Computing the Lang-Trotter Constant

Neil Calkin, Lauren Huckaba, Kevin James, Jason Joyner, Josh Schwartz, Ethan Smith

July 9, 2008

Abstract

In this paper, we compute constants $C_{E, r}$ found in the Lang-Trotter conjecture for many elliptic curves E and integers r. These computations are simplified when E belongs to a special class of curves called Serre curves. This is due to the fact that the image of the Galois representation for E is as large as possible for a Serre curve.

1 Introduction

First, we recall some facts about elliptic curves. Recall that an elliptic curve E over a field K is a nonsingular plane curve of the form

$$
\begin{equation*}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} . \tag{1}
\end{equation*}
$$

The discriminant for such a curve is given by $\Delta=-16\left(4 A^{3}+27 B^{2}\right)$. In this paper, we consider elliptic curves over \mathbb{Q} and their reductions modulo primes q. A minimal model for E is an equation of the form (1) with smallest discriminant. When reducing modulo q, we always work with a minimal model. In the the cases where q is not 2 or 3 , we may assume that our minimal model can be reduced to the form

$$
\begin{equation*}
E: y^{2}=x^{3}+A x+B \tag{2}
\end{equation*}
$$

If the reduction of E modulo q is nonsingular, then E is said to have good reduction at q. Otherwise, E is said to have bad reduction at q. There are two cases of bad reduction.
(i) E has additive reduction if its reduction modulo q has a cusp, or a root of multiplicity 3 modulo q.
(ii) E has multiplicative reduction if its reduction modulo q has a node, or a root of multiplicity 2 modulo q.

Definition 1. An elliptic curve is semistable if and only if the curve has good reduction all primes p or multiplcative reduction at all primes p.

We want establish a simple way to determine whether a given elliptic curve is semistable For a given elliptic curve E, define f_{p} as follows:

$$
f_{p}=\left\{\begin{array}{l}
0, \text { if } E \text { has good reduction at } p \\
1, \text { if } E \text { has multiplicative reduction at } p \\
2+\delta_{p}, \text { if } E \text { has additive reduction at } p
\end{array}\right.
$$

The value of δ_{p} is equal to 0 for fields of characteristic $\neq 2,3$. We use Tate's algorithm [3] to determine the values of f_{p}.

Definition 2. The conductor N_{E} of an elliptic curve E is defined as:

$$
N_{E}=\prod_{p} p^{f_{p}}
$$

The following theorem simply follows from the definitions of semistability and the conductor of an elliptic curve:

Theorem 1. An elliptic curve E is semistable if and only if the conductor N_{E} is square-free.
Conjecture 1 (Lang and Trotter). Let E be an elliptic curve, q a prime, and $r \in \mathbb{Z}$,

$$
\#\left\{q \leq X: a_{q}(E)=r\right\} \sim C_{E, r} \frac{\sqrt{X}}{\log X}
$$

where $C_{E, r}$ is some explicit constant defined in terms of Galois representations and the error term is defined as $a_{q}(E)=q+1-\# E\left(\mathbb{F}_{q}\right)$.

We now describe the constant $C_{E, r}$. The absolute Galois group acts on the N -torsion points of E as follows:

$$
\begin{aligned}
\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \times E[N] & \longrightarrow E[N] \\
(\sigma,(x, y)) & \longmapsto(\sigma x, \sigma y)
\end{aligned}
$$

This action induces the representation

$$
\phi_{N, E}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \operatorname{Aut}(E[N]) \cong \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})
$$

For any subgroup G of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, let G_{r} denote the subset of elements with trace r. By [9] (see also [4]), there is an integer m_{E} such that for all primes $q \nmid m_{E}, \phi_{q, E}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$ $=\mathrm{GL}_{2}(\mathbb{Z} / q \mathbb{Z})$.

Then Lang and Trotter [6] define

$$
\begin{equation*}
C_{E, r}:=\frac{2}{\pi} \cdot \frac{m_{E} \cdot \#\left(\phi_{m_{E}, E}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))_{r}\right)}{\#\left(\phi_{m_{E}, E}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))\right)} \prod_{\substack{p \nmid m_{E} \\ p \nmid r}} \frac{p\left(p^{2}-p-1\right)}{(p+1)(p-1)^{2}} \prod_{\substack{p \nmid m_{E} \\ p \mid r}} \frac{p^{2}}{p^{2}-1} \tag{3}
\end{equation*}
$$

We calculate the constant $C_{E, r}$ for a range of r and for a number of elliptic curves E that are Serre curves.

Lemma 1. The size of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ is $\prod_{p \mid N}\left(p^{2}-1\right)\left(p^{2}-p\right)\left(p^{4\left(\operatorname{ord}_{p}(N)-1\right)}\right)$.
Proof. To compute the size of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, for N prime, we look at an element $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in$ $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$. By definition, the columns of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ are linearly independent. There are N choices for a and N choices for c. However, linear independence implies that the zero vector cannot be included in the set of vectors $\binom{a}{c}$. So, there are $N^{2}-1$ choices for $\binom{a}{c}$. The vector $\binom{b}{d}$ cannot be a multiple of $\binom{a}{c}$. Similarly, there are N^{2} choices for $\binom{b}{d}$ and since there are N choices for both a and c, there are N possible multiples of the vector $\binom{a}{c}$. Therefore, there are $N^{2}-N$ choices for $\binom{b}{d}$, giving $\left(N^{2}-1\right)\left(N^{2}-N\right)$ elements in $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$.

When N is not prime, then N is the product of prime powers, $p_{1}^{n_{1}}, \ldots, p_{k}^{n_{k}}$ and the size of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ is $\prod_{p \mid N}\left(p^{2}-1\right)\left(p^{2}-p\right)\left(p^{4\left(\operatorname{ord}_{p}(N)-1\right)}\right)$. Then N can be factored as the product, $M_{1} \ldots M_{k}$, where $M_{i}=p_{i}^{n_{i}}$. A matrix in $\mathrm{GL}_{2}\left(\mathbb{Z} / M_{i} \mathbb{Z}\right)$ has the form $\left(\begin{array}{c}a_{0}+a_{1} p_{i} b_{0}+b_{1} p_{i} \\ c_{0}+c_{1} p_{i} \\ d_{0}+d_{1} p_{i}\end{array}\right)$, where $a_{0}, b_{0}, c_{0}, d_{0} \in \mathbb{Z} / p_{i} \mathbb{Z}$ and $0 \leq a_{1}, b_{1}, c_{1}, d_{1}<p_{i}^{n_{i}-1}$. Recall that there are $\left(p_{i}^{2}-1\right)\left(p_{i}^{2}-p_{i}\right)$ choices for a_{0}, b_{0}, c_{0}, and d_{0}. Similarly, there are $p_{i}^{n_{i}-1}$ choices for each a_{1}, b_{1}, c_{1}, and d_{1}, i.e. $p_{i}^{\left(n_{i}-1\right)^{4}}$ combinations of a_{1}, b_{1}, c_{1}, and d_{1}. So, there are $\left(p_{i}^{2}-1\right)\left(p_{i}^{2}-p_{i}\right) p_{i}^{\left(n_{i}-1\right)^{4}}$ choices for $\left(\begin{array}{cc}a_{0}+a_{1} p_{i} & b_{0}+b_{1} p_{i} \\ c_{0}+c_{1} p_{i} & d_{0}+d_{1} p_{i}\end{array}\right)$. Then, $\# \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})=\# \mathrm{GL}_{2}\left(\mathbb{Z} / M_{1} \mathbb{Z}\right) \cdots \# \mathrm{GL}_{2}\left(\mathbb{Z} / M_{k} \mathbb{Z}\right)$.

