and
then pouring the mixture into our circular Plexiglas tank, which was then allowed to gel
at 25 °C for 3 h. The concentration of the agarose solutions ranged from ¢ = 0.061-0.125
9w, which corresponds to a shear modulus G = 1.2-20.2 Pa (Tokita & Hikichi 1987). The
complex modulus G’ + iG” of the agarose gels was measured using a rheometer (Anton
Paar, MCR 302). For the gels explored here, the storage modulus G’ is at least an order of
magnitude larger than the loss modulus G” implying that the gels used in our experiments
essentially behave as inviscid elastic fluids with shear modulus G. The elastocapillary
number Ec = GR/o describes the relative importance of elastic to surface-tension forces.

919 A18-4


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.391

Downloaded from https://www.cambridge.org/core. Clemson University, on 08 Feb 2022 at 22:59:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2021.391

Viscoelastic effects in circular edge waves

LED light source

S

Function conditioner
generator | Vibration Gel

Accelerometer

Electromagnetic
Amplifier shaker

Optical bench

Figure 2. Schematic of the experimental set-up and a typical edge-wave pattern.

We note that extant methods for measuring surface tension could not be used because
they would fracture the gel. Hence, we were prevented from measuring the actual surface
tension of our gels. However, the gels used in experiment were made from very dilute
concentrations of solutions and for this reason we assume the surface tension of our gels
is o =72 mN m~!. This gives a range of Ec = 0.58-9.82 used in these experiments.

Our preliminary work revealed that edge waves are not formed when the fluid surface is
perfectly flat, i.e. @ = 90° (cf. Figure 3) and the best results were obtained when « < 90°,
although « > 90° is also sufficient. To ensure that this was the case and that we had a
repeatable meniscus condition for all experiments, we filled the tank with a glycerol/water
mixture or agarose solution so that the interface was pinned to the edge of the tank and was
perfectly flat « = 90°. Then, a pipette was used to carefully remove 2 ml of fluid giving a
surface with @ < 90°. This ensures there are no dynamic wetting effects associated with
a moving contact-line. For gels, the container was covered to prevent evaporation during
gelation, after which experiments were conducted. We note that, though we work with a
fixed value for « in this work, it is probably the case that wave amplitudes will vary with
«. Here we are only interested in generating edge waves and so any « not equal to 90°
serves our purposes. Future studies addressing the effect of @ on wave amplitude would be
an interesting advancement of the present work.

The wave pattern was characterised by the following procedure. A white-light source
was collimated by a lens located one focal length f = 300 mm from the light source.
To improve the degree of collimation, a plate with a 2 mm diameter hole was placed in
front of the light source (a flashlight consisting of a white LED). This hole was located
at the focal point of the lens providing a closer approximation to a point light source. The
resulting collimated light beam was directed at the wave surface and the reflected light
was captured by a digital camera (Canon EOS Rebel T3i, with a Canon EF-S 18-55 mm
lens). The optical axis of the camera was oriented to coincide with the reflection of the
collimated light beam. The camera exposure was set to 1s so that each image consisted
of the integrated average of multiple wave periods, where only standing-wave modes
produce a clear pattern and travelling-wave patterns are blurred. In this way, the wave
field exhibits a high intensity in regions where the slope is zero (peaks and troughs) and a
low intensity in regions where the wave slope is non-zero. Accordingly, the experimental
images presented herein are wave-slope images where the intensity is inversely related
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Glycerol/water ratio 0:1 1:5 1:3 1:2 2:3 3:1
Surface tension (N m~!)  0.0717 0.0702 0.0695 0.0687 0.0681 0.0658
Viscosity (mPa s) 0.96 1.5 2.1 3.0 4.4 41.3
Density (kg m™3) 1000 1045.4 1070 1093 1117.6 1202.4
Ohnesorge number Oh 0.00064  0.00093  0.00129  0.00184  0.00267  0.0145
Bond number Bo 170.8 182.4 188.6 194.9 200.9 223.7

Table 1. Material properties of glycerol/water mixtures, density p, viscosity u, surface tension o, taken from
Takamura, Fischer & Morrow (2012) and corresponding Ohnesorge Oh and Bond Bo numbers.

