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Abstract

We examine the binary codes obtained from the row span over the field F2 of an
adjacency matrix of the rectangular lattice graphs L2(m,n) for 3 ≤ m < n and show
that permutation decoding can be used for full error-correction for these codes by
finding explicit information sets and PD-sets for these information sets.
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1 Introduction

For any integers m and n the rectangular graph L2(m, n) is defined to be the
line graph of the complete bipartite graph Km,n. It is a regular graph of valency
m + n− 2 on v = mn vertices, i.e. on the ordered pairs 〈i, j〉 where 1 ≤ i ≤ m
and 1 ≤ j ≤ n, with adjacency defined by 〈i, j〉 and 〈k, l〉 being adjacent if
i = k and j 6= l or j = l and i 6= k. If m = n then this is the strongly regular
square lattice graph, L2(n). In [KS] we applied permutation decoding to the
square lattice graphs and obtained PD-sets of size n2 for full error-correction,
and so we exclude this case here, and thus assume that m < n. By similar
reasoning to the square case we found that permutation decoding could be
used for full error correction in the rectangular case as well, and we obtain the
following theorem:
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Theorem 1 If C is the binary code formed by the row space over F2 of an
adjacency matrix for the rectangular lattice graph L2(m, n) for 2 ≤ m < n,
then C is

• [mn, m + n− 2, 2m]2 for m + n even
• [mn, m + n− 1, m]2 for m + n odd

with Sm × Sn as an automorphism group of C. The set

I = {〈i, n〉 | 1 ≤ i ≤ m} ∪ {〈m, i〉 | 1 ≤ i ≤ n− 1}

is an information set for m+n odd, and I \{〈1, n〉} is an information set for
m + n even. Let

Se = {((i, m), (j, n)) | 1 ≤ i ≤ m, 1 ≤ j ≤ m} ∪ {id},
So = {((i, m), (i, n)) | 1 ≤ i ≤ m} ∪ {id},

be sets of permutations in Sm × Sn. Then for 3 ≤ m < n, Se is a PD-set of
m2 + 1 elements for C for m + n even, and So is a PD-set of m + 1 elements
for C for m + n odd, using I as information symbols for m + n odd, and
I \ {〈1, n〉} for m + n even, and where id denotes the identity map.

Note that we use (r, r) to denote the identity element of Sr. We also take m ≥ 3
since we only need PD-sets for t-error-correction where t ≥ 2. It follows from
the theorem that the set of blocks

BI = { 〈i, n〉 | 1 ≤ i ≤ m} ∪ { 〈m, i〉 | 1 ≤ i ≤ n− 1}

forms a basis for C when m+n is odd, and BI \{ 〈1, n〉} for m+n even. (Here
we use the notation, explained in Section 3, for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

〈i, j〉 = {〈i, k〉 | k 6= j} ∪ {〈k, j〉 | k 6= i}

to denote the block defined by the point 〈i, j〉.)

The proof that the sets Se and So are PD-sets for the given information sets is
in Section 4. In Section 2 we give some background material and in Section 3
we obtain results about the codes and their duals, including finding the given
information sets.

2 Background and terminology

Following generally the notation as in [AK92], an incidence structure D =
(P ,B, I), with point set P , block set B and incidence I is a t-(v, k, λ) design,
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if |P| = v, every block B ∈ B is incident with precisely k points, and every
t distinct points are together incident with precisely λ blocks. The design is
symmetric if it has the same number of points and blocks.

The code CF of the design D over the finite field F is the space spanned
by the incidence vectors of the blocks over F . If the point set of D is denoted
by P and the block set by B, and if Q is any subset of P , then we will denote
the incidence vector of Q by vQ. Thus CF =

〈
vB |B ∈ B

〉
.

