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Abstract
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1 Introduction

We consider the binary codes of the line graphs Lm(n) of the complete mul-
tipartite graphs Kn,...,n as candidates to which permutation decoding can be
applied, i.e. PD-sets (for full error-correction) or s-PD-sets (for correcting s
errors, see Definition 1, Section 2) can be found. Since the automorphism
group of Lm(n) and of its binary code is the wreath product Sn oSm (where Sr

denotes the symmetric group of degree r) it can be expected that information
sets can be found for permutation decoding, as was done for some other classes
of codes from graphs with a great deal of symmetry: see [8,9,11,10]. We have
found PD-sets for some classes and s-PD-sets for all the classes. Our main
results are summarized in the following theorem, where the notation for the
points of the information set is defined in Equation 1, Section 2, and where
we take m ≥ 3, since m = 2 has been considered earlier in [11,10]:
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Theorem 1 If C is the binary code of the line graph Lm(n) of the complete
multipartite graph Kn,...,n of nm vertices, where n ≥ 2, m ≥ 3, then

• C is a [ 1
2
m(m− 1)n2, mn− 2, 2n(m− 1)− 2 ]2 code for mn even;

• C is a [ 1
2
m(m− 1)n2, mn− 1, n(m− 1) ]2 code for mn odd.

Let I be the set

{(1, 1 : i, j) | 2 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {(1, i : 2, 1) | 2 ≤ i ≤ n} \ {(1, 1 : m, n)}

and I∗ = I ∪ {(1, 2 : m, n)}. Then I is an information set for C if mn is
even, and I∗ is an information set for mn odd. Using these information sets

(1) if n = 2 and m ≥ 3, C has a PD-set of size 16m2 − 8m;
(2) if n = 3 and m ≥ 3 is odd, C has a PD-set of size 27m;
(3) if m = 3 and n ≥ 3 is odd, C has a PD-set of size 2n3.

Furthermore, s-PD-sets of size N exist as follows: s < m/2, N = m; s < m,
N = mn2; s < 3m/2, N = mn3; s < 2m, mn even, N = 4m2n2 − 2mn2;
s < n/2, N = n for mn even, N = 2n for mn odd; s < n, N = n3 for mn
even, N = 2n3 for mn odd.

The parts of this theorem are proved, and the explicit PD-sets or s-PD-sets are
given, in the following sections as Propositions 1, 2, 4, 5, 6, 7 and Corollaries 2
and 3. Also note that these sizes are not necessarily the best, and in most
explicit cases, smaller ones can be found with Magma [2]. It is also assumed
that one only considers using s-PD-sets if s ≤ t, where t is the full error-
correction cabability of the code.

In [6,7,5] it is shown that as the parameters for the designs and codes increase,
PD-sets for full error correction cannot be found for some classes if the au-
tomorphism group does not grow fast enough with the parameters. This was
shown using the bound for the smallest size of a PD-set from Result 2. In
those papers designs from geometries and Paley graphs were examined and
small s-PD-sets were found for partial permutation decoding.

The paper is arranged as follows: in Section 2 the basic notation and defini-
tions, including those for permutation decoding, are given; in Section 3 the
main parameters of the codes are established; in Section 4 the PD-sets are
found.
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2 Background and terminology

The notation for designs and codes is as in [1]. An incidence structure D =
(P ,B,J ), with point set P , block set B and incidence J is a t-(v, k, λ) design,
if |P| = v, every block B ∈ B is incident with precisely k points, and every
t distinct points are together incident with precisely λ blocks. The design is
symmetric if it has the same number of points and blocks. The code CF of
the design D over the finite field F is the space spanned by the incidence
vectors of the blocks over F . If Q is any subset of P , then we will denote the
incidence vector of Q by vQ. If Q = {P} where P ∈ P, then we will write

vP instead of the more cumbersome v{P}. Thus CF =
〈
vB |B ∈ B

〉
, and is a

subspace of FP , the full vector space of functions from P to F .

