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Abstract

A challenge in polymer processing is the effective removal of debris, via filtration, from
the polymer melt during the extrusion process. We propose methods for finding optimal
parameters for the filter such that its lifetime is maximized, while placing reasonable re-
strictions on the amount of escaped debris. We make use of a three-dimensional simulation
model that describes the deposition of debris particles in the filter. Optimization algorithms
are used in conjunction with the simulator tool to identify the filter parameters. This is a
difficult problem that is not described by a differentiable function, since function evaluations
are given by a simulator which is treated as a black-box. Thus, we apply derivative-free
techniques to analyze the behavior of the filter and to gain insight into its optimal design.
We will discuss these techniques, along with approaches to formulating this problem math-
ematically. We present promising numerical results and point the way towards advancing
this study.
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1 INTRODUCTION

Researchers at the Center for Advanced Engineering Fibers and Films (CAEFF) [1] assist indus-
trial partners in the design and production of polymer products. As part of this effort, they have
developed a computational tool that simulates the main stages of a fiber-spinning process [3].
This tool includes a three-dimensional model of an extrusion filter [13], which is used to separate
debris particles from the molten polymer before the material is spun into a fiber (see Figure 1).
The diameter of the pores in the filter are small enough to capture particles a few microns in
diameter. As these debris particles accumulate inside the filter,the maintenance of a constant
mass flow rate through the system causes the pressure drop across the filter to increase. Once
the pressure drop across the filter (i.e., the difference in pressure values at the entrance and exit
of the filter) passes a certain threshold, there is a risk of damaging the pumping mechanism.
Thus, the filter must be replaced before this threshold is reached.
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Figure 1: Fiber melt-spinning process

Filter performance can be evaluated using two measures. First, the filter must effectively
remove debris particles as the presence of particles in the fiber may drastically reduces the quality
of the finished product. Second, the filter should have a sufficient lifetime. Filter replacement is
costly, often requiring that the entire spinline be taken out of production. In-line filters are being
introduced, but analysts believe that the trend will be to combine these filtration methods with
conventional filters located at the spinneret [9]. Thus we are faced with competing objectives, as
extending the filter lifetime could be achieved by simply reducing the amount of trapped debris.

Previous work attempted to optimize the performance of the filter using a multi-objective
genetic algorithm [7], which requires the use of two competing objective functions. In this
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work, we combine the competing objectives into a single functional using barrier methods. This
allows us to minimize the functional using single-search methods as opposed to multi-objective
algorithms.

The problem is still a challenging one, however, since any objective function will be defined
in terms of the output from the simulator. This means that we lack a continuous function that
describes the filtration process; hence, we lack gradient information. Since we are unable to use
classical calculus-based approaches, we must turn to optimization methods that do not require
knowledge of derivatives. Our choice is an implementation of the implicit filtering algorithm
[10, 11]. Implicit filtering is a sampling-based method; that is, the optimization is guided only
by objective function values. The data obtained from this design space sampling will guide us
towards optimal design parameters and provide insight into the effects of such parameters on
the behavior of the filter. An advantage of this approach is that it provides a framework for a
variety of simulation methods, including the three dimensional algorithm we apply here.

Our discussion is structured as follows. An overview of the filtration model and the simulation
tool is given in Section 2. In Section 3, we outline the theoretical approaches taken and the
derivations of three objective functions which measure the filter performance. We describe the
implicit filtering algorithm used for optimization and provide numerical results in Section 4.
Conclusions and future work are given in Section 5.

2 DEBRIS DEPOSITION MODEL

The filtration code (i.e., the “simulator”) used in this work was developed at CAEFF. The
filtration problem was studied in one-dimensional space in [5], and this was extended to three-
dimensional space in [13]. The three-dimensional work led to the development of the simulator.

The material entering the filter consists of molten polymer, unmelted polymer gel particles
(formed when the polymer does not completely melt in the heating/mixing stage), and other
debris such as metal particles. The density of the mixture is assumed to be the same as the
polymer density, i.e., the density of the debris is negligible in comparison to the polymer density.
It is also assumed that the thickness of the filter is small so that gravitational effects can be
ignored [5, 13].

