Moving to a Better Point

Consider the (feasible) basis:

$$B = \begin{bmatrix} 3 & 2 & 0 \\ 4 & 3 & -1 \\ 1 & 1 & 0 \end{bmatrix}, \text{ and } B^{-1} = \begin{bmatrix} 1 & 0 & -2 \\ -1 & 0 & 3 \\ 1 & -1 & 1 \end{bmatrix}$$

$$c_3 - \mathbf{c}_B^T B^{-1} \mathbf{a}_3 = 20 - [-2, 0, 34] \begin{bmatrix} 1\\ 3\\ 1 \end{bmatrix} = -12$$

Since the reduced cost for x_3 is negative (equal to -12), we'd like to increase the nonbasic variable x_3 from zero.

$$B = \begin{bmatrix} 3 & 2 & 0 \\ 4 & 3 & -1 \\ 1 & 1 & 0 \end{bmatrix}, \text{ and } B^{-1} = \begin{bmatrix} 1 & 0 & -2 \\ -1 & 0 & 3 \\ 1 & -1 & 1 \end{bmatrix}$$

Substituting in the expression for x_B gives

Let's increase x_3 from zero, keeping the other nonbasic variables x_4 , x_5 at value 0.

As x_3 increases, the basic variables x_1 , x_2 , x_6 change. We require them to be nonnegative.

Solving these inequalities gives

$$x_3 \ge -1$$

$$x_3 \le 1$$

$$x_3 \ge -2$$

$$0 \le x_3 \le 1$$

$$B = \begin{bmatrix} 3 & 2 & 0 \\ 4 & 3 & -1 \\ 1 & 1 & 0 \end{bmatrix}, \text{ and } B^{-1} = \begin{bmatrix} 1 & 0 & -2 \\ -1 & 0 & 3 \\ 1 & -1 & 1 \end{bmatrix}$$

Substituting in the expression for x_B gives

We increase x_3 to 1, which will decrease z by 12.

The basic variables x_1 , x_2 , x_6 change:

- x₂ drops to zero and becomes nonbasic

- the new basis consists of {x₁, x₃, x₆}

We have completed a simplex pivot.

We have moved from $(x_1, x_2, x_6, x_3, x_4, x_5) = (1, 2, 2, 0, 0, 0)$ to the new point $(x_1, x_2, x_6, x_3, x_4, x_5) = (2, 0, 3, 1, 0, 0)$.

x + α • d(1, 2, 2, 0, 0, 0) → (1, 2, 2, 0, 0, 0) + 1 (1, -2, 1, 1, 0 0)= (2, 0, 3, 1, 0, 0).

A Variation

What if the expression for \boldsymbol{x}_{B} were

Now we could increase x_3 indefinitely. Since the reduced cost of x_3 is -12, we have detected an unbounded LP!