N~

V

-
R

Figure 3. Illustration of the meniscus and associated contact-angle c.
Figure 4. Reflection of the collimated light source as seen by the camera for a perfectly flat interface.

to slope. This approach relies sensitively on the orientation of the camera optical axis
with the spectral reflection of the collimated light from the flat surface and the degree
of collimation of the light source. To ensure that these conditions were met, images of
a flat surface were periodically acquired and checked to determine if a uniform image
intensity is obtained. A typical image of such a check is shown in figure 4 which has an
average intensity / = 250.5 and an r.m.s. of £4.46 (£1.8 %). We note that in figure 4 and
in subsequent figures, the intensity / is the pixel intensity of the 8-bit images we acquired
and hence varies from 0-255.

Frequency sweeps were performed and yielded a wave-slope image for each sampled
frequency. The frequency increment was 0.5 Hz far from resonance and 0.2 Hz
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Figure 5. Wave-slope images for (a) driving frequencies f; = 16.3 to 17.5 Hz show resonance is observed at
fa = 16.9 Hz for the n = 5 mode, as seen by the progressively less clear image as f; deviates from 16.9 Hz and
(b) the associated resonance modes for n = 1, 2, 3, 4, 5. The working material is water.

near resonance. A wait time of 5 seconds was imposed at each frequency before obtaining a
wave-slope image in order to ensure a steady-state wave pattern. A typical experiment took
30 min. Figure 5(a) shows a sequence of wave-slope images as resonance is approached
at f; = 16.9 Hz. The resonance shapes for the n = 1-5 modes are shown in figure 5(b)
and we note the mode number n corresponds to the number of dark rings in the image, i.e.
nodes of the wave field, with the exception of the n = 4, 5 images, where the presence of
the meniscus makes it difficult to fully resolve the nodes near the contact-line.

It is desirable to quantify the amplitude of the wave field and we do this using the
wave-slope images. For each image, the light intensity / was azimuthally averaged and
plotted against the radial coordinate r to provide an intensity versus radius profile, an
example of which is shown in figure 6. The maxima corresponds to locations of the
peaks/troughs and the minima the nodes of the wave field. We use the quantity E1 — E»
as a metric for the amplitude of the wave field, where E; and E; are the intensity at the
first and second extrema in the / versus r plot (cf. figure 6). The intensity Ej is that of
a flat surface and will attain a maximum value at resonance which should differ little
from the other peak intensities. This is supported by figure 6 which shows that all peaks
have roughly the same intensity, of about 250. The intensity E» is the first node of the wave
field and is the time-integrated average of the intensity observed by the camera as the wave
slope oscillates between a peak-positive and peak-negative value. The difference E; — E3
is a good quantifier of the amplitude of the wave field because it should decrease away
from resonance, where travelling-wave patterns average out over multiple wave periods to
give an intensity field with lower maximum intensities and higher minimum intensities.
At resonance, the peaks attain their maximum flat-surface value, while the nodes attain
a minimum owing to the fact that the sloped surface is directing light away from the
camera’s optical axis for most of the wave period. Of course E; — E, will also increase
with the driving amplitude A, and since we wish to compare the intensity of the wave field
at different frequencies without any sensitivity to the driving amplitude A, we characterise
the magnitude of the wave field as

E\/lr —E>y/I
¥ — 1/1f 2/f‘

2 2.1)
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Figure 6. Azimuthally averaged light intensity / against radius » show maxima and minima which correspond
to locations of zero slope and zero displacement (large slope, nodes), respectively. The first two extrema £ and
E; are the intensities of the first flat region and the first node with the difference £1—E> used as a metric for the
wave amplitude.

This is an important point, as A varies with increasing frequency, given that we operate our
amplifier in a constant voltage mode, resulting in an increase in A with driving frequency.
Scaling according to (2.1) ensures comparison of wave slopes on an equal acceleration
basis. We note also that slight variations in the intensity of the light source and small
day-to-day deviations of the geometric set-up of the camera and light source are possible
and so we scale £y and Ej to the average intensity of the most recent flat image I (cf.
figure 4). Frequency-response diagrams plotting X against driving frequency f; are then
obtained from which we can identify resonance frequency peaks, as will be discussed in
the next section.