The flow through the filter is governed by the continuity equation (mass conservation) and
Darcy’s law, modified to account for the non-Newtonian behavior of the polymer melt. The
debris entering the filter is specified in terms of a mass fraction relative to the mass of the
mixture. The distribution of debris particles is characterized statistically, as in [9], using either
truncated or standard normal probability density functions [7].

The mass of captured debris is calculated for each computational cell. Particles with a
larger diameter than the pore diameter are eligible for capture; the percentage of these particles
retained by the filter is determined by an empirical retention function associated with the filter
[13]. All particles not captured within a computational cell are transported to downstream cells.
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The porosity of the filter and the average pore diameter of the filter are updated at the end of
every time step using the information on the deposited debris.

The new values for porosity and pore diameter are used to calculate the permeability and
pressure drop. The permeability parameter k is currently modeled using a Blake-Kozeny rela-
tionship that depends on the average diameter of the filter pore size, dp, and the current filter
porosity, η. The relationship for k, derived in [2] and used in [5, 13], is

k =
d2

pη
3

150(1 − η)2
.

Filters are often composed of multiple layers, each of which is characterized by a porosity, an
average pore diameter, and a retention function. We consider only single-layer filters in this
work, though our simulator is capable of handling multiple layers.

As the filter clogs, the volume of the void space decreases, leading to a decrease in the
permeability. The pressure drop must then increase in order to maintain a constant mass flow
rate throughout the filter. The large values of pressure required at the inlet may lead to damage
of the metering pump, so the filter must be replaced once the pressure drop reaches a threshold
value. The threshold value is set at 35e6 Pa in the simulator, which is comparable to existing
industry thresholds [13]. A pressure drop curve for a filter with an initial porosity of 0.61 and
an initial average pore diameter of 25.4 microns is given in Figure 2.
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Figure 2: Pressure drop curve for representative filter

More detailed information on the model can be found in [4, 7, 13].
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3 MODELLING THE EXTRUSION FILTER PERFORMANCE

The optimization problem is formulated as

Maximize (or Minimize)F (x), x ∈ Ω, (1)

where F (x) represents the performance of the filter (e.g., lifetime), x is a vector of decision vari-
ables (filter parameter values), and Ω defines acceptable bound constraints on those parameters.

We consider three problem formulations, each using a different measure of filter performance,
resulting in different definitions of F (x). The performance of the filter is analyzed with respect
to the filter parameters porosity, denoted by η, and average pore diameter, denoted by dp so
that x = (η, dp). The bound contraints are defined by the set

Ω = {(η, dp) : 0.4 ≤ η ≤ 0.65, 23 ≤ dp ≤ 40}.

3.1 F1(x): Filter lifetime

The primary objective in our first problem formulation is to maximize the lifetime of the filter.
A secondary, competing objective, is to minimize the amount of debris escaping the filter. This
secondary objective is handled through the use of a barrier method. Taking into consideration
the viewpoint of an engineer or production manager, we wish to define an acceptable bound
on the escaped debris. This bound represents a level of debris that the manager would allow
to make its way into the final product. Let b represent the bound, and let ξ(x) represent the
total mass of debris that escapes over the lifetime of the filter. Naturally, we wish to construct
the barrier function in such a way that ξ(x) is bounded away from b. In addition, the function
should attain its minimum when ξ(x) = 0. These stipulations lead to the function

B(ξ) =
ξ(x)

b − ξ(x)
, (2)

which is defined on the half-open interval [0, b). We can see that B(ξ) → ∞ as ξ → b−.
Likewise, B(ξ) → 0 as ξ → 0+. Thus B(ξ) is minimized when ξ = 0 and grows without bound
as ξ approaches b.

Let t(x) represent the lifetime of the filter. Since we wish to maximize t(x), we will minimize
its negative. This lends itself to the function

F1(x) = −t(x) + ρ1B(ξ), (3)

where ρ1 is a constant with units of hours. Note that, from the definition of B(ξ), we see that
F1(x) is not defined for values of x for which ξ(x) ≥ b. We handle such cases in a computational
sense by setting F1(x) to an unreasonably large value.
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3.2 F2(x) : Pressure drop across filter

As previously stated, we assume that the filter is replaced when the pressure drop reaches a
certain threshold. For the second formulation, which is motivated by Figure 2, the primary
objective is to minimize the maximum rate of change of the pressure drop across the filter. This
offers a way of indirectly maximizing the lifetime of the filter. We retain the secondary objective
of minimizing the total escaped debris.