2 Acknowledgements

We are grateful to
Dr. Nigel Boston for his insight and interest in the topic.
Richard Crandall for pointing us to the prime zeta function.
Jobby Jacobs for his help with submitting jobs to Clemson Condor.
Eric Manley for pointing us to Pari/GP and allowing us to view his code.
Aaron Rosen for his unlimited support with programming in C and the Linux environment.
Dr. Matt Saltzman for his evaluation of our programming techniques.
Dr. Paul Savas for his sessions on high throughput and parallel computing.
Dr. Dan Warner for his advice concerning high throughput computations.

3 The Definition of a Serre Curve

Roughly speaking, a Serre curve is an elliptic curve whose torsion subgroup has as much Galois symmetry as possible. Serre has shown that the image of $\phi_{M_{W}, E}$ is always contained in a subgroup of index 2 called the Serre subgroup and denoted by $H_{M_{W}}$. The curve E is said to be a Serre curve when $\phi_{M_{W}, E}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))=H_{M_{W}}$.
Definition 3. The Serre number for some elliptic curve E is:

$$
M_{\Delta_{s f}}(E)= \begin{cases}2\left|\Delta_{s f}\right|, & \text { if } \Delta_{s f} \equiv 1 \quad(\bmod 4) \\ 4\left|\Delta_{s f}\right|, & \text { otherwise }\end{cases}
$$

where $\Delta_{s f}$ is the square-free part of the discriminant of E.
The definition of a Serre curve is as follows.
Definition 4. An elliptic curve E is a Serre curve if for every $m \in \mathbb{Z}^{+}$, we have:

$$
\left[\mathrm{GL}_{2}(\mathbb{Z} / m \mathbb{Z}): \phi_{m, E}\left(G_{\mathbb{Q}}\right)\right]=\left\{\begin{array}{lc}
2, & \text { if } M_{\Delta_{\text {sf }}} \mid m \\
1, & \text { otherwise }
\end{array}\right.
$$

Definition 5. The integer N is said to be exceptional for E if $\phi_{N, E}$ is not surjective.
Theorem 2. [7, p. 131] Let E be a semistable elliptic curve, and N a prime number. Then the image of $\phi_{N, E}$ is $G L_{2}(\mathbb{Z} / N \mathbb{Z})$ if $N \geq 11$. Equivalently, there are no exceptional primes $N \geq 11$ for a semistable elliptic curve E.

In [5, Lemma 5], we find the following sufficient conditions for an elliptic curve to be Serre.

Lemma 2. If E over \mathbb{Q} is an elliptic curve such that:
(i) E has no exceptional primes.
(ii) E is not exceptional at 4 or 9 .
(iii) The index $\left[\mathrm{GL}_{2}(\mathbb{Z} / 8 \mathbb{Z}): \phi_{8, E}\left(G_{\mathbb{Q}}\right)\right] \neq 2$.
(iv) There exists a prime $p>3$ which divides the Serre number $M_{\Delta_{s f}}(E)$.

Then, E is a Serre curve.
We see that checking an elliptic curve for semistability is a matter of calculating the conductor. It is easy to apply Lemma 2 to semistable curves because we need only check that primes less than 11 are not exceptional.

To identify Serre curves, we use [8, Theorem 3.2] by Reverter and Vila, as well as the Antwerp tables [1] to choose curves to which we can apply Lemma 2. From this theorem we see that for many elliptic curves E / \mathbb{Q} without complex multiplication and with conductor $N_{E} \leq 200, E$ has no exceptional primes. For these curves, we need only check conditions $2-4$ of Lemma 2.

4 Examples of Serre Curves

Proposition 1. The following elliptic curves in table A. 1 are Serre curves.
(i) $E_{1}: y^{2}=x^{3}-4 x+4$
(ii) $E_{2}: y^{2}=x^{3}+32 x+212$

Proof. First, we consider the curve E_{1}. According to part (i) of the theorem by Reverter and Vila [8] the fact that E_{1} has conductor $88 \leq 200$ and does not have complex multiplication implies that $\rho_{E, p}\left(G_{\mathbb{Q}}\right)$ is $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ for all prime numbers $p>13$. Therefore, E_{1} has no exceptional primes greater than 13. Part (iii) of the theorem states that the image of $\rho_{E, 11}\left(G_{\mathbb{Q}}\right)$ is $\mathrm{GL}_{2}\left(\mathbb{F}_{11}\right)$ with the exception of five curves, not including E_{1}. Parts $(i v),(v)$, and (vi) show that the primes 7,5 , and 3 are not exceptional. We now check that E_{1} is not exceptional at 8 and 9 . Since we have checked whether $2^{3}=8$ is exceptional, we are not required to check if $2^{2}=4$ is exceptional because if E is not exceptional at p^{n}, then E is not exceptional at p^{n-1}, for p prime. Recall then, that the integer N is exceptional for E if $\phi_{N, E}$ is not surjective. Therefore, in order to verify that E_{1} is a Serre curve, we compute $\mathrm{GL}_{2}(\mathbb{Z} / 8 \mathbb{Z})$ and $\mathrm{GL}_{2}(\mathbb{Z} / 9 \mathbb{Z})$ as well as $\operatorname{Gal}(\mathbb{Q}(E[8]) / \mathbb{Q})$ and $\operatorname{Gal}(\mathbb{Q}(E[9]) / \mathbb{Q})$. Then we compare the size of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ with its corresponding Galois group. However, the 8th and 9th division polynomials, whose roots give x-coordinates for $E[8]$ and $E[9]$ respectively, are the minimal polynomials $\mathbb{Q}(E[8]) / \mathbb{Q}$, and $\mathbb{Q}(E[9]) / \mathbb{Q}$. Therefore,

We use the Galois group function in Magma [2] to compute the size of $\operatorname{Gal}(\mathbb{Q}(E[n]) / \mathbb{Q})$ for $n=8,9$.

Now we consider the curve $E_{2} . E_{2}$ does not have complex multiplication and has conductor $N_{E}=140$, according to the Antwerp tables [1]. Similar to $E_{1},[8$, Theorem 3.2] gives $\rho_{E, p}\left(G_{\mathbb{Q}}\right)$ is $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$, for all prime numbers $p>13$, meaning E_{2} has no exceptional primes greater than 13. In the same manner as E_{1}, we use parts (iii)-(vi) of the theorem to confirm that E_{2} has no exceptional primes.
Again, we use the Galois group function in Magma $[2]$ to compute the size of $\operatorname{Gal}(\mathbb{Q}(E[n]) / \mathbb{Q})$ for $n=8,9$.