3. Experimental results

Frequency-response diagrams showing wave amplitude X against driving frequency f; are
presented for a range of viscosity and elasticity. Each diagram shows a set of resonant
peaks, each associated with a mode number n. Our focus is on how the resonance
frequency and associated bandwidth are affected by viscosity and elasticity and how this
depends upon the mode number n. In addition, we report multiple resonance peaks for
a given mode n that we associate with nonlinear wave—wave interactions typical of the
Benjamin-Feir instability (BFI) (Benjamin 1967; Benjamin & Feir 1967).

3.1. Viscosity

Figure 7(a) is the frequency-response diagram for our glycerol/water mixtures and exhibits
six resonance peaks for our least viscous liquid (water). A number of trends can be seen
in the figure. First, increased viscosity leads to a smaller peak wave amplitude X and
a larger bandwidth. Second, the bandwidth increases with mode number n consistent
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Figure 7. Frequency response, showing scaled amplitude X against driving frequency f; for (a) the full
frequency range and (b) expanded view of the n = 4 mode for glycerol/water mixtures with material properties
listed in table 1.

with larger viscous dissipation for higher-mode numbers. Lastly, for fixed-mode number
n the resonance peak shifts to lower frequencies and the bandwidth increases with
increasing viscosity, as illustrated in figure 7(b) for the n = 4 mode. These observations
are all consistent with the role of viscosity as the damping force in the classical DDO
model. Surface tension plays the role of the restorative ‘spring’ force in the DDO. The
aforementioned trends are all monotonic with viscosity u and highlight this damping effect
in the dynamics. It is also noted that as the viscosity is increased, the higher-frequency
peaks begin to become overdamped and do not exhibit a well-defined resonance peak. For
our most viscous liquid the modes n = 4, 5, 6 cannot be discerned.

3.2. Elasticity

Gels have finite elasticity, which we expect to act in a similar manner to surface tension
thereby providing a more robust restoring force than the glycerol/water mixtures and
presumably leading to a similar and perhaps larger shift in the resonance frequency.
Agarose hydrogels are ideal to test this hypothesis as they behave as inviscid elastic
fluids. Figure 8(a) presents the frequency response for gels with shear modulus G =
1.2, 3.6, 8.4 Pa, where we show that overall, the resonance peaks decrease in amplitude
with increasing G, consistent with the higher driving amplitude needed to overcome the
additional elasticity. This is also confirmed by comparing the scale of X (y-axis) between
glycerol/water mixtures in figure 7(a) and agarose gels in figure 8(a). Figure 8(b) shows
the peak amplitude starts to plateau for our stiffest gels G > 8.4 Pa. In addition, the peak
amplitude decreases with n for gels, whereas it increased for glycerol/water mixtures, at
least for the first three modes. This implies a much stronger damping effect for gels.

The resonance frequencies shift to higher values for increasing elasticity G, consistent
with our interpretation of elasticity as an additional restorative force in the DDO model.
This is illustrated in figure 8(b), which shows the frequency response for the n = 2 mode
and shows the resonance peak shifts to higher frequency. The non-monotonic variation in
peak X with G indicates a positive correlation between viscosity and elasticity in agarose
gels, whereas a purely elastic response would be monotonic. This correlation between
material properties can be proven by rheological measurements on agarose gels which
show the magnitude of storage modulus G’ (elasticity) is always about 10 times larger than
that of loss modulus G” (viscosity), regardless of the shear modulus.
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Figure 8. Frequency response, showing amplitude X against driving frequency f; for (a) the full frequency
range and (b) expanded view of the n = 2 mode for agarose gels with shear modulus G.
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Figure 9. Multiple resonance peaks for a given mode n are observed in the frequency response showing
amplitude X against driving frequency f; on an agarose gel with G = 20.2 Pa.