To quantify this primary objective,let pn denote the difference in pressure (in Pascals) across
the filter at the nth timestep tn. The change in pressure between two successive timesteps can
be written as

∆pn =
pn − pn−1

tn − tn−1

, (4)

which has units of Pascals per hour. If P = {∆p1, ∆p2, . . . , ∆pk}, where k is the total number
of time steps, then clearly there is an αmin = sup P . Since x is fixed, it follows that there is
associated with each value of x one and only one αmin. Hence, αmin can be written as a function
of x.

In order to incorporate the secondary objective, we keep the barrier function B(ξ) that was
introduced in (2). This leads to the objective function

F2(x) = αmin(x) + ρ2B(ξ), (5)

where ρ2 is a constant with units of Pascals per hour. As with F1(x), F2(x) is defined only for
values of x where ξ(x) < b; that is, where B(ξ) is defined. Computationally, this is handled in
the same manner for both functions.

3.3 F3(x) : Overall pressure change

As a variation of the pressure approach, we consider a linear estimate of the total change in
pressure over the lifetime of the filter. Suppose the lifetime of the filter consists of N time steps.
We measure the total change in pressure by constructing a line passing through the points (t0, p0)
and (tN , pN ) (motivated again by Figure 2). A reasonable objective would be to minimize the
slope of this line, which can be expressed as

m =
pN − p0

tN − t0
, (6)

where m has units of Pascals per hour. Note that t0 = 0, and tN is simply the overall lifetime of
the filter, so we have t = tN − t0. Also note that we can easily express pN , p0, and t as functions
of x, which gives the objective function

F3(x) =
pN (x) − p0(x)

t(x)
+ ρ3B(ξ). (7)
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Here B(ξ) is the barrier function defined in (2), and ρ3 is a constant with units of Pascals per
hour. Once again, F3(x) is defined for values of x where B(ξ) is defined and where t(x) 6= 0.
The first case is handled as it was previously; the second can be neglected, since t(x) = 0 is
impractical.

4 NUMERICAL RESULTS

We solve the optimization problem given by (1) using a MATLAB implementation of the implicit
filtering algorithm developed by C.T. Kelley at North Carolina State University [10]. Implicit
filtering is entirely derivative-free and is based on a quasi-Newton approach, which uses the
objective function to build approximate gradients of F (x) and a secant-like method for the
Newton-step [8, 12]. The advantage of implicit filtering is that the size of the finite-difference
interval on which the gradient is approximated is decreased as the optimization progresses. This
makes implicit filtering particularly effective for minimizing “noisy” functions; that is, functions
that have a large number of local minima, which are not necessarily known in advance. By using
large difference increments early in the optimization, the algorithm may avoid local extrema
and close in on the global minimum. The algorithm requires a means to compute the objective
function, a feasible initial iterate, and termination criteria either in the form of a function
evaluation budget or a fixed number of times that the finite-difference stencil is reduced.

Extensive numerical experiments were performed on all of the formulations of the objective
function, using a variety of values for ρ. For the results presented here, we use ρ = 10 for F1(x)
and ρ = 104 for F2(x) and F3(x). We used an initial iterate of x0 = (0.5, 25) and a budget of 60
evaluations of F (x). The allowable debris, b, was 8 × 10−5 kg. We present and discuss selected
results from these tests.

Table 4 contains results from the problem formulations. The data in the first column are
the optimal values of (η, dp) for each objective function. The data in the remaining columns
provide the corresponding lifetime of the filter, αmin as described in Section 3.2, the mass of the
escaped debris (ξ), and the slope of the secant line (m) for the overall pressure drop.