All the codes here are linear codes, and the notation [n, k, d]q will be used
for a q-ary code C of length n, dimension k, and minimum weight d, where the
weight of a vector is the number of non-zero coordinate entries. A generator
matrix for C is a k × n matrix made up of a basis for C, and the dual code
C⊥ is the orthogonal under the standard inner product (, ), i.e. C⊥ = {v ∈
F n|(v, c) = 0 for all c ∈ C}. A check matrix for C is a generator matrix
for C⊥. The all-one vector will be denoted by , and is the vector with all
entries equal to 1. Two linear codes of the same length and over the same
field are isomorphic if they can be obtained from one another by permuting
the coordinate positions. An automorphism of a code C is an isomorphism
from C to C. The automorphism group will be denoted by Aut(C). Any code
is isomorphic to a code with generator matrix in so-called standard form,
i.e. the form [Ik |A]; a check matrix then is given by [−AT | In−k]. The first k
coordinates are the information symbols and the last n−k coordinates are
the check symbols.

The graphs, Γ = (V, E) with vertex set V and edge set E, discussed here
are undirected with no loops. A graph is regular if all the vertices have the
same valency. The adjacency matrix A of a graph of order n is an n × n
matrix with entries aij such that aij = 1 if vertices vi and vj are adjacent, and
aij = 0 otherwise. The p-rank of the matrix A, denoted by rankp(A), is the
dimension of the row space of A over Fp, the finite field of p elements.

Let Kn1,...,nm denote the complete multipartite graph on m components. If
ni = n ≥ 2, for 1 ≤ i ≤ m, where m ≥ 3, then denote the graph by Km

n .
The vertices of Km

n correspond to the ordered pairs (i, j) for 1 ≤ i ≤ m and
1 ≤ j ≤ n, which is the jth point on the ith component, Λi. The line graph
Lm(n) of Km

n has for vertices the edges of Km
n and two vertices Lm(n) are

adjacent if as edges of Km
n they had a vertex in common. We will use the
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following compact notation for the vertices (points) of Lm(n):

{(i, j), (k, r)} = (i, j : k, r) = (k, r : i, j). (1)

Let P denote the set of all vertices of Lm(n). The symmetric 1-design D =
(P ,B) defined from Lm(n) by taking the vertices as point set P and defining
a block B = P̄ for each point P as consisting of the vertices adjacent to that
point, i.e.

(a, b : c, d) = {(a, b : e, f) | (e, f) 6= (c, d)} ∪ {(c, d : e, f) | (e, f) 6= (a, b)},

is a

1− (
1

2
m(m− 1)n2, 2n(m− 1)− 2, 2n(m− 1)− 2)

design. The binary code of D is CF2(D) = 〈vB | B ∈ B〉 where the incidence
vector of B = (a, b : c, d) is given by

v(a,b:c,d) =
∑

(e,f), e 6=a

v(a,b:e,f) +
∑

(e,f), e 6=c

v(c,d:e,f)

of weight 2n(m− 1)− 2.

Permutation decoding was first developed by MacWilliams [12] and in-
volves finding a set of automorphisms of a code called a PD-set. The method
is described fully in MacWilliams and Sloane [13, Chapter 16, p. 513] and
Huffman [4, Section 8]. In [6] the definition of PD-sets was extended to that
of s-PD-sets for s-error-correction:

Definition 1 If C is a t-error-correcting code with information set I and
check set C, then a PD-set for C is a set S of automorphisms of C which is
such that every t-set of coordinate positions is moved by at least one member
of S into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that
every s-set of coordinate positions is moved by at least one member of S into
C.

That a PD-set will fully use the error-correction potential of the code follows
easily and is proved in Huffman [4, Theorem 8.1]. That an s-PD-set will correct
s errors follows in the same way (see [6, Result 2.3]):

Result 1 Let C be an [n, k, d]q t-error-correcting code. Suppose H is a check
matrix for C in standard form, i.e. such that In−k is in the redundancy posi-
tions. Let y = c+ e be a vector, where c ∈ C and e has weight s ≤ t. Then the
information symbols in y are correct if and only if the weight of the syndrome
HyT of y is ≤ s.

4



The algorithm for permutation decoding is as follows: we have a t-error-
correcting [n, k, d]q code C with check matrix H in standard form. Thus the
generator matrix G = [Ik|A] and H = [−AT |In−k], for some A, and the first k
coordinate positions correspond to the information symbols. Any vector v of
length k is encoded as vG. Suppose x is sent and y is received and at most s
errors occur, where s ≤ t. Let S = {g1, . . . , gm} be an s-PD-set. Compute the
syndromes H(ygi)

T for i = 1, . . . ,m until an i is found such that the weight of
this vector is s or less. Compute the codeword c that has the same information
symbols as ygi and decode y as cg−1

i .