The frequency response can become complicated for gels with larger elasticity. For
example, note the small peak near 8 Hz for the 8.4 Pa gel in figure 8(a), which is actually an
additional n = 2 resonance peak with smaller peak amplitude than the primary n = 2 peak
at approximately 10 Hz. This feature is generally robust for G > 3.6 Pa. Figure 9 shows
the frequency response for a G = 20.2 Pa gel showing multiple n = 2 peaks at f; = 8.1,
10.5 and 13.1 Hz and multiple n = 3 peaks at f; = 9.5, 11.5, 14.3 and 16.7 Hz. These
experimental observations are consistent with nonlinear effects (wave—wave interactions)
associated with finite-amplitude gravity-capillary waves known as the Benjamin—Feir
instability (BFI) (Benjamin 1967; Benjamin & Feir 1967). This is sometimes referred to
as a side-band instability or modulation instability (Zakharov & Ostrovsky 2009) and
involves nonlinear dispersion of a moderate amplitude wave packet. Another possible
explanation for this observation is the combination resonances discussed by Kidambi
(2013) for Faraday waves with pinned contact-lines, which is a linear effect from mode
coupling. Further studies are needed to investigate this observation on gels and should be
pursued.
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4. Theory of edge waves in a cylindrical container

A viscoelastic fluid fills a cylindrical container of radius R and height H in cylindrical
coordinates (r, 0, z), as shown in figure 10. The interface is endowed with surface tension
o and is given a small axisymmetric disturbance & (r, 7) that is pinned to the lateral sidewall
and this generates a flow defined by velocity v and pressure p fields. Here we apply viscous
potential flow theory such that the bulk dissipation from viscosity is approximated by the
irrotational flow field (Lamb 1932; Joseph, Funada & Wang 2007; Padrino, Funada &
Joseph 2007).

4.1. Field equations

The fluid is assumed to be incompressible and the flow irrotational, which allows us
to define the velocity field v = V@ through the velocity potential @, which satisfies
Laplace’s equation

V2P =0, 4.1)
on the fluid domain, a no-penetration condition

0P
ar

0P

— =0, (4.2a,b)
r=R 0z

z=0

at the walls of the cylindrical container and a kinematic condition

oP 0&
—_— = 4.3)
0z ot

on the free surface z = H, which relates the normal velocity to the perturbation amplitude
there. The pressure field is given by the linearised Bernoulli equation

0P

= —p— — pgé, 4.4
p P rgs 4.4)

where p is the fluid density and g is the gravitational constant. The jump in normal stress
at the free surface is governed by the linearised Young—Laplace equation

BRL) o (9% 193¢
U= —— [ — + —— |, 45
P2 R2(8r2 rar) )

valid for small disturbances |&| << 1 with p the viscosity. The pinned contact-line
condition restricts the interface disturbance & such that

&lr=r =0. (4.6)

Lastly, volume conservation is enforced by the integral condition

R
/ ré(rydr = 0. “4.7)
0

Equations (4.1)—(4.7) define the linearised disturbance equations.
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Figure 10. Definition sketch.

4.2. Reduced equations
The following dimensionless variables are introduced:

F—r/R, z=2z/R, E=¢/R i=t]|2, d=a L, ﬁ:p(ﬁ).
or oR o
(4.8a—F)

Here lengths are scaled by the radius of the cylinder R, time with the capillary time scale

v/ pR3 /o and pressure with the capillary pressure o /R.
Normal modes,

@ (x, 1) = ¢(r,2) e, &£ 0,0 = y(r) e, (4.9a,b)

are assumed with o the oscillation frequency. Viscoelasticity enters the governing
equations by introducing the complex viscosity u — u + G/iw, with G the shear modulus
(Harden, Pleiner & Pincus 1991). Here we assume that © and G are constants, which is a
good approximation for soft polymeric gels (Tokita & Hikichi 1987), but not always the
case for materials with a more complex frequency-dependent rheology.