Proposition 2. Curves $4-22$ of table $A .1$ are Serre curves.
Proof. The Antwerp tables [1] give the conductor N_{E} for each of these elliptic curves. One can verify that the conductor for each of these curves is square-free. Recall from Theorem 1 that these curves are semistable. Then we can apply Theorem 2 to prove that an elliptic curve E has no exceptional primes greater than or equal to 11 . Therefore, we need only compute the sizes of $\mathrm{GL}_{2} \mathbb{Z} / N \mathbb{Z}$ and $\operatorname{Gal}(\mathbb{Q}(E[N]) / \mathbb{Q})$, for $N=2,3,5,7,8,9$.

5 The Serre Subgroup $H_{M_{W}}$

In this section, we give a more explicit characterization of the Serre subgroup $H_{M_{W}}$. Serre [9] has shown that for each elliptic curve E, there is an index two subgroup $H_{E} \subseteq \mathrm{GL}_{2}(\hat{\mathbb{Z}})$ so that $\phi_{E}\left(G_{\mathbb{Q}}\right) \subseteq H_{E}$. The image of the projection of H_{E} onto $\mathrm{GL}_{2}\left(\mathbb{Z} / M_{W} \mathbb{Z}\right)$ is a subgroup of $H_{M_{W}}$, while the image of the projection $\pi_{N}\left(H_{E}\right)$ onto $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ is the entire group $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ for $\left(M_{W}, N\right)=1$.
As a result, we need to characterize the subgroup $H_{M_{W}}$ in order to understand the $\phi_{N, E}$ map.
To describe $H_{M_{W}}$, we must first recall the definition of the Kronecker symbol, a generalization of the Legendre symbol.

Let p be an odd prime and a an integer. The Legendre symbol is defined by:

$$
\left(\frac{a}{p}\right):= \begin{cases}-1, & \text { if } x^{2} \equiv a \quad(\bmod p) \text { has no solutions } \\ 0, & \text { if } a \equiv 0 \quad(\bmod p) \\ 1, & \text { if } x^{2} \equiv a \quad(\bmod p) \text { has two solutions. }\end{cases}
$$

The Kronecker symbol is an extension of the preceeding definition, where we write $\left(\frac{a}{b}\right)$ for every $a, b \in \mathbb{Z}$ as follows,
(i) If $b=0$, then

$$
\left(\frac{a}{0}\right):= \begin{cases}1, & \text { if } a= \pm 1 \\ 0, & \text { otherwise }\end{cases}
$$

(ii) For $b \neq 0$, write $b=u p_{1} \cdots p_{k}$, where p_{i} is prime and not necessarily distinct and $u \in\{ \pm 1\}$. Then the Kronecker symbol is defined as

$$
\left(\frac{a}{b}\right)=\left(\frac{a}{u}\right) \prod\left(\frac{a}{p}\right)
$$

where $\left(\frac{a}{p}\right)$ is the Legendre symbol defined above for $p>2$, and define

$$
\left(\frac{a}{2}\right)= \begin{cases}0, & \text { if } a \text { is even } \\ (-1)^{\left(a^{2}-1\right) / 8}, & \text { if } a \text { is odd }\end{cases}
$$

and

$$
\left(\frac{a}{-1}\right)= \begin{cases}1, & \text { if } a \geq 0 \\ -1, & \text { if } a<0\end{cases}
$$

From Jones' paper [5, p. 13], we see that there exists a map

$$
\epsilon: \mathrm{GL}_{2}(\mathbb{Z} / 2 m \mathbb{Z}) \longrightarrow \mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z}) \xrightarrow{\sim} S_{3} \xrightarrow{\mathrm{sgn}}\{ \pm 1\}
$$

where S_{3} is the group of permutations on 3 letters and sgn is the signature character mapping even permutations to 1 and odd permutations to -1 .

For an elliptic curve E, Jones defines the subgroup

$$
\begin{equation*}
H_{M_{W}}:=\operatorname{ker}\left(\left(\frac{W}{\operatorname{det}(\cdot)}\right) \epsilon(\cdot)\right) \subset \mathrm{GL}_{2}\left(\mathbb{Z} / M_{W} \mathbb{Z}\right) \tag{4}
\end{equation*}
$$

where $W=\Delta_{s f}(E)$ is the square-free part of the discriminant of an elliptic curve E and M_{W} is the Serre number of E, as defined in Section 3 [5, p. 13]. $H_{M_{W}}$ is known as the "Serre subgroup of E."

6 Computing the Rational Constant

Recall the constant

$$
\begin{equation*}
C_{E, r}=\frac{2}{\pi} \cdot \frac{m_{E} \cdot \#\left(\phi_{m_{E}, E}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))_{r}\right)}{\#\left(\phi_{m_{E}, E}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))\right)} \prod_{\substack{p \nmid m_{E} \\ p \nmid r}} \frac{p\left(p^{2}-p-1\right)}{(p+1)(p-1)^{2}} \prod_{\substack{p \nmid m_{E} \\ p \mid r}} \frac{p^{2}}{p^{2}-1} . \tag{5}
\end{equation*}
$$

For the case $r=0$, we break $C_{E, 0}$ into two parts:
an infinite product:

$$
\begin{equation*}
C_{0}=\prod_{p}\left(\frac{p^{2}}{p^{2}-1}\right) \tag{6}
\end{equation*}
$$

and a finite product:

$$
\begin{equation*}
C=m_{e} \cdot \prod_{p \mid m_{E}}\left(\frac{p^{2}-1}{p^{2}}\right) \cdot \frac{\#\left(\phi_{m_{E}, E}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))_{0}\right)}{\#\left(\phi_{m_{E}, E}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))\right)} \tag{7}
\end{equation*}
$$

We see that

$$
C_{0}=\prod_{p}\left(\frac{p^{2}}{p^{2}-1}\right)=\prod_{p}\left(\frac{1}{1-\frac{1}{p^{2}}}\right)=\zeta(2)=\frac{\pi^{2}}{6} .
$$

So, when $r=0, C_{E, r}$ reduces to

$$
C_{E, r}=\frac{\pi^{2}}{6} \cdot C
$$

When $r \neq 0$, we break $C_{E, r}$ into three parts. Define the products C_{1}, C_{2}, and C_{3} by

$$
\begin{align*}
C_{1} & =\prod_{p} \frac{p\left(p^{2}-p-1\right)}{\left(p^{2}-1\right)(p-1)} \tag{8}\\
C_{2} & =\frac{2}{\pi} \cdot m_{E} \prod_{p \mid m_{E}} \frac{(p+1)(p-1)^{2}}{p\left(p^{2}-p-1\right)} \prod_{\substack{p \not m_{E} \\
p \mid r}} \frac{\left(\frac{p^{2}}{p^{2}-1}\right)}{\left(\frac{p\left(p^{2}-p-1\right)}{(p+1)(p-1)^{2}}\right)}, \tag{9}\\
C_{3} & =\frac{\#\left(\phi_{m_{E}, E}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))_{r}\right)}{\#\left(\phi_{m_{E}, E}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))\right)} . \tag{10}
\end{align*}
$$

