Blending Problem

A refinery blends four petroleum components into three grades of gasoline - regular, premium, and low lead. The problem is to determine the optimal usage of the four components that will maximize profit.

The availabilities of components and their costs are:

component	availability barrels/day	cost \$/barrel
\#1	5,000	$\$ 9.00$
\#2	2,400	7.00
\#3	4,000	12.00
\#4	1,500	6.00

Blending formulas and selling price for each grade are:
grade
specification
selling price/barrel
regular (R) (1) not less than 40% of \#1 $\$ 12.00$
(2) not more than 20% of \#2
(3) not less than 30% of \#3
premium (P) (4) not less than 40% of \#3 $\$ 18.00$
low lead (L) (5) not more than 50% of \#2 $\$ 10.00$
(6) not less than 10% of \#1

FORMULATION:

Decisions: amount of each component used in each grade

Variables:

$x_{i j}=$ barrels of component i used in grade j per day

$$
(i=1,2,3,4 \text { and } j=R, P, L)
$$

Objective function:

$$
\begin{aligned}
\max z= & 12\left(x_{1 R}+x_{2 R}+x_{3 R}+x_{4 R}\right)+18\left(x_{1 P}+x_{2 P}+x_{3 P}+x_{4 P}\right) \\
& +10\left(x_{1 L}+x_{2 L}+x_{3 L}+x_{4 L}\right) \\
& -9\left(x_{1 R}+x_{1 P}+x_{1 L}\right)-7\left(x_{2 R}+x_{2 P}+x_{2 L}\right) \\
& -12\left(x_{3 R}+x_{3 P}+x_{3 L}\right)-6\left(x_{4 R}+x_{4 P}+x_{4 L}\right) \\
= & 3 x_{1 R}+5 x_{2 R}+6 x_{4 R}+9 x_{1 P}+11 x_{2 P}+6 x_{3 P} \\
& +12 x_{4 P}+1 x_{1 L}+3 x_{2 L}-2 x_{3 L}+4 x_{4 L}
\end{aligned}
$$

Constraints:

availability:

$$
\begin{aligned}
& x_{1 R}+x_{1 P}+x_{1 L} \leq 5,000 \\
& x_{2 R}+x_{2 P}+x_{2 L} \leq 2,400 \\
& x_{3 R}+x_{3 P}+x_{3 L} \leq 4,000 \\
& x_{4 R}+x_{4 P}+x_{4 L} \leq 1,500
\end{aligned}
$$

blending:
(1) $\quad x_{1 R} /\left(x_{1 R}+x_{2 R}+x_{3 R}+x_{4 R}\right) \geq .40$ or $\quad x_{1 R} \geq .40\left(x_{1 R}+x_{2 R}+x_{3 R}+x_{4 R}\right)$ or $\quad .6 x_{1 R}-.4 x_{2 R}-.4 x_{3 R}-.4 x_{4 R} \geq 0$
(2) $\quad x_{2 R} /\left(x_{1 R}+x_{2 R}+x_{3 R}+x_{4 R}\right) \leq .20$
or

$$
-.2 x_{1 R}+.8 x_{2 R}-.2 x_{3 R}-.2 x_{4 R} \leq 0
$$

(3)

$$
x_{3 R} /\left(x_{1 R}+x_{2 R}+x_{3 R}+x_{4 R}\right) \geq .30
$$

or
$-.3 x_{1 R}-.3 x_{2 R}+.7 x_{3 R}-.3 x_{4 R} \geq 0$
(4)

$$
x_{3 P} /\left(x_{1 P}+x_{2 P}+x_{3 P}+x_{4 P}\right) \geq .40
$$

or
(5) $\quad x_{2 L} /\left(x_{1 L}+x_{2 L}+x_{3 L}+x_{4 L}\right) \leq .50$
$-.4 x_{1 P}-.4 x_{2 P}+.6 x_{3 P}-.4 x_{4 P} \geq 0$
or
(6)

$$
\begin{array}{r}
x_{1 L} /\left(x_{1 L}+x_{2 L}+x_{3 L}+x_{4 L}\right) \geq .10 \\
.9 x_{1 L}-.1 x_{2 L}-.1 x_{3 L}-.1 x_{4 L} \geq 0
\end{array}
$$

or

$$
-.5 x_{1 L}+.5 x_{2 L}-.5 x_{3 L}-.5 x_{4 L} \leq 0
$$

all $\mathrm{x}_{\mathrm{ij}} \geq \mathbf{0}$.