Equations (4.8a—f) and (4.9a,b) are applied to the governing equations (4.1)—(4.6) to
yield the domain equations

19 [ 3¢ 9%
R — =0, 4.10
ror (r 8r> + 972 (4.10a)
p = —id¢ — Boy, (4.100)
with boundary conditions on the solid support
0 0
—¢ =0, —¢ =0, Y,=1=0, (4.11a—c)
ar =1 9z |0
and free surface z = h,
Ec\ 3%¢ 3%y 19y A
—20h+ =) —=—|—+-—7—), —=id. 4.12a,b
P ( * i/l) 972 (8r2 * rar) 0z “ (4122.6)

Here A = w+/pR3/0 is the scaled frequency, h = H/R the cylinder aspect ratio, Bo =
pgR? /o the Bond number, Oh = n/+/pRo the Ohnesorge number and Ec = GR/o the
elastocapillary number. The volume-conservation constraint (4.7) requires

1
/ ry(rydr=0. (4.13)
0
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4.3. Integrodifferential equation

Equations (4.10)—(4.12a,b) can be manipulated into a single integrodifferential equation
for the interface disturbance y by mapping the problem to the interface. Here we write the
general solution for ¢ as

o(r,z) = Z Ay, cosh(k,z)Jo(k,r), (4.14)

n=1

where k, is the nth zero of Jj(k), as required to satisfy the no-penetration condition at
the lateral side wall, with Jo the Bessel function. Note that the no-penetration condition
at the bottom of the container z = 0 is naturally satisfied by this solution. The interface
disturbance y can also be expanded in a Bessel function series,

= _ s Jolkan))
Y0 =2 Clollan. - Co= G ey (15a.0)

n=1

where the inner product is defined as

1
{f(r).g(n) = /0 rf(r)g(r)dr. (4.16)

The coefficients A,, C, are related by the kinematic condition, A, = idC, /k, sinh(k,h),
and this gives the solution for the velocity potential

MZ 1 cosh(k,z) (v, Jo(knr))

¢(r.2) = kn sinh(kph) (Jo(knr), Jo(kar))

Jo(kyr), (4.17)

written implicitly through y. This solution is applied to the Young—Laplace equation to
give

I i coth(kyh) (v, Jo(knr))
ko (Jolknr), Jo(knr))

o0
’ J kn
— 21101 ky coth(kyh) 0 Jolar)) (0

(Jo(knr), Jo(knr))

Jo(knr)

n=1
o0
(v, Jo(kar)) Py 1dy
— 2FE k;, coth(k,h Jo(k,r) — B — 4+ -——|=0,
C; ) ey Jollyryy O BT G2 T g,

which is an integrodifferential equation for the interface disturbance y.

4.4. Operator formalism

To facilitate our solution method for the pinned contact-line condition, we rewrite (4.18)
as an operator equation

A2M([y] + AD[y; Oh] + Kly; Bo, Ec] = 0, (4.19)
919 A18-13
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with
&1 (v Jo(kar))
Mly) = ’; - coth(k,h) Totry. o (knr»Jo(knr), (4.20)

an integral operator representative of the fluid inertia,

Dly; Oh] = —2i Oh 3 k, coth(kyh) O, Jotkar)) ) k). 4.21)

(Jo(knr), Jo(kyr))

n=1

the dissipation operator and

(0,0)
7J kn
Kly: Bo. Ecl = —2Ec Y ky coth(kh) O Jokar))

{Jo(knr), Jo(knr))

n=1

Boy+| £ 414 4.22)
0y dr2  rdr Y )

a differential operator representative of the restorative forces of surface tension, elasticity,
and gravity.

4.5. Rayleigh—Ritz method

A Rayleigh—Ritz method is used to construct an approximate solution to the eigenvalue
problem (4.19) by building the pinned contact-line condition and volume-conservation
condition (4.13) into the function space over which the minimisation is done. This
approach has been applied previously to constrained drops by Bostwick & Steen (2009),
Bostwick & Steen (2013a) and Bostwick & Steen (2013b).

To define the constrained function space, we begin with a set of functions that satisfy
the pinned-edge condition,

Jo (kn)

Jo(k1)
Note that the summation starts at n = 2. It is straightforward to show that the integral
constraint (4.13) is naturally satisfied for this choice of basis functions by using the Bessel
function identity /01 rJo(kr) dr = —Jiy(k)/ k2. Since k, was chosen such that Jok) = 0, it
follows that fol rJo(k,r) dr = 0, and using linearity gives fol r8%(r) dr = 0 for all n. The
Gram-Schmidt procedure can be applied to the functions S, in order to generate a set of
orthonormal basis functions V;(r), where i = 1,2, 3, ..., N, such that fol rVi(n)Vi(r)dr =

d;; with §;; the Kronecker delta function, that span the constrained function space. The
surface disturbance y can be re-expressed using this orthonormal set as