Observe that $C_{E, r}=C_{1} \cdot C_{2} \cdot C_{3}$.
One can see that Serre curves simplify the computation of C_{3} because counting the elements in $\phi_{m_{E}, E}\left(G_{\mathbb{Q}}\right)$ is equivalent to counting the elements in $H_{M_{W}}$. Recall the definition of $H_{M_{W}}$ from equation 4 . We can verify that $H_{M_{W}}$ is the kernel of a homomorphism, so it forms a normal subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z} / M_{W} \mathbb{Z}\right)$. When we \bmod out $\mathrm{GL}_{2}\left(\mathbb{Z} / M_{W} \mathbb{Z}\right)$ by $H_{M_{W}}$, we
obtain a group of order 2 . This implies that that $H_{M_{W}}$ is one-half the size of $\mathrm{GL}_{2}\left(\mathbb{Z} / M_{W} \mathbb{Z}\right)$. Therefore,

$$
\begin{equation*}
H_{M_{W}}=\frac{1}{2} \prod_{p \mid M_{W}}\left(\left(p^{2}-1\right)(p-1) p^{4\left(\operatorname{ord}_{M_{W}}(p)-1\right)}\right) \tag{11}
\end{equation*}
$$

7 Computing the Number of Trace r Elements in $H_{M_{W}}$

In this section, we discuss the computation of the number of trace r elements in $H_{M_{W}}$.
In order to calculate the rational factor in the constant, we need the cardinality of the set of trace r elements in the Serre subgroup. We can find this for any r using the followng procedure.
Recall that W is equal to the square-free discriminant of the curve $\Delta_{s f}$. Consider W as a product of distinct primes p_{i} :

$$
W= \pm p_{1} \ldots p_{k}
$$

For the square-free dicriminant W, we recall that the Serre number M_{W} is equal to either $4|W|$ or $2|W|$, depending on W^{\prime} 's reduction modulo 4.
Our notation is such that the group E_{q} is a subgroup of $\prod_{p \text { prime }} \mathrm{GL}_{2} \mathbb{Z}_{p}$ such that E_{q} is the kernel of the map that takes an element from $\prod_{p \text { prime }} \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$ to the set $\{ \pm 1\}$ by a composition of the projection homomorphism and the Kronecker symbol.

$$
\prod_{p \text { prime }} \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) \xrightarrow{\pi_{q}} \mathrm{GL}_{2}(\mathbb{Z} / q \mathbb{Z}) \xrightarrow{\left(\frac{\operatorname{det} \cdot \mathrm{f})}{W}\right)}\{ \pm 1\}
$$

We can think of E_{q} as the subgroup of 'even' elements of $\prod_{p \text { prime }} \mathrm{GL}_{2} \mathbb{Z}_{p}$ and the coset $O_{q}=-E_{q}$ as the set of 'odd' elements. We define the group H_{E} as the group whose projection onto $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ yields the image of $\phi_{N, E}$,

$$
H_{E}= \begin{cases}{\left[\left(E_{2} \times E_{q}\right) \cup\left(O_{2} \times O_{q}\right)\right] \times \prod_{\ell \nmid 2 q} \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right),} & M_{W}=2|W| \\ {\left[\left(E_{4} \times E_{q}\right) \cup\left(O_{4} \times O_{q}\right)\right] \times \prod_{\ell \nmid 4 q} \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right),} & M_{W}=4|W|,\end{cases}
$$

where $q=|W|$. For a Serre curve, we notice that the projection of H_{E} onto $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ gives the image of $\phi_{E, N}$.
When we project H_{E} from a direct product of $\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$ into $\mathrm{GL}_{2}(\mathbb{Z} / q \mathbb{Z})$, we define the subgroup $E(q)$ to be the image of this projection from E_{q}. For a prime $p=q$ we can see that this subgroup is equal to the kernel of the homomorphism

$$
E(p)=\operatorname{ker}\left(\left(\frac{\operatorname{det}(\cdot)}{p}\right)\right)
$$

and the set $O(p)$ is its respective coset. There are two special cases of the subgroup for which we must consider. First, $E(2)$ is the kernel of the composite map that takes $\mathrm{GL}_{2}(\mathbb{Z} / 2 q \mathbb{Z})$ to $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z}) \simeq S_{3}$ which is then mapped to $\{ \pm 1\}$ by the sign of the permutation

$$
\epsilon: \mathrm{GL}_{2}(\mathbb{Z} / 2 q \mathbb{Z}) \longrightarrow \mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z}) \longrightarrow\{ \pm 1\}
$$

and the subgroup $O(2)$ is its respective coset. Second, $E(4)$ is the kernel of the homomorphism

$$
E(4)=\operatorname{ker}\left(\left(\frac{-1}{\operatorname{det}(\cdot)}\right) \epsilon(\cdot)\right)
$$

and the subgroup $O(4)$ is its respective coset.
We generalize Lang and Trotter's Serre number to the one defined by Jones and we can show that Lang and Trotter's characterization of the Serre subgroup is equivalent to Jones' description of $H_{M_{W}}$ [6] [5], i.e.

$$
H_{M_{W}}=\operatorname{ker}\left(\left(\frac{W}{\operatorname{det}(\cdot)}\right) \epsilon(\cdot)\right)=\left\{\begin{array}{ll}
{[(E(2) \times E(q)) \cup(O(2) \times O(q))],} & M_{W}=2|W| \\
{[(E(4) \times E(q)) \cup(O(4) \times O(q))],} & M_{W}=4|W|
\end{array} .\right.
$$

Proof.
Case 1: For $W \equiv 1(\bmod 4)$
Since we are working in $\mathrm{GL}_{2}\left(\mathbb{Z} / M_{W} \mathbb{Z}\right)$, we can always that the determinant of its elements is positive by reducing $\left(\bmod M_{W}\right)$. Using the properties of the Kronecker symbol we know that for $W \equiv 1(\bmod 4)$ the following properties hold:

$$
\left(\frac{W}{\operatorname{det}(\cdot)}\right)=\left(\frac{\operatorname{det}(\cdot)}{W}\right), \quad\left(\frac{\operatorname{det}(\cdot)}{W}\right)=\left(\frac{\operatorname{det}(\cdot)}{|W|}\right) .
$$

Jones defines the Serre subgroup $H_{M_{W}}$ as the kernel of the following homomorphism [5],

$$
H_{M_{W}}=\operatorname{ker}\left(\left(\frac{W}{\operatorname{det}(\cdot)}\right) \epsilon(\cdot)\right) .
$$

Notice that the preceeding identity implies that

$$
H_{M_{W}}=\operatorname{ker}\left(\left(\frac{\operatorname{det}(\cdot)}{W}\right) \epsilon(\cdot)\right) .
$$

Observe that Kronecker symbol can be broken up into a product of Legendre symbols,

$$
\left(\frac{\operatorname{det}(\cdot)}{W}\right)=\prod_{p \mid W}\left(\frac{\operatorname{det}(\cdot)}{p}\right) .
$$

We now provide a proof by induction on the prime factors of W.
For $W= \pm p$,

$$
H_{M_{W}}=\operatorname{ker}\left(\left(\frac{\operatorname{det}(\cdot)}{p}\right) \epsilon(\cdot)\right)
$$