The codes here are all linear codes, and we use the notation [n, k, d]q for a
q-ary code of length n, dimension k, and minimum weight d. The dual of a
code C will be denoted by C⊥. A check matrix for C is a generator matrix H
for C⊥; the syndrome of a vector y ∈ F n is HyT . The all-one vector will be
denoted by , and is the vector with all its entries equal to 1. Two linear codes
of the same length and over the same field are isomorphic if they can be
obtained from one another by permuting the coordinate positions. Any code
is isomorphic to a code with generator matrix in standard form, [Ik |A].
The first k coordinates are the information symbols and the last n − k
coordinates are the check symbols. An automorphism of a code C is an
isomorphism from C to C and the automorphism group will be denoted by
Aut(C).

Graphs will be undirected. Γ = (V, E) denotes a graph with vertex set V and
edge set E; the valency of a vertex is the number of edges containing the
vertex, and Γ is regular if all the vertices have the same valency. The line
graph of Γ = (V, E) is the graph Γt = (E, V ) where e and f are adjacent in
Γt if e and f share a vertex in Γ. The complete bipartite graph Km,n on
m + n vertices has for line graph the rectangular lattice graph L2(m, n),
which has vertex set the set of ordered pairs {〈i, j〉 | 1 ≤ i ≤ m, 1 ≤ j ≤ n},
where two pairs are adjacent if and only if they have a common coordinate.

Permutation decoding was first developed by MacWilliams [Mac64] and in-
volves finding a set of automorphisms of a code called a PD-set. The method
is described fully in MacWilliams and Sloane [MS83, Chapter 15] and Huff-
man [Huf98, Section 8]. A PD-set for a t-error-correcting code C is a set S of
automorphisms of C which is such that every possible error vector of weight
s ≤ t can be moved by some member of S to another vector where the s
non-zero entries have been moved out of the information positions. In other
words, every t-set of coordinate positions is moved by at least one member
of S to a t-set consisting only of check-position coordinates. That such a set
will fully use the error-correction potential of the code follows easily and is
proved in Huffman [Huf98, Theorem 8.1]. Such a set might not exist at all, and
the property of having a PD-set might not be invariant under isomorphism of
codes. Furthermore, there is a bound on the minimum size that the set S may
have (see [Gor82],[Sch64], or [Huf98]):
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Result 1 If S is a PD-set for a t-error-correcting [n, k, d]q code C, and r =
n− k, then

|S| ≥
⌈
n

r

⌈
n− 1

r − 1

⌈
. . .

⌈
n− t + 1

r − t + 1

⌉
. . .

⌉⌉⌉
.

The algorithm for permutation decoding is as follows: if C is an [n, k, d]q code
that can correct t errors, with check matrix H in standard form, then the
generator matrix G = [Ik|A] and H = [AT |In−k], for some A, with the first k
coordinate positions corresponding to the information symbols. Any vector v
of length k is encoded as vG. Suppose x is sent and y is received and at most
t errors occur. Let S = {g1, . . . , gs} be the PD-set. Compute the syndromes
H(ygi)

T for i = 1, . . . , s until an i is found such that the weight of this vector
is t or less. Compute the codeword c that has the same information symbols
as ygi and decode y as cg−1

i .

Note that PD-sets are only needed for t > 1 error-correction since correcting
a single error can be done by using syndrome decoding.

3 The binary codes

Let 2 ≤ m < n be integers and let L2(m, n) denote the rectangular lattice
graph with vertex set P the mn ordered pairs 〈i, j〉, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
The 1-design D = (P ,B) will have point set P and for each point 〈i, j〉 ∈
P , 1 ≤ i ≤ m, 1 ≤ j ≤ n, a block, which we denote by 〈i, j〉, is defined in the
following way:

〈i, j〉 = {〈i, k〉 | k 6= j} ∪ {〈k, j〉 | k 6= i}.

Thus the block size is m+n− 2 and D is a symmetric 1-design with block set

B = { 〈i, j〉 | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The incidence vector of the block 〈i, j〉 is

v〈i,j〉 =
∑
k 6=j

v〈i,k〉 +
∑
k 6=i

v〈k,j〉 =
n∑

k=1

v〈i,k〉 +
m∑

k=1

v〈k,j〉 (1)

where, as usual with the notation from [AK92], the incidence vector of the
subset X ⊆ P is denoted by vX , but writing v〈i,j〉 instead of v{〈i,j〉}.