Sn(r) = Jo(kar) —

Jotkir) n=2,3,...,N. (4.23)

o0

Y(r) = eiVi(r), (4.24)

i=1

and is applied to the operator equation (4.19) after which inner products are taken to yield
the matrix equation

(A*M + AD + K)c = 0, (4.25)
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(a) n=1 (b) n=2 (c) n=3
N N "/ 4
(d) (e) ()

Figure 11. Mode n shapes (a—c) and associated magnitude of wave slope (d—f).

with matrices M, D, and K defined as
M =(M[V.V;). D=(DIViL.V}). K =(KIVi.V}) (4.26a-c)

and c the coefficient vector.

4.6. Results

The eigenvalue problem (4.25) is solved numerically in the MATLAB programming
environment using the function POLYEIG which delivers the eigenvalue/vector pairs (4,c¢).
We use a truncation of N = 30 which produces relative eigenvalue convergence of 0.01 %.
Typical modes are shown in figure 11 where we present the (i) interface deflection (a—c)
and (ii) absolute value of the wave-slope field (d—f). The latter can be directly compared
with our experimental imaging technique. The mode number n can be associated with
the number of nodes of the interface disturbance, which appear as low-intensity circles
in the wave-slope field. For example, the n = 2 mode has three nodes including one
at the pinned contact-line, which appear as three dark circles in the plot of the wave
slope (cf. figure 11). Qualitatively, these results compare very well with the experimental
results presented in figure 5. The eigenvalue spectrum can be readily computed for any
numerical values of the parameters Bo, Oh, Ec, h. Damping associated with Oh > 0 leads
to a complex-valued A, with the real part Re[A] associated with the oscillation frequency
and the imaginary part Im[A4], the decay rate. Figure 12 plots the complex frequency
against Oh for the case of a purely viscous liquid showing a bifurcation from underdamped
Re[4] #0 to overdamped Re[A] = 0 motions. The critical Ohnesorge number Oh where
this bifurcation occurs decreases with increasing mode number #n indicating that viscous
dissipation increases with the mode number n. This is also seen in the higher decay rates
for higher mode numbers shown in figure 12(b). With regard to the frequency response,
overdamped motions lack an associated resonance peak, as shown in the experimental
frequency-response diagram for our most viscous liquids (cf. Figure 7a).

Figure 13 is a plot of the frequency A against elastocapillary number Ec for the aspect
ratio 7 = 0.628 and Bond number Bo = 170.8 used in our experiments and shows a
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Figure 12. (a) Oscillation frequency Re[A] and (b) decay rate /m[A] against the Ohnesorge number Oh shows
a transition from underdamped to overdamped behaviour for Bo = 170.8, h = 0.628, Ec = 0.

1000 — T T T T T
—n=1
—n=2
n=3
—n=4
—n=5
n=6
A
100 | B
20 1 1 1 1 1
1073 102 10! 10° 10! 102 103

Ec
Figure 13. Scaled frequency A against elastocapillary number Ec for Oh = 0, h = 0.628, Bo = 170.8.

monotonically increasing trend with Ec for each mode. Capillary-gravity waves occur
in the flat regions and elastocapillary-gravity waves in the regions where the curves are
increasing. The transition between these two regions generally occurs near Ec ~ 1-10, but
there is a dependence with mode number #n that shifts this transition region to higher Ec
with increasing n. This is because higher mode numbers »n have smaller wavelengths which
are more affected by surface tension with elastic effects less important. Elasticity becomes
important when the wavelength A is larger than the elastocapillary length ¢, = o/G,
A > £,. As A decreases with n, the transition must necessarily occur at larger G (i.e. smaller
Le).