Such sets might not exist at all, and the property of having a PD-set need not
be invariant under isomorphism of codes, i.e. it depends on the choice of I
and C. Furthermore, there is a bound on the minimum size that the set S may
have, due to Gordon [3], from a formula due to Schönheim [14], and quoted
and proved in [4]:

Result 2 If S is a PD-set for a t-error-correcting [n, k, d]q code C, and r =
n− k, then

|S| ≥
⌈
n

r

⌈
n− 1

r − 1

⌈
. . .

⌈
n− t + 1

r − t + 1

⌉
. . .

⌉⌉⌉
.

This result can be adapted to s-PD-sets for s ≤ t by replacing t by s in the
formula.

A simple argument yields that the worst-case time complexity for the decoding
algorithm using an s-PD-set of size z on a code of length n and dimension k
is O(nkz).

3 The binary codes

In this section we obtain the basic results about the binary codes of the graphs
Lm(n), starting with the dimension of the codes:

Proposition 1 Let C be the binary code of Lm(n) where n ≥ 2 and m ≥ 3.
Then C has dimension mn− 1 if mn is odd, and dimension mn− 2 if mn is
even.

PROOF. Let M be a vertex-edge incidence matrix for Km
n . Then MT M = A

is an adjacency matrix for Lm(n). Thus C is the row span of A over F2, and
clearly C is a subcode of CM , the row span of M . M has mn rows and each
column has two entries. Thus the sum of all the rows is the zero vector, and
the rank of CM is at most mn− 1.
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Order the vertices (rows) and edges (columns) of Km
n as follows: for the ver-

tices, take the m components in turn, that is, calling these Λi for i = 1 to m,
take Λ1, Λ2, . . . , Λm. For the edges, take all the edges through the first point
in Λ1, then all the edges through the second point on Λ1, and so on. Then
take the remaining edges through the first point on Λ2, then the second point
on Λ2, and so on. (See the illustration of this for m = n = 3 at the end of the
proof.) From this form of M , it is evident that it has rank mn − 1 over F2.
(This also follows from Proposition 2.) Thus dim C ≤ mn− 1.

Let V be the row span of MT over F2. Then dim V = mn − 1. The map
τ : V → C is defined by τ : v = (v1, . . . , vmn) 7→ (v1, . . . , vmn)M , so that
V τ = C and dim C + dim ker(τ) = dim V = mn − 1. A vector v is in the
kernel if and only if v ∈ V and vM = 0. Since M = 0, and the null space of
M is thus 〈〉, we need determine when  ∈ V .

Clearly V is spanned by vectors of weight 2, so V is an even weight code.
Thus if mn is odd then  6∈ V , and dim C = mn− 1. From the form of MT as
described above, and sinceeach vertex of Km

n is adjacent to n(m− 1) vertices,
the number of entries in each column is n(m − 1). Adding all the rows will
give  if n(m − 1) is odd, i.e. if n is odd and m is even. Thus in this case
dim C = mn − 2. If n is even then if P is a point in the ith component Λi,
adding all the rows (edges) corresponding to edges through P and the points
of Λj will give the incidence vector vΛj of weight n. Thus  =

∑m
i=1 vΛi ∈ V ,

and dim C = mn− 2. �

We give an illustration for M for m = n = 3, where Λi = {(i, 1), (i, 2), (i, 3)}
for i = 1, 2, 3:



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1



We need the following lemma in order to find information sets for the codes:
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Lemma 1 Let A` = I` + J` with entries in F2, where ` ≥ 1, I` and J` are
the `× ` identity and all-one matrices, respectively. For any positive integers
j and k let

M`,k =



1 . . . 1

A` 0 . . . 0
...

...
...

0 . . . 0

1 0 . . . 0

1 0 . . . 0 Ak

...
...

...
...

1 0 . . . 0



and M∗
`,k =



1 . . . 1 0

A` 0 . . . 0 0
...

...
...

...

0 . . . 0 0

1 0 . . . 0 1

1 0 . . . 0 Ak 0
...

...
...

...
...