The group Sm×Sn acts naturally on D and thus on C in the following way: if
σ = (σ1, σ2) where σ1 ∈ Sm and σ2 ∈ Sn, then for 〈i, j〉 ∈ P , 〈i, j〉σ = 〈iσ1 , jσ2〉.
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Proposition 1 Let C be the binary code of L2(m, n) where 1 ≤ m < n. Then

dim(C) =

 m + n− 1 for m + n odd

m + n− 2 for m + n even

PROOF. Let M be a vertex–edge incidence matrix for Km,n, where the two
parts of the graph are Λ1 = {1, . . . ,m} and Λ2 = {1, . . . , n}, ordering the rows
of M by taking the points of Λ1 followed by the points of Λ2, and ordering
the edges by taking all the edges through the first point, followed by all the
edges through the second point, and so on. Then MT M = A is an adjacency
matrix for L2(m, n). If CA denotes the row span of A over F2 and CM that of
M , then CA ⊆ CM . Clearly dim(CM) = m + n− 1.

If V denotes the row span of MT then τ : V → CA by τ : v 7→ vM has
V τ = CA, so dim(CA) = m + n − 1 or m + n − 2, the latter if and only
if  = (1, . . . , 1) ∈ Fm+n

2 is in V . Considering the form of MT that we have
chosen, it is easy to see that if both m and n are odd, then  ∈ V . Similarly
if both are even, it follows that  ∈ V .

The only case that needs further consideration is when one is odd and other
even, and in this case we show that  6∈ V . The rows of MT are arranged
in m sections of n rows each; the columns are in two sections, the first of
m columns, the second of n. If  ∈ V then as a sum of the rows of MT ,
 = (x1, . . . , xm, y1, . . . , yn), where xi is the number of rows in the sum from
the ith section of rows, for i = 1, . . . ,m. Thus xi is odd for i = 1, . . . ,m. For
the entries in the columns starting at the (m + 1)th (i.e. the vertices through
the Λ2 points), suppose the ith point, for i = 1, . . . , n, in Λ2 contributes ni,j

to the vector from the jth section of rows of MT , for j = 1, . . . ,m, where
ni,j = 0 or 1, from the form of MT . Thus yi =

∑m
j=1 ni,j for i = 1, . . . , n,

and xi =
∑n

j=1 nj,i for i = 1, . . . ,m. Summing by rows and by columns gives
s =

∑
i,j ni,j =

∑m
i=1 xi =

∑n
j=1 yj. If m + n is odd, this contradicts all the xi

and yj being odd, and thus  6∈ V in this case, which completes the proof. �

Proposition 2 Let C be the binary code of L2(m, n) where 1 ≤ m < n. Then
C has minimum weight m if m + n is odd, and 2m if m + n is even.

PROOF. If m + n is odd then C = CM from the previous proposition, so
clearly there are words of weight m. That there cannot be words of smaller
weight in CM is clear from the form of M .
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In general we have from v〈i,j〉 =
∑n

k=1 v〈i,k〉 +
∑m

k=1 v〈k,j〉 that

n∑
j=1

v〈i,j〉 = n
n∑

k=1

v〈i,k〉 + ,

m∑
i=1

v〈i,j〉 = m
m∑

k=1

v〈k,j〉 + ,

and

v〈i,j〉 + v〈i,k〉 =
m∑

l=1

v〈l,j〉 +
m∑

l=1

v〈l,k〉.

If m + n is even and C 6= CM , then again the form of M shows that 2m is
the next possible weight, and C does have such words, as is shown by the last
equation above. �

Proposition 3 Let C be the binary code of L2(m, n) where 2 ≤ m < n.
Then for i1, i2 distinct elements in {1, . . . ,m} and j1, j2 distinct elements in
{1, . . . , n}, the vector

u(i1, i2; j1, j2) = v〈i1,j1〉 + v〈i1,j2〉 + v〈i2,j1〉 + v〈i2,j2〉

is a weight-4 vector in C⊥.