4.7. Comparison with experiment

We can compare our theoretical predictions with the experimental resonance peaks shown
in figure 7(a) for glycerol/water mixtures and figure 8(a) for agarose gels. Table 2 lists the
resonance frequencies for the modes n observed in the glycerol/water experiments showing
good agreement with theory, with all predictions within 10 % of the experimental value.
The percent error generally increases with mode number  and viscosity . Table 3 lists the
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gly/wtr ratio n=1 n=2 n=3 n=4 n=>5 n==~6

0:1 58(0%) 88Q2% 114Q2%) 144(4%) 1804%) 21.8(4%)
1:5 570%) 84Q2%) 11.04%) 1414 %) 172(6%)  20.9 (6 %)
1:3 57(1%) 84(1%) 1094 %) 13.6(7T%) 169((7%) 20.0(9 %)
1:2 570%) 83Q2%) 10.7(6%) 1357 %) 16.6(8%) 19.8 (9 %)
2:3 57(1%) 8312%) 106(6%) 133(7%) 161(10%) 19.4(10%)
3:1 562%) 80M@4%) 1046%) 13.0(7%) OD OD

Table 2. Experimentally observed resonance frequencies measured in Hertz with deviation from theoretical
predictions presented parenthetically for glycerol/water mixtures with material properties listed in
table 1

G (Pa) Ec n=1 n=2 n=3

1.2 0.58 5.8 2%) 8.5 (4 %) 10.9 (9 %)
3.6 1.76 6 (1 %) 9.4 (3 %) 12.4 (0 %)
8.4 4.10 6.4 (1%) 10.0 3 %) 14.2 (7 %)
153 7.47 6.5 (3 %) 10.1 (4 %) 14.3 (1 %)
20.2 9.82 6.8 (3 %) 10.5 (5 %) 14.3 (6 %)

Table 3. Experimentally observed resonance frequencies measured in Hertz with deviation from theoretical
predictions presented parenthetically for agarose gels with Bo = 170.8.

comparison between experiment and theory for the agarose gels. Here we use the largest
amplitude resonance peak for each mode number 7, ignoring the nonlinear effects, already
discussed, for the stiffest gels. The agreement is good between theory and experiment
with most data within 5 % error. Given the large range of viscosity Oh and elasticity Ec in
our experiments, this level of agreement between theory and experiment suggest that our
theoretical development accurately captures the relevant physics present in this viscoelastic
system.

5. Concluding remarks

We have studied the frequency response of circular edge waves generated in a mechanically
vibrated container and focused on viscoelastic effects by using materials that have a
tunable (i) viscosity (glycerol/water mixtures) or (ii) elasticity (agarose gels) that remains
constant over the range of driving frequencies explored. This is the first experimental
observation of edge waves in gels, to our knowledge. Long-exposure time images were
used to quantify the magnitude of the wave field through the wave slope and were used
to generate frequency-response diagrams from which resonance peaks and associated
bandwidths could be readily identified. The spatial structure of the wave is defined by the
mode number n which is readily identified through the wave-slope images. The resonance
frequencies for a given mode 7 shift to lower values with increasing viscosity and higher
values with increasing elasticity, consistent with our physical interpretation of viscosity
as a damping force and elasticity as a restorative force in the classic DDO model. A
theoretical model for the natural frequency of a viscoelastic fluid with a flat interface
pinned at the edge of a circular container is derived and depends upon the dimensionless
Ohnesorge number Oh, Bond number Bo and elastocapillary number Ec. The model
predictions show good agreement with experiment. We note that for the large containers
used in our experiments, the meniscus is localised near the container sidewall such that the
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liquid/gas interface is largely flat across the container diameter. For smaller containers, the
meniscus geometry may become more important and affect the natural frequencies. The
wave response is more complicated for stiffer gels and the frequency response can exhibit
multiple resonance peaks for the same mode number n (cf. figure 9). This is consistent
with nonlinear wave—wave interactions and the Benjamin—Feir (side-band) instability, but
this needs further study.

We note that viscoelastic materials generally exhibit a frequency-dependent rheology,
even though the materials we studied were specifically chosen to independently explore
viscosity and elasticity. A material with complex rheology will exhibit a crossover
frequency, whereby the material response changes from being fluid-like (viscosity)
to solid-like (elasticity) and an investigation over a range of driving frequencies that
encompass this crossover frequency should be expected to exhibit more complex
dynamics. Lastly, we mention that there has been interest in measuring the surface tension
of complex materials, particularly those with an elasticity. We note that a method for doing
this would be to compare experimental results with theory using surface tension as a free
parameter to infer its value.
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