KKT Conditions

$$
\begin{array}{ll}
\min & 4 x_{1}+3 x_{2} \\
\text { s.t. } & 3 x_{1}+2 x_{2} \geq 12 \\
& x_{1}+x_{2} \geq 5 \\
& x_{1}+4 x_{2} \geq 8 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

$$
\begin{array}{ll}
\min & 4 x_{1}+3 x_{2} \\
\text { s.t. } & 3 x_{1}+2 x_{2} \geq 12 \\
& x_{1}+x_{2} \geq 5 \\
& x_{1}+4 x_{2} \geq 8 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

$$
\begin{array}{ll}
\min & 4 x_{1}+3 x_{2} \\
\text { s.t. } & 3 x_{1}+2 x_{2} \geq 12 \\
& x_{1}+x_{2} \geq 5 \\
& x_{1}+4 x_{2} \geq 8 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

Is $\mathbf{x}=(4,1)$ Optimal?

- it is feasible: first constraint holds with $>$, the other two hold with $=$

$$
\begin{aligned}
-x_{1} & >0, x_{2}>0, x_{3}>0 \text { so by CS } \\
u_{4} & =0, u_{5}=0, u_{1}=0
\end{aligned}
$$

$\min 4 x_{1}+3 x_{2}$
s.t. $3 x_{1}+2 x_{2} \geq 12$

$$
\begin{aligned}
& x_{1}+x_{2} \geq 5 \\
& x_{1}+4 x_{2} \geq 8 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

$\begin{array}{ccc}\max & \left.\begin{array}{r}12 u_{1} \\ \text { s.t. } \\ \\ \\ \\ {\left[\begin{array}{c}3 \\ 2\end{array}\right] u_{1}+5 u_{2}} \\ u_{1} \geq 0\end{array}+\begin{array}{l}1 \\ 1\end{array}\right] u_{2} & +\left[\begin{array}{l}1 \\ 4\end{array}\right] u_{3} \\ u_{2} \geq 0 & +\left[\begin{array}{l}1 \\ 0\end{array}\right] u_{4}+\left[\begin{array}{l}0 \\ 1\end{array}\right] u_{5}=\left[\begin{array}{l}4 \\ 3\end{array}\right]\end{array}$

Is $\mathbf{x}=(4,1)$ Optimal?

- it is not optimal: the vector \mathbf{c} does not lie in the cone spanned by the (inward pointing) normals of the two binding constraints.
$\min 4 x_{1}+3 x_{2}$
s.t. $3 x_{1}+2 x_{2} \geq 12$
$x_{1}+x_{2} \geq 5$
$x_{1}+4 x_{2} \geq 8$
$x_{1} \geq 0, x_{2} \geq 0$

Is $\mathbf{x}=(2,3)$ Optimal?

- it is feasible: first two constraints hold with $=$, the third holds with >
$-x_{1}>0, x_{2}>0, x_{5}>0$ so by CS
$u_{4}=0, u_{5}=0, u_{3}=0$
$\min 4 x_{1}+3 x_{2}$
s.t. $3 x_{1}+2 x_{2} \geq 12$
$x_{1}+x_{2} \geq 5$
$x_{1}+4 x_{2} \geq 8$
$x_{1} \geq 0, x_{2} \geq 0$

$\max 12 u_{1}+5 u_{2}+8 u_{3}$
s.t.

$$
\begin{aligned}
& {\left[\begin{array}{l}
3 \\
2
\end{array}\right]} \\
& u_{1} \geq 0
\end{aligned} u_{1}+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u_{2}+\left[\begin{array}{l}
1 \\
4
\end{array}\right] u_{3}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{4}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u_{5}=\left[\begin{array}{l}
4 \\
u_{2} \geq 0
\end{array} u_{3} \geq 0 \quad u_{4} \geq 0 \quad u_{5} \geq 0 \quad[\right.
$$

Is $\mathbf{x}=(2,3)$ Optimal?

- it is optimal: the vector \mathbf{c} does lie in the cone spanned by the (inward pointing) normals of the two binding constraints.

$$
\begin{array}{ll}
\min & 4 x_{1}+3 x_{2} \\
\text { s.t. } & 3 x_{1}+2 x_{2} \geq 12 \\
& x_{1}+x_{2} \geq 5 \\
& x_{1}+4 x_{2} \geq 8 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

$\max 12 u_{1}+5 u_{2}+8 u_{3}$
s.t.

$$
\begin{gathered}
{\left[\begin{array}{l}
3 \\
2
\end{array}\right]} \\
u_{1} \geq 0
\end{gathered} u_{1}+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u_{2}+\left[\begin{array}{l}
1 \\
4
\end{array}\right] u_{3}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{4}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u_{5}=\left[\begin{array}{l}
4 \\
3
\end{array}\right]
$$

