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Summary

We provide a proof for the identifiability for both single-index models and

partially linear single-index models assuming only the continuity of the regres-

sion function, a condition much weaker than the differentiability conditions

assumed in the existing literature. Our discussion is then extended to the

identifiability of the additive-index models.
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1. Introduction

Suppose data (Yi, Xi) follow the regression model

Yi = m(Xi) + εi, i = 1, · · · , n, (1)

for some function m(·) where the covariate X is a p-dimensional vector and

m(·) is unknown. We say that the model follows a single-index model if

m(x) = g(α′x), (2)

where g(·) is an unknown univariate smooth function and α ∈ R
p is an un-

known vector. For identifiability purposes, we typically assume that ‖α‖ = 1

with its first nonzero element being positive. The model is said to be a par-

tially linear single-index model if the mean function includes an extra linear

component θ′x, i.e.

m(x) = θ′x + g(α′x). (3)

To ensure identifiability, θ ∈ R
p is assumed to be perpendicular to α because

otherwise we can take θ̃ = θ−(θ′α)α and thus m(x) = θ̃′x+ g̃(α′x), where θ̃⊥α

and g̃(α′x) = (θ′α)α′x + g(α′x). These two classes of models have been exten-

sively investigated because of their capacity for dimension reduction (Powell

et al., 1989; Duan & Li, 1991; Ichimura, 1993; Härdle et al., 1993; Xia et al.,

1999; Hristache & Spokoiny, 2001; Yu & Ruppert, 2002; Stute & Zhu, 2005).

A generalisation of the above two classes of models is provided by the

additive-index models (Chiou & Müller, 2004), where

m(x) =
K
∑

k=1

gk(θ
′

kx). (4)

One special case of model (4) has mean function

m(x) = g1(α
′x1) + g2(β

′x2). (5)
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Here x′ = (x′

1
, x′

2
)′. This is a special case of model (4) with K = 2, θ′

1
= (α′, 0′)′

and θ′
2

= (0′, β′)′. This model is called the additive single-index model by Naik

& Tsai (2001).

Most results in the literature concentrate on the estimation of the index

vector(s) and the regression function. It is important to make sure that the

representations in (2),(3), (4) and (5) are unique. Ichimura (1993) gives a

proof for the identifiability of model (2) assuming that g(·) is differentiable

and Xia et al. (1999) prove the identifiability of model (3) assuming that g(·) is

twice differentiable. Chiou & Müller (2004) give the identifiability of model (4)

under conditions that are not only very restrictive, (for example the component

functions have to be monotone), but also very difficult to verify. Their method

is as follows. Two functions f(x) and g(x) cannot be identical if we can find

two points x1 and x2 such that f(x1) = f(x2) while g(x1) 6= g(x2). Chiou &

Müller (2004) make an assumption, M6 in their paper, that essentially states

the existence of such two points. There is no direct proof of identifiability for

model (5) except that it is a special case of model (4).

In this paper we prove the identifiability for both single-index models (2)

and partially linear single-index models (3) under a much weaker condition,

just the continuity of g(·), followed by a proof for the identifiability of the

additive single-index models (5). In addition, we provide a necessary condition

for identifiability in an additive-index model (4).

It is noteworthy that the identifiability discussed in this paper is different

from the uniqueness of the regression function m(·) itself. Xia et al. (1999) im-

pose an extra requirement, which we call Assumption 0, for the identifiability

of model (3).

Assumption 0. The covariate vector X has a positive density function on
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an open convex set A ⊂ R
p.;

This is actually a redundant condition provided the support S of m(·) is

nondegenerate; see Assumption 1 in § 2.1. They give a counterexample when

Assumption 0 does not hold. Suppose y = 2x1x2 and x = (x1, x2, x3, x4),

where the covariates are related by x3 = x2

1
and x4 = x2

2
so that the support

S is degenerate. Then the regression function has two representations,

m(x) = (−x3 − x4) + (x1 + x2)
2, m(x) = (x3 + x4) − (x1 − x2)

2.

In this case we have multiple expressions for the m(·) function but this does

not disprove the identifiability of the partially linear single-index models. It is

a uniqueness issue of m(·) itself and thus is beyond the scope of our discussion.

This is somewhat similar to the case in classical linear regression analysis where

a special method should be applied in the presence of severe multicollinearity.

2. Identifiability

2·1. Single-index models

Suppose we have data (Xi, Yi) coming from model (1), where the mean

function m(·) is a p-variate smooth function, the errors are independent with

zero mean and finite common variance σ2, and the following assumption holds.

Assumption 1. The support S of m(·) is a bounded convex set with at least

one interior point.

Definition 1. A p-variate function m(·) ∈ L2(S) is said to be a partially

linear single-index function with index vectors (θ, α) if m(x) = θ′x + g(α′x)

almost everywhere for some nonlinear function g, θ ∈ R
p, θ⊥α and α ∈ D

where

D =
{

α ∈ R
p | ‖α‖ = 1 with first nonzero element positive

}

.
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The function is said to be a single-index function if θ = 0.

