BLENDING PROBLEM

#3

#4

A refinery blends four petroleum components into three grades of gasoline — *regular*, *premium*, and *low lead*. The problem is to determine the optimal usage of the four components that will maximize profit.

availability
barrels/daycost
\$/barrel#15,000\$9.00#22,4007.00

4,000

1,500

12.00

6.00

The availabilities of components and their costs are:

Blending formulas and selling price for each grade are:

<u>grade</u>		specification	selling price/barrel
regular (R)	(1) (2) (3)	not less than 40% of #1 not more than 20% of #2 not less than 30% of #3	\$12.00
premium (P)	(4)	not less than 40% of #3	\$18.00
low lead (L)	(5) (6)	not more than 50% of #2 not less than 10% of #1	\$10.00

<u>Decisions</u>: amount of each component used in each grade <u>Variables</u>:

Objective function:

$$\begin{array}{l} \max \ z \ = \ 12 \ (x_{1R} + x_{2R} + x_{3R} + x_{4R}) + 18 \ (x_{1P} + x_{2P} + x_{3P} + x_{4P}) \\ & + \ 10 \ (x_{1L} + x_{2L} + x_{3L} + x_{4L}) \\ & - \ 9 \ (x_{1R} + x_{1P} + x_{1L}) \ - \ 7 \ (x_{2R} + x_{2P} + x_{2L}) \\ & - \ 12 \ (x_{3R} + x_{3P} + x_{3L}) \ - \ 6 \ (x_{4R} + x_{4P} + x_{4L}) \end{array}$$
$$= \ 3x_{1R} \ + \ 5x_{2R} \ + \ 6x_{4R} \ + \ 9x_{1P} \ + \ 11x_{2P} \ + \ 6x_{3P} \\ & + \ 12x_{4P} \ + \ 1x_{1L} \ + \ 3x_{2L} \ - \ 2x_{3L} \ + \ 4x_{4L} \end{array}$$

Constraints:

availability:
$$x_{1R} + x_{1P} + x_{1L} \le 5,000$$

 $x_{2R} + x_{2P} + x_{2L} \le 2,400$
 $x_{3R} + x_{3P} + x_{3L} \le 4,000$
 $x_{4R} + x_{4P} + x_{4L} \le 1,500$

blending: (1)
$$x_{1R} / (x_{1R} + x_{2R} + x_{3R} + x_{4R}) \ge .40$$

or $x_{1R} \ge .40(x_{1R} + x_{2R} + x_{3R} + x_{4R})$
or $.6x_{1R} - .4x_{2R} - .4x_{3R} - .4x_{4R} \ge 0$

(2)
$$x_{2R} / (x_{1R} + x_{2R} + x_{3R} + x_{4R}) ≤ .20$$

or $-.2x_{1R} + .8x_{2R} - .2x_{3R} - .2x_{4R} ≤ 0$

(3)
$$x_{3R} / (x_{1R} + x_{2R} + x_{3R} + x_{4R}) ≥ .30$$

or $-.3x_{1R} - .3x_{2R} + .7x_{3R} - .3x_{4R} ≥ 0$

(4)
$$x_{3P} / (x_{1P} + x_{2P} + x_{3P} + x_{4P}) \ge .40$$

or $-.4x_{1P} - .4x_{2P} + .6x_{3P} - .4x_{4P} \ge 0$

(5)
$$x_{2L}/(x_{1L} + x_{2L} + x_{3L} + x_{4L}) \le .50$$

or $-.5x_{1L} + .5x_{2L} - .5x_{3L} - .5x_{4L} \le 0$

(6)
$$x_{1L} / (x_{1L} + x_{2L} + x_{3L} + x_{4L}) \ge .10$$

or $.9x_{1L} - .1x_{2L} - .1x_{3L} - .1x_{4L} \ge 0$