1 0 . . . 0 0

0 0 . . . 0 1 0 . . . 0



.

If ` and k are both even or both odd then det M`,k = 1. Furthermore, det M∗
`,k =

det M`,k−1.

PROOF. Notice that det A` = 1 for ` even and that for ` and k both even
det M`,k = det A` det Ak = 1. Simple row and column manipulation lead to
the remaining results. �

We use this lemma to establish the information sets for the codes:

Proposition 2 Let C be the binary code of the graph Lm(n) where n ≥ 2 and
m ≥ 3. Let I be the set

{(1, 1 : i, j) | 2 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {(1, i : 2, 1) | 2 ≤ i ≤ n} \ {(1, 1 : m, n)}

and I∗ = I ∪ {(1, 2 : m, n)}. Then I is an information set for C if mn is
even, and I∗ is an information set for mn odd.

PROOF. Arrange the vertices (points) of an adjacency matrix for Lm(n) in
the following order:

(1, 1 : 2, 1), (1, 1 : 2, 2), . . . , (1, 1 : 2, n), (1, 1 : 3, 1), . . . , (1, 1 : m, n− 1)

followed by

(1, 2 : 2, 1), (1, 3 : 2, 1), . . . , (1, n : 2, 1), (1, 2 : m, n),
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and any ordering for the remaining points. Writing ` = mn − n − 1 and
k = n− 1, so that ` + k + 1 = mn− 1, the upper left square mn− 1×mn− 1
part of the adjacency matrix has the form M∗

`,k of the lemma. We need to
show that if mn is even, then det M`,k = 1 and if mn is odd then det M∗

`,k = 1.

If mn is even, then if n is even, ` = mn−n−1 is odd, and k = n−1 is odd, so
by the lemma, det M`,k = 1. If mn is even and n is odd, then ` = mn− n− 1
is even and k = n− 1 is even and again we have det M`,k = 1.

If mn is odd then both n and m are odd, and ` is odd. Then det M∗
`,k =

det M`,k−1 = 1 since ` and k − 1 are odd. This proves that I or I∗ are infor-
mation sets. �

As an example, if m = n = 3 then ` = 5 and k = 2 and ordering the vertices
(1, 1 : 2, 1), (1, 1 : 2, 2), (1, 1 : 2, 3), (1, 2 : 3, 1), (1, 1 : 3, 2), (1, 2 : 2, 1), (1, 3 :
2, 1), (1, 2 : 3, 3), the top 8× 8 part of the adjacency matrix is

M∗
5,2 =



0 1 1 1 1 1 1 0

1 0 1 1 1 0 0 0

1 1 0 1 1 0 0 0

1 1 1 0 1 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 0 0 1 1

1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0



.

We now find the minimum weight of the codes, and look first at the dual code.

Proposition 3 Let C be the binary code of Lm(n) for n ≥ 2, m ≥ 3. Then C⊥

contains all vectors of the form v{P,Q,R} where P = (a, b : c, d), Q = (c, d : e, f)
and R = (a, b : e, f) and has minimum weight 3.

PROOF. Let w = v{(a,b:c,d),(c,d:e,f),(a,b:e,f)} = w(a, b; c, d; e, f). We need to
show that 〈w, vB〉 = 0 for all blocks B. Suppose B = (a, b : c, d). Then it
is clear that vB meets w twice. Similarly for the other points of w. If B =
(a, b : x, y) where (x, y) 6= (c, d), (e, f), then again it meets twice. Any block
(x, y : r, t) where (x, y) and (r, t) are none of (a, b), (c, d), (e, f), will not meet
w at all. This completes all the cases. That there can be no vectors of smaller
weight follows from an easy argument. �
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Note: The words of weight 3 in the dual code of C are precisely as described
in the proposition, except for the case n = 2 and m = 3, when extra words of
weight 3 are present, e.g. v{(1,1:2,2),(1,2:3,2),(2,1:3,1)}.

We will use the notation

w(a, b; c, d; e, f) = v{(a,b:c,d),(c,d:e,f),(a,b:e,f)} = v(a,b:c,d) + v(c,d:e,f) + v(a,b:e,f). (2)

Lemma 2 Any vector of Fv
2, where v = 1

2
m(m − 1)n2, that is orthogonal to

every vector w(a, b; c, d; e, f) has weight at least n(m− 1).

