Moving to a Better Point

Consider the (feasible) basis:

$$
\begin{gathered}
B=\left[\begin{array}{rrr}
3 & 2 & 0 \\
4 & 3 & -1 \\
1 & 1 & 0
\end{array}\right], \text { and } B^{-1}=\left[\begin{array}{rrr}
1 & 0 & -2 \\
-1 & 0 & 3 \\
1 & -1 & 1
\end{array}\right] \\
c_{3}-\mathbf{c}_{B}^{T} B^{-1} \mathbf{a}_{3}=20-[-2,0,34]\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]=-12
\end{gathered}
$$

Since the reduced cost for x_{3} is negative (equal to -12), we'd like to increase the nonbasic variable x_{3} from zero.

$$
B=\left[\begin{array}{rrr}
3 & 2 & 0 \\
4 & 3 & -1 \\
1 & 1 & 0
\end{array}\right], \quad \text { and } B^{-1}=\left[\begin{array}{rrr}
1 & 0 & -2 \\
-1 & 0 & 3 \\
1 & -1 & 1
\end{array}\right]
$$

Substituting in the expression for x_{B} gives

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2} \\
& x_{2} \\
& x_{2} \\
& x_{6}
\end{aligned}=2 x_{3}-2 x_{3}-2 x_{4}-x_{4} \quad-x_{5} \geq 0
$$

Let's increase x_{3} from zero, keeping the other nonbasic variables x_{4}, x_{5} at value 0 .

As x_{3} increases, the basic variables x_{1}, x_{2}, x_{6} change. We require them to be nonnegative.

Solving these inequalities gives

$$
\begin{aligned}
& x_{3} \geq-1 \\
& x_{3} \leq 1 \\
& x_{3} \geq-2
\end{aligned}
$$

$$
B=\left[\begin{array}{rrr}
3 & 2 & 0 \\
4 & 3 & -1 \\
1 & 1 & 0
\end{array}\right], \quad \text { and } B^{-1}=\left[\begin{array}{rrr}
1 & 0 & -2 \\
-1 & 0 & 3 \\
1 & -1 & 1
\end{array}\right]
$$

Substituting in the expression for X_{B} gives

$$
\begin{array}{r}
x_{1}=1 \\
x_{2}
\end{array}=2 \begin{array}{rrr}
& -2 x_{3} & -2 x_{4}
\end{array}-x_{5}=2=\left.2\right|_{4}+x_{5}=0
$$

We increase x_{3} to 1 , which will decrease z by 12 .
The basic variables x_{1}, x_{2}, x_{6} change:

- x_{2} drops to zero and becomes nonbasic
- the new basis consists of $\left\{x_{1}, x_{3}, x_{6}\right\}$

We have completed a simplex pivot.

We have moved from $\left(x_{1}, x_{2}, x_{6}, x_{3}, x_{4}, x_{5}\right)=(1,2,2,0,0,0)$ to the new point ($\left.x_{1}, x_{2}, x_{6}, x_{3}, x_{4}, x_{5}\right)=(2,0,3,1,0,0)$.

$$
x \quad x+\alpha \bullet d
$$

$(1,2,2,0,0,0) \rightarrow(1,2,2,0,0,0)+1(1,-2,1,1,00)$

$$
=(2,0,3,1,0,0)
$$

A Variation

What if the expression for X_{B} were

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=2 \\
& x_{6} \\
& x_{6}=2
\end{aligned}+2 x_{3} \quad-\left.2 x\right|_{4}-x_{4} \quad-\left.x\right|_{5} \geq 0
$$

Now we could increase x_{3} indefinitely. Since the reduced cost of x_{3} is -12 , we have detected an unbounded LP!

