MATLAB Computations

>> A = [3 2 1 4 1 0; 4 3 3 3 0 -1; 1 1 1 1 0 0]A = 4 -1 1 1 1 1 0 0 >> B = A(:, $[1 \ 2 \ 6]$) 2 0 B = 4 3 -1 1 1 0 >> N = A(:, $[3 \ 4 \ 5]$) N = 3 3 >> b = [7 8 3]' b = 8

>> Binv = inv(B)				
	1	0	-2	
Binv =	-1	0	3	
	1	-1	1	
>> Binv*b				
ans =	1			
	2			
	2			
>> -Binv*N				
ans =	1	-2	-1	
	-2	1	1	
	1	-2	-1	

Recall:
$$x_B = B^{-1}b - B^{-1}N x_N$$

>> $c = [28 \ 30 \ 20 \ 25 \ 0 \ 0]$ $c = 28 \ 30 \ 20 \ 25 \ 0 \ 0$ >> $cB = c([1 \ 2 \ 6])$ $cB = 28 \ 30 \ 0$ >> $cN = c([3 \ 4 \ 5])$ $cN = 20 \ 25 \ 0$ >> rc = cN - cB*Binv*N $rc = -12 \ -1 \ 2$

These are the reduced costs of the nonbasic variables x_3, x_4, x_5 .

The current basis $\{1, 2, 6\}$ is not optimal.

Try the basis defined by columns/variables $\{3, 5, 6\}$:

>> B = A(:,[3 5 6]) 1 1 0 $B = 3 \qquad 0 \qquad -1$ 1 0 0 >> N = A(:,[1 2 4]) 3 2 4 N = 4 3 3 1 1 1 >> Binv = inv(B) 0 0 1 Binv = 1 0 -1 0 -1 3 >> Binv*b 3 ans = 41

$$-1 -1 -1 -1$$
ans = -2 -1 -3
1 0 0
$$>> cB = c([3 5 6])$$

$$cB = 20 0 0$$

$$>> cN = c([1 2 4])$$

$$cN = 28 30 25$$

$$>> rc = cN - cB*Binv*N$$

$$rc = 8 10 5$$

$$>> z = cB*Binv*b$$

$$z = 60$$

Since all reduced costs are nonnegative, the basis $\{3, 5, 6\}$ is optimal.

Let's look at the direction defined by increasing the nonbasic variable x_4 .

In general we have $A\mathbf{d} = 0$ and $\mathbf{c}^{\mathrm{T}}\mathbf{d} < 0$.