With this definition we can define a model to be a single-index model if the

regression function is a linear single-index function and to be a partially linear

single-index model if the regression function is a partially linear single-index

function.

Theorem 1. Suppose that Assumption 1 holds and m(·) is a nonconstant

continuous function on S. If

m(x) = g(α′x) = h(β ′x), for all x ∈ S, (6)

for some continuous functions g and h, and some α, β ∈ D, then α = β and

g ≡ h on {α′x|x ∈ S}.

Proof. It is clear that g ≡ h if α = β. Hence it suffices to show α = β.

Suppose α 6= β. Since m(·) is continuous and nonconstant on S, there

exists a sphere B = B(x0, r) ⊂ S for some x0 such that m(·) is non-constant

on B. By (6) and the fact that α′α = 1 we have, for all t ∈ (−r, r), that

x0 + tα ∈ S,

g(α′x0 + t) = g
{

α′(x0 + tα)
}

= h
{

β′(x0 + tα)
}

= h
{

β′x0 + t(β ′α)
}

and

h(β ′x0 + t) = h
{

β′(x0 + tβ)
}

= g
{

α′(x0 + tβ)
}

= g
{

α′x0 + t(β ′α)
}

.

By the requirement that the first nonzero components of α and β are

positive, we have α 6= −β. Hence |α′β| < 1 and, by the continuity of g,

g(α′x0 + t) = h
{

β′x0 + t(β ′α)
}

= g
{

α′x0 + t(β ′α)2
}

= · · · = g
{

α′x0 + t(β ′α)2n
}

= · · · = g(α′x0), for all t ∈ (−r, r).

(7)
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Pick any x ∈ B(x0, r). Then x = x0+tγ for some unit vector γ and t ∈ (−r, r).

Hence, by (7), m(x) = g(α′x) = g(α′x0 + tα′γ) = g(α′x0). This indicates that

m(·) is constant on B, which is a contradiction. Thus α = β and the proof is

completed.

2·2. Partially linear single-index models

Theorem 2. Let Assumption 1 hold. Suppose that m(·) is a nonconstant

continuous function on S and that

m(x) = θ′
1
x + g(α′

1
x) = θ′

2
x + h(α′

2
x), for all x ∈ S, (8)

for some continuous nonlinear functions g and h, θk ∈ R
p and αk ∈ D with

θk⊥αk, k = 1, 2. Then θ1 = θ2, α1 = α2 and g = h.

Proof. Without loss of generality we may assume that the origin is an interior

point of S; otherwise use the transformation z = x − x0, where x0 is any

interior point of S. Let θ = θ1 − θ2 and a be some generic constant.

First we consider p = 2. If α1 6= α2, then (α1, α2) form a basis for R
2;

writing θ1 and θ2 in terms of the αk’s, we obtain from Theorem 1 that α1 = α2,

which is a contradiction. Hence α1 = α2 = α and θ ⊥ α. Then (8) gives that

f(α′x) = θ′x, where f = h − g. Since the origin is an interior point of S,

x = tθ ∈ S and therefore f(0) = t‖θ‖2 for sufficiently small t. Thus, θ = 0,

i.e. θ1 = θ2, and the problem is reduced to the case of Theorem 1.

For p > 2, we consider the following four cases.

Case 1. Suppose that α1 = aθ for some constant a. Then, by (8),

m̃(x) = m(x) − θ′
2
x = θ′x + g(aθ′x) = h(α′

2
x), for all x ∈ S.

Since g(·) is nonlinear, m̃(·) cannot be constant on S. By Theorem 1 we have

that α2 = bθ for some constant b. Since α1 ∈ D and α2 ∈ D, we have that



7

α1 = α2 = aθ. Note that θk ⊥ αk, k = 1, 2. Hence θ ⊥ θ, which implies that

θ1 = θ2 and thus g = h.

Case 2. Suppose that α2 = aθ for some constant a. This is identical to

Case 1 above.

Case 3. Suppose that (α1 − α2) = (θ1 − θ2)/a for some constant a. Then

m̃(x) = m(x) − θ′
2
x + aα′

2
x = aα′

1
x + g(α′

1
x) = h(α′

2
x) + aα′

2
x.

The result now follows by the same argument as for Case 1.

Case 4. Suppose none of the above cases holds, and let θ = θ1 − θ2.

Equation (8) becomes

θ′x = h(α′

2
x) − g(α′

1
x). (9)

Since p > 2 and in this case αk, k = 1, 2, cannot be parallel to θ or α1 − α2,

there exists x0 ∈ S such that

x0 ⊥ span(θ, α1 − α2) and u = α′

1
x0 = α′

2
x0 > 0.

Plugging x = tx0, for all t ∈ [−u, u], into (9) we obtain

g(t) = h(t), for all t ∈ [−u, u]. (10)

Suppose that θ 6= 0. Since in this case θ is not parallel to α1 −α2, there exists

x1 ∈ S such that θ′x1 6= 0 and

x1 ⊥ (α1 − α2), v = α′

1
x1 = α′

2
x1 > 0.

Plugging x = tx1, for all t ∈ [−1, 1], into (9) we obtain

tθ′x1 = h(tv) − g(tv), ∀ t ∈ [−1, 1].

