Dual Simplex Algorithm

Consider the LP:

$$
\begin{array}{lr}
\text { min } & 2 x_{1}+3 x_{2}+4 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+x_{3}
\end{array} \geq 3\left\{\begin{aligned}
2 x_{1}-x_{2}+3 x_{3} & \geq 4 \\
& x_{1}, x_{2}, x_{3}
\end{aligned}\right.
$$

Place this in standard form:

$$
\begin{aligned}
& \min 2 x_{1}+3 x_{2}+4 x_{3}+0 x_{4}+0 x_{5} \\
& \text { s.t. } \quad x_{1}+2 x_{2}+x_{3}-x_{4}+0 x_{5}=3 \\
& 2 x_{1}-x_{2}+3 x_{3}+0 x_{4}-x_{5}=4 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{aligned}
$$

Unfortunately, there is no obvious initial feasible basis B. For example choosing $B=\left[a_{4}, a_{5}\right]$ gives $x_{4}=-3, x_{5}=-4$.

However, because all c_{j} are nonnegative, this defines a dual feasible basis.

Namely, $B=-I, c_{B}=[0,0]^{\top}$ so that $u=[0,0]^{\top}$. This gives reduced costs $\overline{\mathbf{c}}_{j}=\mathbf{c}_{\mathrm{j}}$ for all nonbasic columns a_{j}.

$$
\begin{aligned}
& \overline{\mathbf{c}}_{1}=2 \geq 0 \\
& \overline{\mathbf{c}}_{2}=3 \geq 0 \\
& \overline{\mathbf{c}}_{3}=4 \geq 0
\end{aligned}
$$

Let a_{5} leave the basis and determine which nonbasic column enters. Compute $d=[0,1]$ and then calculate $d^{\top} a_{j}$ for all nonbasic columns a_{j}.

$$
\begin{aligned}
& d^{\top} a_{1}=2 \\
& d^{\top} a_{2}=-1 \\
& d^{\top} a_{3}=3
\end{aligned} \quad \alpha=\min \{2 / 2,4 / 4\}=1 \text {, so } a_{1} \text { enters. }
$$

Now $B=\left[a_{4}, a_{1}\right]$. We can find the new x_{B} by solving $B x_{B}=b$ or simply by updating the previous $x_{B}=\left[x_{4}, x_{5}\right]=[-3,-4]$.

Namely find $-B^{-1} a_{1}=\left[\begin{array}{ll}1 & 2\end{array}\right]$

$$
\begin{aligned}
& x_{4}=-3+1 x_{1} \geq 0 \\
& x_{5}=-4+2 x_{1} \geq 0
\end{aligned}
$$

Since a_{5} is leaving the basis, x_{5} is forced to 0 , giving $x_{1}=2, x_{4}=-1$.
Continue with $B=\left[a_{4}, a_{1}\right]$, which remains dual feasible:

$$
\begin{aligned}
& \overline{\mathbf{c}}_{2}=4 \geq 0 \\
& \overline{\mathbf{c}}_{3}=1 \geq 0 \\
& \overline{\mathbf{c}}_{5}=1 \geq 0
\end{aligned}
$$

Since $x_{4}=-1$, column a_{4} should next leave the basis.
Compute $d=[1,-1 / 2]$ and then calculate $d^{\top} a_{j}$ for all nonbasic columns a_{j}.

$$
\begin{aligned}
& d^{\top} a_{2}=5 / 2 \\
& d^{\top} a_{3}=-1 / 2 \\
& d^{\top} a_{5}=1 / 2
\end{aligned} \quad \alpha=\min \{4 / 2.5,1 / .5\}=8 / 5, \text { so } a_{2} \text { enters. }
$$

Now $B=\left[a_{2}, a_{1}\right]$. We can find the new x_{B} by updating the previous $x_{B}=\left[x_{4}, x_{1}\right]=[-1,2]$. Since x_{2} enters, compute $-B^{-1} a_{2}=[5 / 2,1 / 2]$:

$$
\begin{aligned}
& x_{4}=-1+(5 / 2) x_{2} \geq 0 \\
& x_{1}=2+(1 / 2) x_{2} \geq 0
\end{aligned}
$$

Since a_{4} is leaving the basis, x_{4} is forced to 0 , giving $x_{2}=2 / 5$ and $x_{1}=2+(1 / 2) x_{2}=2+(1 / 2)(2 / 5)=11 / 5$.

Now $x_{B}=\left[x_{2}, x_{1}\right]=[2 / 5,11 / 5] \geq 0$, so we have primal feasibility and an optimal solution. Throughout we have maintained dual feasibility and complementary slackness.