This implies that either $\left(\frac{\operatorname{det}(\cdot)}{p}\right)=1$ and $\epsilon(\cdot)=1$, or $\left(\frac{\operatorname{det}(\cdot)}{p}\right)=-1$ and $\epsilon(\cdot)=-1$.
Recall that $E(2)$ is the kernel of $\epsilon(\cdot)$ and $E(p)$ is the kernel of $\left(\frac{\operatorname{det}(\cdot)}{p}\right)$, and the sets $O(2)$ and $O(p)$ to be the respective cosets. We can express the Serre subgroup as the union of direct products [6],

$$
H_{M_{W}}=(E(2) \times E(p)) \cup(O(2) \times O(p))
$$

Similarly, the coset of $H_{M_{W}}$ is representable as

$$
-H_{M_{W}}=(E(2) \times O(p)) \cup(O(2) \times E(p))
$$

Assume that this is possible for W^{\prime}. We now want to show this for $W=p W^{\prime}$.

$$
\begin{gathered}
H_{M_{W}}=\operatorname{ker}\left(\left(\frac{\operatorname{det}(\cdot)}{W}\right) \epsilon(\cdot)\right) \\
\left(\frac{\operatorname{det}(\cdot)}{W}\right)=\left(\frac{\operatorname{det}(\cdot)}{p}\right)\left(\frac{\operatorname{det}(\cdot)}{W^{\prime}}\right)
\end{gathered}
$$

This implies that either $\left(\frac{\operatorname{det}(\cdot)}{p}\right)=1$ and $\left(\frac{\operatorname{det}(\cdot)}{W^{\prime}}\right) \epsilon(\cdot)=1$, or $\left(\frac{\operatorname{det}(\cdot)}{p}\right)=-1$ and $\left(\frac{\operatorname{det}(\cdot)}{W^{\prime}}\right) \epsilon(\cdot)=$ -1 .
Observe that $E_{W^{\prime}}=H_{M_{W^{\prime}}}$ and $O_{W^{\prime}}=-H_{M_{W^{\prime}}}$ and that $\left(p, W^{\prime}\right)=1$, which implies that $H_{M_{W}}$ has the form

$$
H_{M_{W}}=\left(E(p) \times E\left(W^{\prime}\right)\right) \cup\left(O(p) \times O\left(W^{\prime}\right)\right)
$$

The case for $W \equiv 1(\bmod 4)$ is proved by induction.

Case 2: For $W \not \equiv 1(\bmod 4)$
We cannot use the same properties as for $W \equiv 1(\bmod 4)$, but we can use the following properties:

$$
\left(\frac{W}{\operatorname{det}(\cdot)}\right)=\left(\frac{-1}{\operatorname{det}(\cdot)}\right)\left(\frac{\operatorname{det}(\cdot)}{W}\right), \quad\left(\frac{\operatorname{det}(\cdot)}{W}\right)=\left(\frac{\operatorname{det}(\cdot)}{|W|}\right) .
$$

Using the preceeding identity, we obtain

$$
H_{M_{W}}=\operatorname{ker}\left(\left(\frac{-1}{\operatorname{det}(\cdot)}\right)\left(\frac{\operatorname{det}(\cdot)}{W}\right) \epsilon(\cdot)\right)
$$

Again we can break up the Kronecker symbol into a product of Legendre symbols,

$$
\left(\frac{\operatorname{det}(\cdot)}{W}\right)=\prod_{p \mid W}\left(\frac{\operatorname{det}(\cdot)}{p}\right) .
$$

We now provide a proof by induction on the prime factors of W.
For $W= \pm p$,

$$
H_{M_{W}}=\operatorname{ker}\left(\left(\frac{-1}{\operatorname{det}(\cdot)}\right)\left(\frac{\operatorname{det}(\cdot)}{p}\right) \epsilon(\cdot)\right)
$$

This implies that either $\left(\frac{\operatorname{det}(\cdot)}{p}\right)=1$ and $\left(\frac{-1}{\operatorname{det}(\cdot)}\right) \epsilon(\cdot)=1$, or $\left(\frac{\operatorname{det}(\cdot)}{p}\right)=-1$ and $\left(\frac{-1}{\operatorname{det}(\cdot)}\right) \epsilon(\cdot)=$ -1 .
Recall that the kernel of $\left(\frac{-1}{\operatorname{det}(\cdot)}\right) \epsilon(\cdot)$ is the subgroup $E(4)$, and we again define $E(p)$ to be the kernel of $\left(\frac{\operatorname{det}(\cdot)}{p}\right)$, and the sets $O(4)$ and $O(p)$ to be the respective cosets. We can express the Serre subgroup as the union of direct products [6],

$$
H_{M_{W}}=(E(4) \times E(p)) \cup(O(4) \times O(p)) .
$$

Similarly, the coset of $H_{M_{W}}$ is representable as

$$
-H_{M_{W}}=(E(4) \times O(p)) \cup(O(4) \times E(p)) .
$$

Again, we assume that this is possible for W^{\prime}. We now want to show this for $W=p W^{\prime}$.

$$
\begin{gathered}
H_{M_{W}}=\operatorname{ker}\left(\left(\frac{\operatorname{det}(\cdot)}{W}\right)\left(\frac{-1}{\operatorname{det}(\cdot)}\right) \epsilon(\cdot)\right) \\
\left(\frac{\operatorname{det}(\cdot)}{W}\right)=\left(\frac{\operatorname{det}(\cdot)}{p}\right)\left(\frac{\operatorname{det}(\cdot)}{W^{\prime}}\right)
\end{gathered}
$$

This implies that either $\left(\frac{\operatorname{det}(\cdot)}{p}\right)=1$ and $\left(\frac{\operatorname{det}(\cdot)}{W^{\prime}}\right)\left(\frac{-1}{\operatorname{det}(\cdot)}\right) \epsilon(\cdot)=1$, or $\left(\frac{\operatorname{det}(\cdot)}{p}\right)=-1$ and $\left(\frac{\operatorname{det}(\cdot)}{W^{\prime}}\right)\left(\frac{-1}{\operatorname{det}(\cdot)}\right) \epsilon(\cdot)=-1$.
Observe that $E\left(W^{\prime}\right)=H_{M_{W^{\prime}}}$ and $O\left(W^{\prime}\right)=-H_{M_{W^{\prime}}}$ and that $\left(p, W^{\prime}\right)=1$, which implies that $H_{M_{W}}$ has the form

$$
H_{M_{W}}=\left(E(p) \times E\left(W^{\prime}\right)\right) \cup\left(O(p) \times O\left(W^{\prime}\right)\right) .
$$

Hence, the case for $W \not \equiv 1(\bmod 4)$ is proved by induction.