Objective t αmin ξ m

Function (η, dp) (hours) (104 Pa/hr) (10−5 kg) (105 Pa/hr)

F1(0.6500, 26.9057) 76.0 7.1749 4.6591 2.0407
F2(0.6500, 23.0000) 67.8 6.8644 3.3308 2.2207
F3(0.6500, 28.6087) 79.3 7.3072 5.1403 1.9747

Table 1: A comparison of filter performance for F1(x), F2(x), F3(x).

All formulations result in identical values for porosity which lie on the upper bound con-
straint, but the values of pore diameter differ greatly between the three. In particular, note
that F2(x) offers the lowest values for both lifetime and escaped debris, F3(x) offers the highest
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values for both, and F1(x) lies in the middle. It is apparent that F2(x) is the most conservative
of the three in terms of controlling the escaped debris, which may mean this formulation is most
sensitive to the barrier. The expense is that the lifetime is significantly shorter than that of
F1(x) or F3(x)

More investigation is needed to explain why F2(x) results in a pore diameter that is pushed
towards the opposite bound constraint as the other two. It appears that the choice of pore
diameter is highly dependent on the problem formulation. The varying results imply that the
advantage of one formulation over another would be determined entirely by the preferences
of a production manager, who must determine the relative importance of each objective. A
more balanced solution may be reached by combining all three objectives into a single weighted
objective function.

In Figure 4 we show F1(x) as it varies with the pore diameter and porosity value pairs
sampled by the optimizer and we examine the corresponding lifetime of the filter for the various
values of F1(x). The figure on the left shows the various choices of (η, dp) sampled by the
optimizer. The porosity is clustered about η = 0.65 while the pore diameter varies more in an
attempt to find the maximum. However, a majority of the design points are clustered near the
best point found, which implies that the optimizer likely converged early within the function
evaluation budget.

The figure on the right shows that, as one would expect, F1(x) varies nearly linear with the
lifetime of the filter until the effects of the barrier term in F1(x) become dominant. For design
points where the filter lifetime is longer than 80 hours, we see there is a steep penalty for the
amount of debris escaping the filter by the increase in the function value.
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Figure 3: Scatter plots of the value of F1(x) versus (η, dp)(left) and lifetime (right).

The same data is displayed in Figure 4 for F2(x). In this case, the optimizer sampled a wider
range of values for the porosity and the pore diameter prior to convergence, but we still see a
cluster of points close to the minimum. The plot on the right demonstrates that this formulation
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is slightly less sensitive to the barrier approach as there is less of a linear trend.
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Figure 4: Scatter plots of the value of F2(x) versus (η, dp)(left) and lifetime (right).

Finally, we consider the results using the third objective function. As previously mentioned,
the behavior of this function is somewhat similar to that seen for F1(x). However, the optimizer
sampled a wider range of design points in both η and dp. The optimal point identified for F3(x)
occurs at x = (0.6500, 28.6087), compared to x = (0.6500, 26.9057) for F1(x).

In analyzing the second plot in Figure 4, we see that the slope defined in (6) is minimized
when t is large, which is desirable. Also, we see in the first plot in Figure 4 that the optimizer
samples more values for both the porosity and pore diameter in comparison to the other two.
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Figure 5: Scatter plots of the value of F3(x) versus (η, dp)(left) and lifetime (right).

We also considered the same three formulations using an alternative derivative-free method,
the DIRECT algorithm [6], for optimization and obtained essentially the same set of optimal
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parameter sets for each formulation, implying that we have converged to at least a local (if not
global) minimum.

5 CONCLUSIONS

A benefit of using a derivative-free sampling method for optimization is that intermediate func-
tion values can be used to analyze the behavior of the objective function and a wide variety of
simulation methods can be used in a black-box fashion.

Our goal is to better understand the measures of filter performance by investigating new
objective functions and incorporating more decision variables. Previous work with the simula-
tor indicates there is a huge benefit to using multi-layered filters, but we know of no organized
study that has fully explored the design space associated with these more complicated struc-
tures. Optimization methods coupled with the simulator give us a mechanism to understand the
interactions between our variables and deposition rates. We plan to extend our current work on
single objective functions to give industrial partners an effective tool with which to reduce the
operating costs associated with one of the components of fiber production.
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