PROOF. Let w be a non-zero word of Fv
2 and, without loss of generality, let

P = (1, 1 : 2, 1) be in the support of w. Every w(1, 1; 2, 1; x, y) for x ≥ 3 must
meet w again, and thus w has at least another n(m− 2) points in its support.
Either (1, 1 : 3, 1) or (2, 1 : 3, 1) must be in the support, and thus by the
same argument w(1, 1; 3, 1; 2, a) or w(2, 1; 3, 1; 1, a), a 6= 1, must meet w again,
yielding a further n−1 points of the form (1, a : 3, 1) or (2, a : 3, 1), a 6= 1, that
are not already counted. Thus we get at least 1+n(m−2)+n−1 = n(m−1)
for the weight of w. �

Proposition 4 If C is the binary code of Lm(n), n ≥ 2, m ≥ 3, then C has
minimum weight n(m− 1) if mn is odd, and 2n(m− 1)− 2 if mn is even.

PROOF. If mn is odd then C = CM , where M is the vertex/edge matrix
of the graph Km

n as described in Proposition 1. Every row of M has weight
n(m− 1), the valency of Km

n , yielding thus minimum words of C.

For mn even, C has codimension 2 in CM and is spanned by the the sums
of rows of M corresponding to adjacent vertices. The vector w described
in Lemma 2 has support at positions (1, 1 : x, y) or (2, 1 : r, s), where

x 6= 1, r 6= 2, and since w + v(1,1:2,1) ∈ CM , w =
∑

(x,y),x 6=1 v(1,1:x,y) or w =∑
(x,y),x 6=2 v(2,1:x,y), and thus be the row of M corresponding to the vertex (1, 1)

or (2, 1) of Km
n . This shows that in the even case, since C ⊂ CM , the minimum

weight is the block size, i.e. the valency of Lm(n), viz. 2n(m− 1)− 2. �

Note: In the mn even case the code is spanned by minimum weight vectors
that are incidence vectors, vB, of blocks of the design.
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4 PD-sets

The automorphism group of Lm(n) is the wreath product, G = Sn oSm, where
Sr denotes the symmetric group of degree r. Thus G = H o K where L =
Sn × . . .× Sn, with m terms in the product, and K = Sm. Thus G is also
an automorphism group of the binary code of Lm(n). We denote the identity
element of G by ι, and that of Sn by ιn, and also, for convenience, use (k, k) (for
any integer k) to mean the identity permutation. The action of G on Lm(n)
is as follows: for τ ∈ Sm and σ = (σ1, . . . , σm) ∈ H, for P = (h, i : j, k) ∈ P ,

P τ = (hτ−1

, i : jτ−1

, k),

P σ = (h, iσh : j, kσj),

so that τ−1στ = σ∗, where

P σ∗ = (h, iσhτ : j, kσjτ ).

Now we define some special elements of G for our PD-sets:

Definition 2 Let G = Aut(Lm(n)) = H o K where K = Sm and H =
Sn × . . .× Sn, and m ≥ 3, n ≥ 2. The following denote elements of G:

• τ i
a = (a, i) ∈ K where i, a ∈ {1 . . . m};

• Ki = {τ i
a | 1 ≤ a ≤ m} ⊆ K for 1 ≤ i ≤ m;

• σj
b ∈ H, where σj

b [j] = (1, b) ∈ Sn and σj
b [i] = ιn for i 6= j, where 1 ≤ j ≤ m

and 1 ≤ b ≤ n;
• Hj = {σj

b | 1 ≤ b ≤ n} ⊆ H for 1 ≤ j ≤ m;
• δj

b ∈ H, where δj
b [j] = (b, n) ∈ Sn and δj

b [i] = ιn for i 6= j, where 1 ≤ j ≤ m
and 1 ≤ b ≤ n;

• Dj = {δj
b | 1 ≤ b ≤ n} ⊆ H for 1 ≤ j ≤ m;

• σa =
∏m

i=1 σi
a = ((1, a), . . . , (1, a)) ∈ H, for 1 ≤ a ≤ n;

• Hn = {σa | 1 ≤ a ≤ n} ⊆ H.

Each of the sets Ki, Hj, Dj, Hn contain the identity ι of G, since we use the
notation (a, a), for any a, to denote ι.