We introduce the notation $\left(E_{q}\right)_{r}$, which means the subset of E_{q} of elements of trace r. Similarly, we define $E(q)_{r}$.
Using the Chinese remainder theorem, we see that the following identities hold for $(s, t)=1$:

$$
\begin{aligned}
\left(E_{s t}\right)_{r} & =\left(\left(E_{s}\right)_{r} \times\left(E_{t}\right)_{r}\right) \cup\left(\left(O_{s}\right)_{r} \times\left(O_{t}\right)_{r}\right) \\
\left(O_{s t}\right)_{r} & =\left(\left(E_{s}\right)_{r} \times\left(O_{t}\right)_{r}\right) \cup\left(\left(O_{s}\right)_{r} \times\left(E_{t}\right)_{r}\right) \\
E(s t)_{r} & =\left(E(s)_{r} \times E(t)_{r}\right) \cup\left(O(s)_{r} \times O(t)_{r}\right) \\
O(s t)_{r} & =\left(E(s)_{r} \times O(t)_{r}\right) \cup\left(O(s)_{r} \times E(t)_{r}\right)
\end{aligned}
$$

We can see from these identites that the Serre subgroup can be expressed as union of direct products of subgroups of even $E(p)$ and odd $O(p)$ trace r elements.
The cardinality of set of trace r elements in the Serre subgroup can then be expressed as

$$
\left|\left(H_{M_{W}}\right)_{r}\right|= \begin{cases}\left|E(2)_{r}\right|\left|E(q)_{r}\right|+\left|O(2)_{r}\right|\left|O(q)_{r}\right|, & M=2|W| \\ \left|E(4)_{r}\right|\left|E(q)_{r}\right|+\left|O(4)_{r}\right|\left|O(q)_{r}\right|, & M=4|W|\end{cases}
$$

Observe that each $\left|E(q)_{r}\right|$ and $\left|O(q)_{r}\right|$ can be broken into a sum of products of its prime counterparts $\left|E(p)_{r}\right|$ and $\left|O(p)_{r}\right|$ for each $p \mid q$ by the previous identities.
The values of $\left|E(p)_{r}\right|$ and $\left|O(p)_{r}\right|$ for each prime p and trace r are given by the following table [6]:

\[

\]

For the values of $\left|E(4)_{r}\right|$ and $\left|O(4)_{r}\right|$, we refer to the following table:

| | $r \equiv 0 \quad \bmod 4$ | $r \equiv 1 \quad \bmod 4$ | $r \equiv 2 \quad \bmod 4$ | $r \equiv 3 \bmod 4$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|E(4)_{r}\right\|$ | 12 | 8 | 20 | 8 |
| $\left\|O(4)_{r}\right\|$ | 20 | 8 | 12 | 8 |

The values in this table were found by inspection of the 96 elements of $\mathrm{GL}_{2}(\mathbb{Z} / 4 \mathbb{Z})$.
For the values of $\left|E(2)_{r}\right|$ and $\left|O(2)_{r}\right|$, we refer to the following table:

| | $r \equiv 0 \quad \bmod 2$ | $r \equiv 1 \quad \bmod 2$ |
| :---: | :---: | :---: | :---: |
| $\left\|E(2)_{r}\right\|$ | 1 | 2 |
| $\left\|O(2)_{r}\right\|$ | 3 | 0 |

The values in this table were found by inspection of the 6 elements of $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$.
For a demonstation on how we use these tables to calculate the values of the trace r elements in the Serre subgroup, consider the following example:

Example 1.

$$
\begin{gathered}
W=15=(5) \cdot(3) \\
M_{W}=4|W|=60
\end{gathered}
$$

We now use the table and the identities to construct the number of elements in $H_{M_{W}}$ with trace 0:

$$
\begin{aligned}
& \left|E(5)_{0}\right|=(1 / 2) 5\left(5^{2}-2(5)+1\right) \\
& \left|O(5)_{0}\right|=(1 / 2) 5\left(5^{2}-1\right) \\
& \left|E(3)_{0}\right|=(1 / 2) 3\left(3^{2}-1\right) \\
& \left|O(3)_{0}\right|=(1 / 2) 3\left(3^{2}-2(3)+1\right) \\
& \left|E(4)_{0}\right|=20 \\
& \left|O(4)_{0}\right|=12
\end{aligned}
$$

$$
\left|\left(H_{M_{W}}\right)_{0}\right|=\left|E(4)_{0}\right|\left(\left|E(3)_{0}\right|\left|E(5)_{0}\right|+\left|O(3)_{0}\right|\left|O(5)_{0}\right|\right)+\left|O(4)_{0}\right|\left(\left|E(3)_{0}\right|\left|O(5)_{0}\right|+\left|O(3)_{0}\right|\left|E(5)_{0}\right|\right)
$$

Substituting in the correct values for 3 and 5, we obtain:

$$
\left|\left(H_{M_{W}}\right)_{0}\right|=29280
$$

For example, when we consider the case where $W= \pm p$, where p is an odd prime, we write out the explicit values of the trace r elements as functions of p :

For $W \equiv 1$			$(\bmod 4)$
		$2 \mid r$	$2 \nmid r$
$W>0$	$p \mid r$	$p\left(2 p^{2}-3 p+1\right)$	$p\left(p^{2}-p\right)$
	$p \nmid r$	$p\left(2 p^{2}-2 p-1\right)$	$p\left(p^{2}-p-2\right)$
$W<0$	$p \mid r$	$p\left(2 p^{2}-p-1\right)$	$p\left(p^{2}-2 p+1\right)$
	$p \nmid r$	$p\left(2 p^{2}-2 p-3\right)$	$p\left(p^{2}-p\right)$

For $W \equiv 3$						$(\bmod 4)$
		$r \equiv 0 \quad \bmod 4$	$r \equiv 2 \quad \bmod 4$	$2 \nmid r$		
$W>0$	$p \mid r$	$4 p\left(4 p^{2}-3 p-1\right)$	$4 p\left(4 p^{2}-5 p+1\right)$	$4 p\left(2 p^{2}-2 p\right)$		
	$p \nmid r$	$4 p\left(4 p^{2}-4 p-5\right)$	$4 p\left(4 p^{2}-4 p-3\right)$	$4 p\left(2 p^{2}-2 p-2\right)$		
$W<0$	$p \mid r$	$4 p\left(4 p^{2}-5 p+1\right)$	$4 p\left(4 p^{2}-3 p-1\right)$	$4 p\left(2 p^{2}-2 p\right)$		
	$p \nmid r$	$4 p\left(4 p^{2}-4 p-3\right)$	$4 p\left(4 p^{2}-4 p-5\right)$	$4 p\left(2 p^{2}-2 p-2\right)$		

8 Calculation of the Irrational Constant

The Lang-Trotter conjecture deals with an infinite product:

$$
C_{1}=\prod_{p} \frac{p^{3}-p^{2}-p}{\left(p^{2}-1\right)(p-1)}
$$

To evaluate this product, we must consider a more general form C_{s} and take limits as $s \longrightarrow 1^{+}$at the appropriate time.

$$
C_{s}=\prod_{p} \frac{p^{3 s}-p^{2 s}-p^{s}}{\left(p^{2 s}-1\right)\left(p^{s}-1\right)}
$$

We recall that the Riemann zeta function has the Euler product expansion $\zeta(s)=\prod_{p}\left(1-1 / p^{s}\right)^{-1}$. We factor out a $\zeta(s) \zeta(2 s)$ and rewrite to obtain:
$C_{s}=\zeta(s) \zeta(2 s) \prod_{p} p^{-2 s}\left(p^{2 s}-p^{s}+1\right)=\zeta(s) \zeta(2 s) \prod_{p} p^{-2 s}\left(p^{s}-\alpha\right)\left(p^{s}-\bar{\alpha}\right)=\prod_{p}\left(1-\frac{\alpha}{p^{s}}\right)\left(1-\frac{\bar{\alpha}}{p^{s}}\right)$
where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\bar{\alpha}=\frac{1-\sqrt{5}}{2}$.
This implies that we can now focus on the product

$$
S(s)=\prod_{p \text { prime }}\left(1-\frac{\alpha}{p^{s}}\right)^{-1}
$$

for $\alpha \in \mathbb{C}$. Multiplying by $\frac{\zeta(s)^{\alpha}}{\zeta(s)^{\alpha}}$, we obtain the identity:

$$
\begin{gathered}
S(s)=\zeta(s)^{\alpha} \prod_{p} \frac{\left(1-\frac{1}{p^{s}}\right)^{\alpha}}{\left(1-\frac{\alpha}{p^{s}}\right)} \\
S(s)=\zeta(s)^{\alpha} \exp \sum_{p}\left(\alpha \log \left(1-\frac{1}{p^{s}}\right)-\log \left(1-\frac{\alpha}{p^{s}}\right)\right) \\
=\zeta(s)^{\alpha} \exp \left(\sum_{p} \sum_{k \geq 2} \frac{\alpha^{k}}{k p^{s k}}-\frac{\alpha}{k p^{s k}}\right)
\end{gathered}
$$