If si = {i, i+1} for 1 ≤ i ≤ m−1 and ti = {i, i+1} for 1 ≤ i ≤ n−1, the set
of vectors {u(si; tj) | 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1} is a linearly independent
set of mn−m− n + 1 vectors that forms a basis for C⊥ for m + n odd, and
together with  when m + n is even. Furthermore, the set

〈1, 1〉, . . . , 〈1, n− 1〉, 〈2, 1〉, . . . , 〈2, n− 1〉, . . . , 〈m− 1, 1〉, . . . , 〈m− 1, n− 1〉

of points is an information set for C⊥ for m + n odd, and together with 〈1, n〉
for m + n is even.

PROOF. It is easy to verify that the vectors u(i1, i2; j1, j2) are in C⊥. If
the coordinate positions are then arranged as shown in the statement and the
vectors u(si; tj) as rows in the order

(s1; t1), . . . , (s1; tn−1), (s2; t1), . . . , (sm−1; tn−1),

then the resulting matrix is already in row echelon form. In the case of m + n
even, the vector  can be added to obtain a further basis element. �

Note that in fact it can easily be shown that the minimum weight of C⊥ is
precisely 4.
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4 PD-sets

We now complete the proof of the theorem by showing that the set of permu-
tations is a PD-set for the code. We take m ≥ 3 since we only need PD-sets
when at least two errors can be corrected.

Proof of Theorem 1: From Proposition 3, an information set for C is

I = {〈i, n〉 | 1 ≤ i ≤ m} ∪ {〈m, i〉 | 1 ≤ i ≤ n− 1}

for m + n odd and I \ {〈1, n〉} for m + n even.

Suppose C can correct t errors and let

T = {(a1, b1), . . . , (as, bs)}

be a set of s ≤ t points. We need an element from our set of involutions
that maps T into the check positions C. Let Ω1 = {ai | 1 ≤ i ≤ s} and
Ω2 = {bi | 1 ≤ i ≤ s}.

Take first m+n even, so t = m−1. Then |Ωi| ≤ m−1 < n−1. Thus we can find
l such that 1 ≤ l ≤ m and l 6∈ Ω2. If there exists k such that 1 ≤ k ≤ m−1 and
k 6∈ Ω1, then the element σ = ((k, m), (l, n)) ∈ Se will move all the elements
of T into C. If Ω1 = {1, . . . ,m − 1}, then σ = ((m, m), (l, n)) will map T
to C, where (m,m) denotes the identity permutation. Including the identity
automorphism covers the case where T ⊂ C.

If m + n is odd, then the minimum weight is m so t = bm−1
2
c. Thus s ≤ m−1

2

and there exists k such that 1 ≤ k ≤ m and k 6∈ Ω1 and k 6∈ Ω2. The element
σ = ((k,m), (k, n)) ∈ So will map T to C. Again, including the identity
automorphism covers the case where T ⊂ C. This completes the proof of the
theorem �

5 Concluding remarks

The bound from Result 1 in the case m + n odd appears to be dm
2
e; our PD-

set has size m + 1 and computations with Magma [BC94] using this set gave
something close to m+1 in the cases we looked at. The bound for m+n even
is harder to establish, but appears to approach m as n increases, for fixed
m. Clearly small PD-sets are desirable for applications. The codes are not in
general spanned by their minimum-weight vectors, although C⊥ is in the case
of m + n odd.
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Codes from classes of graphs or structures that have automorphism groups
that grow in similar order to the growth of the length of the code, as in this
case, might have PD-sets for full error correction for all values of the param-
eters; we have further results for the line graphs of multipartite graphs, for
example, and see also [KMR04,KMR]. However, codes from other graphs (e.g.
Paley graphs, see [KL]) or from designs from finite geometries (see [KMMb]
and [KMMa] where the notion of partial PD-sets is introduced) do not have
PD-sets as the parameters grow beyond a certain number, since the bound of
Result 1 is too large for the group order.
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