For all the following propositions and lemmas we will use the information sets
I and I∗, for mn even or odd, respectively, as found in Proposition 2.

Definition 3 Let T = {Pi = (ai, bi : ci, di) | 1 ≤ i ≤ s} be a set of s points in
P, where ai 6= ci. Let A = {ai, ci | 1 ≤ i ≤ s} and B = {bi, di | 1 ≤ i ≤ s}. For
a ∈ {1 . . . m}, let α(a) = |{Pj | a = aj or a = cj}|. Similarly, for 1 ≤ j ≤ n,
let β(j) be the number of times j appears in the bi and di positions in T .
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Lemma 3 With notation as in Definition 3 and T a set of s points of P, if
2s ≤ km−1, (for some integer k), then there is an i such that α(i) ≤ k−1. If
2s ≤ kn−1, (for some integer k), then there is a point j such that β(j) ≤ k−1.

PROOF. Note that
∑m

i=1 α(i) = 2s and if α(i) ≥ k (for some k) for all
i ∈ {1 . . . m}, then 2s ≥ km. Thus if 2s ≤ km − 1, then there is an i such
that α(i) ≤ k − 1. Similarly

∑n
j=1 β(j) = 2s. If β(j) ≥ k, where k ≥ 1, for

all j, then 2s ≥ kn. Thus if 2s ≤ kn − 1, then there is a point j such that
β(j) ≤ k − 1. �

We use this argument in the following propositions.

Proposition 5 Let C be the [ 2m(m− 1), 2m− 2, 4m− 6 ]2 code of Lm(2) for
m ≥ 3, correcting t = 2m − 4 errors. Taking I as information set, a PD-set
for C is the set of group elements

S = K1H1(K2 ∪Km)Hm{ι, τ 2
3 }

of size at most 16m2 − 8m.

PROOF. Notice first that the points of the information set in this case are

{(1, 1 : a, 1), (1, 1 : a, 2) | 2 ≤ a ≤ m} ∪ {(1, 2 : 2, 1)} \ {(1, 1 : m, 2).

We denote the check set by C. From Lemma 3 we see that for t = 2m − 4
errors, i.e. T having t points, there is an i for which α(i) ≤ 3.

Note that if T ⊆ C then ι will take T to C, and ι ∈ S since it is in each of the
sets of elements in the definition of S. Every point P = (a, b : c, d) ∈ I has
a = 1 or c = 1.

Suppose first there is an i with α(i) = 0. If i = 1 then T ⊆ C; if i 6= 1 then
τ 1
i ∈ K1 will map T into C, so K1 will suffice for these t-sets.

Suppose that α(i) ≥ 1 for all i and that there is an i for which α(i) = 1, and
thus we take α(1) = 1 by using K1. Then let P = (1, b; c, d) be the only point
in I ∩ T . We need to map T into C. Looking at the cases, if P = (1, 1 : c, d)
then σ1

2 will map P to P ′ = (1, 2 : c, d) and fix all the other points of T . If
P ′ = (1, 2 : 2, 1) then τ 2

3 will map P ′ into C and not move the other points
out of C. Similarly if P = (1, 2 : 2, 1) then τ 2

3 will suffice.

Next suppose that α(i) ≥ 2 for all i and there exists an i with α(i) = 2.
Then 2s = 4m − 8 ≥ 2m gives that m ≥ 4. Again we suppose α(1) = 2,
using K1, if necessary. Let the two points containing 1 be P = (1, a : b, c) and
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Q = (1, u : v, w). If a = u = 1 then σ1
2 ∈ H1 will map these to (1, 2 : b, c) and

(1, 2 : v, w), and so there are only two main cases to consider, the other one
being P = (1, 1 : a, b) and Q = (1, 2 : u, v).

Suppose P = (1, 2 : 2, 1) and Q = (1, 2 : v, w), so Q ∈ C. Then take a 6= 1, 2, v,
a ∈ {1 . . . m} (possible because m ≥ 4), τ 2

a ∈ K2 maps P to (1, 2 : a, 1) and
either fixes Q or maps it to (1, 2 : a, w).

