OPTIMAL ASSIGNMENT PROBLEM

An *assignment* in a network whose node set partitioned into disjoint sets U and V is a set of edges no two of which meet at a common node. Often a cost c_{uv} is associated with each possible edge (u,v), where $u \in U$ and $v \in V$.

Suppose that IUI = IVI. We want to determine a minimum cost assignment between the sets U and V.

Application to personnel assignment: filling jobs (V) with applicants (U), relative to training costs.

This is a minimum cost flow problem (directed arcs from U to V); each $u \in U$ has $b_u = 1$, while each $v \in V$ has $b_v = -1$.

Assignment Problem

[4	6	5	3	2	7	3	2]
9	6	4	9	3	2	6	2
3	8	2	1	3	2	4	6
5	6	3	1	9	4	3	2
1	1	6	7	5	8	9	0
7	6	2	8	6	2	1	3
9	3	5	1	2	7	8	3
6	6	3	8	6	2	1	3

Find an assignment of applicants to jobs that minimizes the total cost of the assignment.

Is there an **efficient** way to solve this?

Assignment Problem

[4	6	5	3	2	7	3	2]
9	6	4	9	3	2	6	2
3	8	2	1	3	2	4	6
5	6	3	1	9	4	3	2
1	1	6	7	5	8	9	0
7	6	2	8	6	2	1	3
9	3	5	1	2	7	8	3
6	6	3	8	6	2	1	3

Here is an assignment of total cost 14.

This is in fact an optimal solution to the problem.