(the term in $k=1$ vanishing). Thus, the inner sum is absolutely convergent even for $s=1$. Since $\alpha+\bar{\alpha}=1$ it follows that

$$
\begin{aligned}
\lim _{s \rightarrow 1^{+}} \frac{S(s) \bar{S}(s)}{\zeta(s)} & =\exp \left(\sum_{p} \sum_{k \geq 2} \frac{\alpha^{k}-\alpha}{k p^{k}}\right) \exp \left(\sum_{p} \sum_{k \geq 2} \frac{\bar{\alpha}^{k}-\bar{\alpha}}{k p^{k}}\right) \\
& =\exp \left(\sum_{k \geq 2} \frac{\alpha^{k}-\alpha}{k} \sum_{p} \frac{1}{p^{k}}\right) \exp \left(\sum_{k \geq 2} \frac{\bar{\alpha}^{k}-\bar{\alpha}}{k} \sum_{p} \frac{1}{p^{k}}\right)
\end{aligned}
$$

For a fixed k, we can now compute $\sum_{p} 1 / p^{k}$ to high accuracy via the identity

$$
\sum_{p} \frac{1}{p^{k}}=\sum_{l}\left(\frac{\mu(l)}{l}\right) \log (\zeta(k l))
$$

For large k,

$$
\sum_{p} \frac{1}{p^{k}} \simeq \frac{1}{2^{k}}
$$

9 Error Analysis

$$
g_{\alpha}=\sum_{k \geq 2}^{\infty} \frac{\alpha^{k}-\alpha}{k} \sum_{n \geq 1}^{\infty}\left(\frac{\mu(n)}{n}\right) \log \zeta(k n)
$$

We will first find the truncation error of the series when the series is evaluated for terms up to $K-1$. To do this, consider the following:

$$
\{\text { Error }\}=\sum_{k \geq K}^{\infty} \frac{\alpha^{k}-\alpha}{k} \sum_{n \geq 1}^{\infty}\left(\frac{\mu(n)}{n}\right) \log \zeta(k n)
$$

For large K,

$$
\sum_{n \geq 1}^{\infty}\left(\frac{\mu(n)}{n}\right) \log \zeta(k n) \sim 2^{-k}
$$

Using this identity, we can say that:

$$
\{\text { Error }\} \sim \sum_{k \geq K}^{\infty} \frac{\alpha^{k}-\alpha}{k} 2^{-k}
$$

This series can be split into two sums:

$$
\{\text { Error }\} \sim \sum_{k \geq K}^{\infty}\left(\frac{\alpha}{2}\right)^{k} \frac{1}{k}-\alpha \sum_{k \geq K}^{\infty}\left(\frac{1}{2}\right)^{k} \frac{1}{k}
$$

Recall the Taylor series for $-\log (1-x)$:

$$
-\log (1-x)=\sum_{i=1}^{\infty} \frac{x^{k}}{k}
$$

Since these two series can be identified as Taylor series, we can use the integral form for the remainder of a Talyor polynomial to find a bound on the error:

$$
R_{n}=\int_{0}^{\alpha / 2} \frac{f^{(K+1)}(t)}{K!}\left(\frac{\alpha}{2}-t\right)^{K} d t
$$

We can find the $K+1$-th derivative and substitute it into the integral:

$$
R_{n}=\int_{0}^{\alpha / 2}(1-t)^{-K-1}\left(\frac{\alpha}{2}-t\right)^{K} d t
$$

This function is concave up on the interval, so we can approximate the integral with a trapezoid. For the integrand g :

$$
R_{n} \leq \frac{g(0)+g(\alpha / 2)}{2}\left(\frac{\alpha}{2}\right)=\frac{(\alpha / 2)^{K}+0}{2}\left(\frac{\alpha}{2}\right)=\frac{1}{2}\left(\frac{\alpha}{2}\right)^{K+1}
$$

Similarly, for the other series found in the error term:

$$
R_{n}^{\prime} \leq\left(\frac{1}{2}\right)^{K+2}
$$

From these bounds on the truncated terms in the Taylor polynomial, we can use these to find a bound on the error of the truncation.

$$
\{\text { Error }\} \sim \sum_{k \geq K}^{\infty}\left(\frac{\alpha}{2}\right)^{k} \frac{1}{k}-\alpha \sum_{k \geq K}^{\infty}\left(\frac{1}{2}\right)^{k} \frac{1}{k} \leq \frac{1}{2}\left(\frac{\alpha}{2}\right)^{K+1}-\frac{\alpha}{2}\left(\frac{1}{2}\right)^{K+1}
$$

Therefore, for a partial sum of K terms, the truncation error is bounded by:

$$
\{\text { Error }\}_{K} \leq \frac{1}{2}\left(\frac{\alpha}{2}\right)^{K+1}-\frac{\alpha}{2}\left(\frac{1}{2}\right)^{K+1}
$$

The round-off error can be measured by observing that we lose one significant digit per computated addition, and the constant was calculated using about $\log _{2}(K)$ additions. We observe that for $K=2^{14}$:

$$
\frac{1}{2}\left(\frac{\alpha}{2}\right)^{2^{14}+1}-\frac{\alpha}{2}\left(\frac{1}{2}\right)^{2^{14}+1} \sim 10^{-1508}
$$

which implies that the partial sum should be accurate for about 1508 digits. Combined with the round-off error:

$$
1508-\log _{2}\left(2^{14}\right)=1494
$$

The value obtained for g_{α} calculated using this method for $K=2^{14}$ is accurate to about 1494 digits. $g_{\bar{\alpha}}$ has the same number of significant digits. This error propagates to the constant C_{1} as follows:

$$
\begin{gathered}
e^{\left(g_{\alpha}+\epsilon\right)} \simeq e^{g_{\alpha}}(1+\epsilon) \\
e^{g_{\alpha}}\left(1+\epsilon_{\alpha}\right) e^{g_{\bar{\alpha}}}\left(1+\epsilon_{\bar{\alpha}}\right) \simeq e^{g_{\alpha}} e^{g_{\bar{\alpha}}}\left(1+\epsilon_{\alpha}+\epsilon_{\bar{\alpha}}\right)
\end{gathered}
$$

since $\epsilon_{\alpha} \epsilon_{\bar{\alpha}}$ is insignificant.

$$
C_{1}+\epsilon_{C_{1}}=\frac{\zeta(2)}{e^{g_{\alpha}} e^{g_{\bar{\alpha}}}\left(1+\epsilon_{\alpha}+\epsilon_{\bar{\alpha}}\right)} \simeq \frac{\zeta(2)}{e^{g_{\alpha}} e^{g_{\bar{\alpha}}}}\left(1-\epsilon_{\alpha}-\epsilon_{\bar{\alpha}}\right)
$$

since $(1+\epsilon)^{-1} \simeq(1-\epsilon)$ for small ϵ. Therefore, the error in the constant C_{1} is on the order of:

$$
\{\text { Error }\}_{C_{1}} \sim C_{1}\left(\epsilon_{\alpha}+\epsilon_{\bar{\alpha}}\right)
$$

The value of $\epsilon_{\alpha}+\epsilon_{\bar{\alpha}}$ is about 2×10^{-1494}.
We have computed $C_{1}=0.61513265731817180255072 \ldots$, so the error of the constant is: $\sim 1.230 \times 10^{-1494}<10^{-1493}$ This implies the evaluation of the the constant C_{1} is accurate to at least 1493 digits.