If P = (1, 1 : a, b) and Q = (1, 2 : u, v), then we need to map P to (1, 1 : m, 2).
Either τm

a ∈ Km, or σm
b ∈ Hm, or τm

a σm
b , or ιg will achieve this; Q can only

map to another point of the form (1, 2 : c, d) under these, and should the point
be (1, 2 : 2, 1), then τ 2

3 can be used to map it into C, and not move (1, 1 : m, 2)
since m ≥ 4. Thus S will deal with all these cases.

Finally suppose α(i) ≥ 3 for all i and there exists an i with α(i) = 3. Then
2t = 4m − 8 ≥ 3m gives that m ≥ 8. Again with K1 we can ensure that
α(1) = 3, and using the same argument as in the case of two points, we see
that K1H1 will reduce the problem to the two cases:
(i) P = (1, 2 : a, b), Q = (1, 2 : c, d), R = (1, 2 : e, f)
(ii) P = (1, 2 : a, b), Q = (1, 2 : c, d), R = (1, 1 : e, f)

Suppose (i), and suppose P = (1, 2 : 2, 1). Then if k 6= 1, 2, c, e and k ∈
{1 . . . m} (possible because m ≥ 8), then τ 2

k ∈ K2 will map P to (1, 2 : k, 1)
and Q and R will remain in C.

Suppose (ii). Then we need to map R to (1, 1 : m, 2) and this can be achieved
as in the case of α(1) = 2, with τm

e and σm
f . This will map P and Q into points

of the form (1, 2 : x, y). If one should result in (1, 2 : 2, 1), then τ 2
3 will move

this point to C and not take the other two points out of C.

Thus in all cases S = K1H1(K2∪Km)Hm{ι, τ 2
3 } will be a PD-set for the code

to correct all t = 2m− 4 errors. The size of this set is at most 8m(2m− 1) =
16m2−8m, since |(K2∪Km)| = 2m−1, due to ι being in both of the sets. �

Corollary 2 For m, n ≥ 3 and mn even, if C is the binary code of Lm(n),
then K1H1(K2 ∪ Km)Hm{ι, τ 2

3 } is an s-PD-set for C of size 4m2n2 − 2mn2

for s ≤ 2m− 1 using the information set I.

PROOF. This follows from the proposition and is restricted to the even case
since our arguments excluded (1, 2 : m, n) being an information point. The
rest goes through, since α(i) ≤ 3 for some i. �

Proposition 6 Let C be the binary code of the graph Lm(n) for m, n ≥ 3.
Then taking for information set I for mn even, or I∗ for mn odd, the set

12



S = K1H1H2Dm is an s-PD-set for C, for s < 3m/2, of size mn3.

In particular, if n = 3 and m is odd, then S is a PD-set of size 27m for C, a
[9
2
m(m− 1), 3m− 1, 3m− 3]2 code.

PROOF. From Lemma 3 we see that for s < 3m/2 errors, i.e. T having
s points, there is an i for which α(i) ≤ 2. Again we use K1 to ensure that
α(1) ≤ 2, and as in Proposition 5, consider the possibilities for α(1) = 0, 1, 2.

If α(1) = 0 then ι will suffice. Suppose α(1) = 1 and let P = (1, i : a, b) ∈
T ∩ I∗. Then if i = 1, (a, b) 6= (2, 1), use σ1

n ∈ H1; if i 6= 1, (a, b) = (2, 1),
use σ2

n ∈ H2; if P = (1, 1 : 2, 1), use σ1
nσ

2
n ∈ H1H2; if P = (1, 2 : m, n), use

σ1
2 ∈ H1. Thus maps in K1H1H2 will suffice to map T into C.

Suppose α(1) = 2 and let P = (1, i : a, b) and Q = (1, j : c, d) be in T .
First suppose i = j; if i = j = 1 then σ1

n ∈ H1 will map P and Q to points
(1, n : a, b) and (1, n : c, d) which are either both in C, or (a, b) = (2, 1), in
which case the map σ2

e ∈ H2, where e 6= 1, d, will map them both into C. Thus
K1H1H2 suffices so far.

If i = j 6= 1, 2, then H2 will work, as above. If i = j = 2, then P = (1, 2 : a, b)
and Q = (1, 2 : c, d) and at least one is assumed to be in I. If P = (1, 2 : 2, 1)
and Q ∈ C, then σ2

e ∈ H2, where e 6= 1, d will map all the points to C. If
P = (1, 2 : 2, 1) and Q = (1, 2 : m, n) (in the mn odd case), then σ2

2δ
m
1 ∈

H2Dm will map all into C. If P = (1, 2 : m, n) and Q = (1, 2 : m, d), then use
δm
e ∈ Dm, where e 6= n, d. Thus K1H1H2Dm suffices.

