
5 Feasible and Basic Feasible Solutions

The functional constraints, Ax = b, of a linear program in standard form
provide a system of linear equations with m equations and n variables.

In the casting problem (standard form) there are 3 equations and 6 vari-
ables, and Ax = b is given by
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Recall that a necessary and sufficient condition for the system of equa-
tions Ax = b to have a solution is that rank(A) = rank(A,b). We assume
that rank(A) = m. This implies that n ≥ m. If n = m, there is a unique
solution to the system Ax = b. If this unique solution is feasible, then it is
the optimal solution to the LP.

If n > m, which is typically the case, there may be an unlimited num-
ber of solutions to the system of equations. A remarkable result of linear
programming is that only a finite number of feasible solutions must be con-
sidered to obtain an optimal solution or determine that there is no optimal
solution.

In the study of linear programming, solutions to the system Ax = b are
characterized in the following particular way. Let B be an m × m matrix
consisting of m linearly independent columns aj from A. The matrix B is
called a basis of A. Since rank(A) = m, A has at least one basis. Since B
is nonsingular, it has an inverse B−1.

For example, in the casting problem, suppose we choose columns a1, a2,
and a6 so that B = [a1, a2, a6]. Then

B =




3 2 0
4 3 −1
1 1 0



 , and B−1 =




1 0 −2

−1 0 3
1 −1 1



 .
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Moving	  to	  a	  Be,er	  Point	  

Consider	  the	  (feasible)	  basis:	  

Since	  the	  reduced	  cost	  for	  x3	  is	  nega>ve	  (equal	  to	  –12),	  
we’d	  like	  to	  increase	  the	  nonbasic	  variable	  x3	  from	  zero.	  

Thus a sufficient condition for a basic solution x
0 to be optimal is that

cηk −c
T
BB

−1
aηk ≥ 0 for each ηk ∈ N . The terms cηk −c

T
BB

−1
aηk ≥ 0 for each

ηk ∈ N are called the reduced costs corresponding to the basic feasible
solution x

0. We will show later that nonnegative reduced costs are also a
necessary condition for optimality.

The above discussion is summarized by Property 1 below, which provides
a test for optimality of a basic feasible solution.

Property 1: Given a feasible basis B, the corresponding basic feasible solu-

tion x =

�
B−1

b

0

�
is optimal if and only if the reduced costs of all nonbasic

columns are nonnegative, that is, if and only if cηk − c
T
BB

−1
aηk ≥ 0 for each

ηk ∈ N .

For example, consider the feasible basis B = [a1, a2, a6] with x
T
B = [1, 2, 2].

Thus c
T
B = [c1, c2, c6] = [28, 30, 0] so that c

T
BB

−1 = [−2, 0, 34]. Also, N =
[a3, a4, a5]. The reduced costs are

c3 − c
T
BB

−1
a3 = 20− [−2, 0, 34]
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a4 = 25− [−2, 0, 34]
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c5 − c
T
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−1
a5 = 0− [−2, 0, 34]
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0
0



 = 2

Since there are negative reduced costs this is not an optimal basic solution.

The objective function value is given by c
T
BB

−1
b = [−2, 0, 34]




7
8
3



 = 88.
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Subs>tu>ng	  in	  the	  expression	  for	  xB	  gives	  

Recall from linear algebra that the system Ax = b is equivalent to the
system B−1Ax = B−1

b, provided B−1 is nonsingular. For the casting prob-
lem, B−1Ax = B−1

b is given by:




1 0 −1 2 1 0
0 1 2 −1 −1 0
0 0 −1 2 1 1
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or

x1 −x3 +2x4 +x5 = 1
x2 +2x3 −x4 −x5 = 2

−x3 +2x4 +x5 +x6 = 2 .

Keeping the variables x1, x2, x6 on the left and moving the remaining variables
to the right, this last system becomes

x1 = 1 +x3 −2x4 −x5

x2 = 2 −2x3 +x4 +x5

x6 = 2 +x3 −2x4 −x5 .
(1)

Thus we have solved for the (dependent) variables x1, x2, x6 in terms of the
(independent) variables x3, x4, x5. In general, given any basis B of A, we can
solve for the variables that correspond to the columns in the basis in terms
of the remaining variables.

As we see from this example, it is important to know which columns of
A are in the basis B, and in what order they appear in B. The following
notation is used to keep track of this information. Let B = {β1, . . . , βm} be
the set of indices j of the columns aj in the order that they appear in B.

Let N denote the matrix of columns aj in A that are not in B. The
matrix N is called the nonbasis matrix. Let N = {η1, . . . , ηn−m} be the
set of indices j of the columns aj in the order that they appear in N .

In the example above, B = {1, 2, 6} and N = {3, 4, 5}. That is, β1 =
1, β2 = 2, and β3 = 6. Also, η1 = 3, η2 = 4, and η3 = 5. Using this notation,
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Let’s	  increase	  x3	  from	  zero,	  keeping	  the	  other	  nonbasic	  
variables	  x4,	  x5	  at	  value	  0.	  

As	  x3	  increases,	  the	  basic	  variables	  x1,	  x2,	  x6	  change.	  	  
We	  require	  them	  to	  be	  nonnega>ve.	  

≥	  	  0	  
≥	  	  0	  
≥	  	  0	  

Solving	  these	  inequali>es	  gives	  

x3	  ≥	  –1	  

x3	  ≤	  	  1	  

x3	  ≥	  –2	  

0	  ≤	  x3	  ≤	  	  1	  
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We	  increase	  x3	  to	  1,	  which	  will	  decrease	  z	  by	  12.	  

The	  basic	  variables	  x1,	  x2,	  x6	  change:	  

=	  	  2	  
=	  	  0	  
=	  	  3	  

-‐	  	  x2	  drops	  to	  zero	  and	  becomes	  nonbasic	  

-‐	  	  the	  new	  basis	  consists	  of	  {x1,	  x3,	  x6}	  

We	  have	  completed	  a	  simplex	  pivot.	  

We	  have	  moved	  from	  (x1,	  x2,	  x6,	  x3,	  x4,	  x5)	  =	  (1,	  2,	  2,	  0,	  0,	  0)	  	  
to	  the	  new	  point	  (x1,	  x2,	  x6,	  x3,	  x4,	  x5)	  =	  (2,	  0,	  3,	  1,	  0,	  0).	  

(1,	  2,	  2,	  0,	  0,	  0)	  →	  (1,	  2,	  2,	  0,	  0,	  0)	  +	  1	  (1,	  –2,	  1,	  1,	  0	  0)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  (2,	  0,	  3,	  1,	  0,	  0).	  

x	   x	   α	
 d	  +	   •	  



What	  if	  the	  expression	  for	  xB	  were	  
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Now	  we	  could	  increase	  x3	  indefinitely.	  Since	  the	  reduced	  
cost	  of	  x3	  is	  –12,	  we	  have	  detected	  an	  unbounded	  LP!	  	  

A	  Varia>on	  

≥	  	  0	  
≥	  	  0	  
≥	  	  0	  