10 Calculation of the Error Terms $a_{q}(E)$

Recall, the error term

$$
a_{q}(E)=q+1-\# E(\mathbb{F}) .
$$

After calculating the constants for known Serre curves, we calculate $a_{q}(E)$ for each curve to observe the asymptotic behavior conjectured by Lang and Trotter. For each calculation, we vary r from - 100 to 100 and record

$$
\frac{\#\left\{q<X: a_{q}(E)=r\right\}}{\frac{\sqrt{X}}{\log X}}
$$

We check to see if the data appear to be converging to $C_{E, r}$ at $X=179,424,673, X=$ $573,259,392$, and $X=1,086,218,491$.
To compute the terms, we use the Pari/GP computer algebra system [10], which has a specific function for such computations. Depending on the size of q, this function implements either a sum of Legendre symbols (recommended $q<457$) or the Mestre-Shanks algorithm (useful for larger q).

References

[1] B. J. Birch and W. Kuyk, editors. Modular functions of one variable. IV. Lecture Notes in Mathematics, Vol. 476. Springer-Verlag, Berlin, 1975.
[2] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).
[3] J. E. Cremona. Algorithms for modular elliptic curves. Cambridge University Press, Cambridge, second edition, 1997.
[4] Kevin James. Average Frobenius distributions for elliptic curves with 3-torsion. J. Number Theory, 109(2):278-298, 2004.
[5] Nathan Jones. Almost all elliptic curves are Serre curves. To appear in Trans. Amer. Math. Soc.. Preprint available on-line as arXiv:math/0611096v1 [math.NT].
[6] Serge Lang and Hale Trotter. Frobenius distributions in GL_{2}-extensions. Lecture Notes in Mathematics, Vol. 504. Springer-Verlag, Berlin, 1976. Distribution of Frobenius automorphisms in GL_{2}-extensions of the rational numbers.
[7] B. Mazur. Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math., 44(2):129-162, 1978.
[8] Amadeu Reverter and Núria Vila. Images of $\bmod p$ Galois representations associated to elliptic curves. Canad. Math. Bull., 44(3):313-322, 2001.
[9] Jean-Pierre Serre. Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math., 15(4):259-331, 1972.
[10] The PARI Group, Bordeaux. PARI/GP, version 2.1.7, 2005. available from http: //pari.math.u-bordeaux.fr/.

A Appendix

A. 1 Table of Serre Curves

In the following table, each curve is in the form

$$
E: y^{2}=x^{3}+A x+B
$$

and we use the following notation:

- $\Delta_{s f}$ is the square free part of the discriminant
- $M_{\Delta_{s f}}$ is the Serre number as defined by Jones [5, p. 13]
- N is the conductor of E

A	B	$\Delta_{s f}$	$M_{\Delta_{s f}}$	N
6	-2	-3	6	5184
-4	4	-11	22	16
32	212	35	140	140
32	16	-11	22	77
-16	16	37	74	37
-1971	64206	-593	2372	593
-3024	70416	-19	38	57
-1539	33534	-29	116	58
-2619	54486	-61	244	61
-15984	-778032	-67	134	67
-2619	47574	79	316	79
1269	-10746	-83	166	83
1296	11664	-91	182	91
-1323	28134	-89	356	89
-1728	-15984	101	202	101
-10611	-421362	-109	436	109
-10395	31158	-57	228	114
3213	1998	-61	244	122
864	-22896	-123	246	123
864	23760	-131	262	131
-4563	-121554	-139	278	139
-1728	-7344	141	282	141

A. 2 Irrational Constant to 1497 digits

The following is the first 1497 digits of the irrational constant C_{1} :

$$
\begin{array}{llllll}
.6151326573 & 1817180255 & 0725664929 & 1924616780 & 1694045261 & 2777657497 \\
0417137754 & 9363232728 & 8665159438 & 7019482560 & 5683292134 & 4487523490 \\
9443054903 & 2861278864 & 2253427305 & 7811388828 & 3278554499 & 8368417981 \\
7773333532 & 5517905266 & 0096208354 & 5685190641 & 8746757760 & 1330439071 \\
5958784234 & 7191508537 & 0461632051 & 4833584473 & 9834454169 & 1397668436 \\
2554288109 & 6111873990 & 8932045465 & 9513426971 & 6408031796 & 4050480479 \\
3069354324 & 2137846053 & 2405104623 & 7835141036 & 4216245597 & 5855110892 \\
7369688274 & 0130080179 & 9177798856 & 1918105047 & 8419738048 & 6241890023 \\
3543598671 & 8894134152 & 1595784508 & 3476232304 & 1554376423 & 3659562835 \\
7683634224 & 3755876233 & 1110566365 & 3444037845 & 7993200373 & 0003108773 \\
7539978354 & 3304848332 & 0269075097 & 1880853418 & 6553312086 & 8801927623 \\
2962571989 & 9403602645 & 7732803456 & 2597037562 & 1316140512 & 8450158164 \\
6456186163 & 5336741652 & 5484465777 & 6001963817 & 0231859609 & 7788784521 \\
6087904638 & 8273252166 & 5143157813 & 3376502412 & 5390779805 & 2758122660 \\
7251855404 & 53308830294632588162 & 8514307855 & 3051482611 & 0156025144 \\
2837298559 & 0950600888 & 0758151177 & 0309664301 & 5722122532 & 4263865388 \\
5929727109 & 5885416080 & 9617695293 & 8182645368 & 3308819512 & 3935743476 \\
8240483500 & 0703029897 & 2435666442 & 7384733290 & 6310841559 & 5609990290 \\
0611162667 & 7878846952 & 9911520184 & 9109349129 & 5727107847 & 6607579240 \\
9335728804 & 5445811125 & 3179804023 & 5080615706 & 8540846101 & 1823134335 \\
4566830845 & 1847518255 & 0374546226 & 3168345527 & 2016817554 & 8277372520 \\
1584930757 & 2660033170 & 6579655667 & 9018235057 & 0829977915 & 589114089 \\
3931124171 & 3638605739 & 7019088093 & 4363418995 & 9076895211 & 2696524424 \\
0999123168 & 2313342366 & 6087798970 & 4685007221 & 1769425869 & 0703975059 \\
0891037261 & 1678494990 & 4673236254 & 7083824470 & 4047874762 & 154(5178)
\end{array}
$$