Take any t ∈ (0, u
v
). By (10) we have that tθ′x1 = h(tv) − g(tv) = 0, which

contradicts the fact that θ′x1 6= 0. Thus θ = 0, i.e. θ1 = θ2, and the result

follows by Theorem 1.
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The following corollary extends the above results to domains with certain

types of multiple constraints on the covariates.

Corollary 1. The identifiability results in Theorem 1 and Theorem 2

hold when the support S of m(·) can be partitioned into convex sets, each of

which contains at least one interior point and m(·) is nonconstant on each

convex set.

Proof. This is a direct consequence of Theorem 1 and Theorem 2.

2·3. Additive single-index models

In this subsection we discuss the identifiability of the model in which

m(x) =
K
∑

k=1

gk(α
′

kxk). (11)

Here the covariate x is divided into K parts, i.e., x′ = (x′

1
, · · · , x′

K)′. We make

the following assumptions.

Assumption 2. Each αk vector has norm one and the first nonzero component

of αk is positive, k = 1, · · · , K.

Assumption 3. The support of gk(·) is Sk, k = 1, · · · , K, and the support of

m(·) is S = S1 × · · · × SK .

This model is useful for the situations where the covariate x can be divided

into several groups and no interaction effects exist among these groups. Yu &

Ruppert (2002) discussed partially linear single-index models of the form

m(x) = α′x1 + g(β ′x2),

which is a special case of both model (3) and model (11).
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Since m(x) is nonconstant on S, there exists at least one component vector,

without loss of generality xK , say, such that there exists a vector a with xK = a

and m(x) is nonconstant on Sa = {x ∈ S | xK = a}. Let z′ = (x′

1
, · · · , x′

K−1
)′

and

m̃(z) =
K−1
∑

i=1

gi(α
′

ixi).

Hence, for x ∈ Sa, m(x) = m(z, a) = m̃(z)+gK(a). Since m(x) is nonconstant

on Sa, this implies that m̃(z) is nonconstant on S̃ = S1 × · · · × SK−1. Thus

simple induction gives that the first K − 1 gk-functions and αk-vectors are

unique. This proves the following theorem.

Theorem 3. Suppose that m(·) is a nonconstant continuous function on

S and that

m(x) =
K
∑

k=1

gk(α
′

kxk),

for some continuous functions gk, k = 1, · · · , K. Let Assumptions 1-3 hold.

Then the αk vectors are unique and the gk(·) functions are unique up to a

constant.

2·4. Additive-index models

A more general index model has the regression function taking the form

m(x) =
K
∑

k=1

gk(θ
′

kx) + C0, (12)

where C0 = m(0) and each function gk(·) is univariate and smooth with gk(0) =

0. These conditions are needed for the identifiability of the model when K > 1.

These prevent non-identifiability due to shifts. The constant C0 can be taken

as zero in the Single-index model. We now give a necessary condition for the

subclass of quadratic models

m(x) =
K
∑

k=1

(θ′kx)2 + C0 (13)
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followed by its implication for (12). To this end, suppose that we have

m(x) =
K
∑

k=1

(α′

kx)2 =
K
∑

k=1

(β′

kx)2, (14)

where {αk, βk} are vectors in R
p. Note that we do not require them to be

unit vectors because the functions gk(t) = t2 are fixed. These vectors can be

standardised and the norms can be absorbed into the gk functions. Since the

support of m(·) is non-degenerate, equality holds in (14) if and only if

K
∑

k=1

αkα
′

k =
K
∑

k=1

βkβ
′

k. (15)

If all {αk, βk} are free, we may set

K
∑

k=1

αkα
′

k = A, (16)

where A is a symmetric matrix. The identifiability of (12) cannot be achieved if

(16) has infinite number of solutions. Since A is symmetric, there are p(p+1)/2

equations in (16) and there are Kp variables. Thus, to ensure a finite number

of solutions, we require that

p(p + 1)

2
≥ Kp,

i.e. p ≥ 2K−1. However, this is not quite enough since the βk’s could depend

on the αk’s. The maximal dependence occurs when

βi =
K
∑

k=1

aikαk, i = 1, · · · , K.

Therefore, (15) produces 1

2
p(p+1) equations and Kp+K2 variables. To ensure

identifiability we require that

p(p + 1)

2
≥ Kp + K2,
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or, equivalently,

p ≥
2K − 1

2
+

1

2

√

(2K − 1)2 + 8K2. (17)

For example, when K = 2, p ≥ 5 is necessary for the identifiability of any

function in the quadratic subclass (13) unless extra conditions on m(x) are

imposed.

The above also indicates that, if one were to determine a sufficient condition

for the identifiability of the additive-index models (12), including the quadratic

subclass, then one needs (17) to be satisfied for all the functions in (13).

Since the quadratic functions in (13) are infinitely differentiable, placing any

smoothness condition on m(x) does not help exclude the quadratic subclass.

One possible way of relaxing the lower bound on p given by (17) is to assume

orthogonality of the index vectors, as in the case of the additive single-index

models discussed in § 2.3.
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