If i 6= j, then if i = 1, σ1
k ∈ H1, where k 6= j, will map the points to P = (1, k :

a, b) and Q = (1, j : c, d), where 1 < k < j ≤ n, say. If (a, b) = (2, 1) then σ2
e ,

where e 6= 1, d, will map the points to C provided that Q 6= (1, 2 : m, n). If
Q = (1, 2 : m, n) then the map δm

e , where e 6= n, b can be used.

This covers all cases, i.e. K1H1H2Dm acts as an s-PD-set.

Note that when n = 3 and m is odd, we have a [9m(m−1)/2, 3m−1, 3m−3]2
code that can correct up to t = (3m− 5)/2 errors. Thus 2t < 3m so that the
s-PD-set is a PD-set. �

Following from the proof of this proposition, we get

Corollary 3 For m, n ≥ 3 and C the binary code of Lm(n), then using the
information set I or I∗,

• K1 is an s-PD-set of size m for C for s ≤ dm/2e − 1;
• K1H1H2 is an s-PD-set of size mn2 for C for s ≤ m− 1.
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PROOF. The proof is immediate from the proof of the previous proposition,
noting that from the earlier discussion, if 2s ≤ m− 1 then α(i) = 0 for some
i for any set of s points, and if s ≤ m− 1 then α(i) ≤ 1 for some i. �

Finally we obtain a condition involving the size of n.

Proposition 7 Let C be the binary code of Lm(n) where m, n ≥ 3. Using the
information set I or I∗,

(1) if s ≤ dn/2e − 1, then Hn is an s-PD-set of size n for mn even, and
Hn{ι, δm

1 } is an s-PD-set of size 2n for mn odd;
(2) if s ≤ n − 1 then HnH

1H2 is an s-PD-set of size n3 for mn even, and
HnH

1H2{ι, δm
1 } is an s-PD-set of size 2n3 for mn odd;

(3) if m = 3 and n ≥ 3 is odd, then HnH
1H2{ι, δm

1 } is a PD-set of size 2n3

for C, a [3n2, 3n− 1, 2n]2 code.

PROOF. Considering now β(j) and Lemma 3, for the first condition, k = 1,
i.e. s ≤ (n− 1)/2. There is a j such that β(j) = 0 and we can use Hn to map
T to a set of s points for which β(1) = 0. First take mn even. In this case,
since 1 6∈ B, it follows that the set in now in C. Thus Hn will suffice as an
s-PD-set.

Now take mn odd, so that P = (1, 2 : m,n) ∈ I. Using Hn to ensure that
β(1) = 0, if P is in the new s-set, then the map δm

1 will move all the points
into C. This proves the first part of the proposition.

Taking now k = 2, if s ≤ n− 1 then we can assume β(1) ≤ 1 using Hn again.
If β(1) = 0, use the same argument as above. Thus now suppose β(1) = 1.
Assuming the set T is not in C, there is one point of the form (1, 1 : j, k),
where k 6= 1, or (1, k : 2, 1), where k 6= 1, and possibly the point (1, 2 : m, n).

If (1, 1 : j, k) ∈ T , ((j, k) 6= (m, n) since we assume that the point is in I),
then we can find an e, 1 ≤ e ≤ n, such that (1, e : j, k) 6∈ T , since there are n
such elements and our set has at most n− 1 elements. The map σ1

e ∈ H1 will
map T to a set with β(1) = 0, and then δm

1 can be used if necessary.

If (1, k : 2, 1) ∈ T , then there is an e such that (1, k : 2, e) 6∈ T , so the map
σ2

e ∈ H2 can be used, followed by δm
1 if necessary.

Finally, if m = 3 and n is odd, then C corrects at most t = n − 1 errors, so
we have a PD-set. �
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5 Conclusion

Based on computations and similar arguments to those in the propositions,
we believe that the codes for all the graphs Lm(n) will have PD-sets for full
error correction, although we have only found explicit sets for certain classes.
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