
 
Dual Simplex Algorithm 
 
Consider the LP: 
 
  min 2x1   +   3x2   +   4x3 
  s.t.   x1   +   2x2   +     x3  ≥  3 
   2x1   –     x2   +   3x3  ≥  4 
                x1,   x2,   x3     ≥  0 
 
Place this in standard form: 
 
  min 2x1   +   3x2   +   4x3   +   0x4   +   0x5 
  s.t.   x1   +   2x2   +     x3   –     x4   +   0x5  =  3 
   2x1   –     x2   +   3x3   +   0x4   –     x5  =  4 
                          x1,   x2,   x3,   x4,   x5       ≥  0 
 
Unfortunately, there is no obvious initial feasible basis B. For 
example choosing B = [ a4, a5 ] gives x4 = –3, x5 = –4 . 
 
However, because all cj are nonnegative, this defines a dual 
feasible basis. 
 
Namely, B = – I, cB = [ 0,  0 ]

T so that u = [ 0,  0 ]
T. This gives reduced 

costs c−  j  =  cj for all nonbasic columns aj. 

  c−  1   =   2 ≥  0 

 c−  2   =   3 ≥  0 

 c−  3   =   4 ≥  0  
 
Let a5 leave the basis and determine which nonbasic column 
enters.  Compute d = [ 0,  1 ] and then calculate dT aj for all nonbasic 
columns aj. 
 



 
 dT a1  =   2   
  dT a2  = –1   α  = min {2/2, 4/4} = 1, so a1 enters. 
 dT a3  =   3  
 

Now B = [ a4, a1 ]. We can find the new xB by solving B xB = b or 
simply by updating the previous xB = [x4, x5] = [–3,  –4]. 

   
Namely find –B-1a1 = [1  2] 

 
 x4   =   –3 +   1 x1  ≥  0 
 x5   =   –4 +   2 x1  ≥  0 
 
Since a5 is leaving the basis, x5 is forced to 0, giving x1 = 2, x4 = –1. 
 
Continue with B = [ a4, a1 ], which remains dual feasible: 
 
  c−  2   =   4 ≥  0 

 c−  3   =   1 ≥  0 

 c−  5   =   1 ≥  0  
 
Since x4 = –1, column a4 should next leave the basis. 
 
Compute d = [ 1,  –1/2 ] and then calculate dT aj for all nonbasic 
columns aj. 
 
 dT a2  =    5/2   
  dT a3  =  –1/2   α  = min {4/2.5, 1/.5} = 8/5, so a2 enters. 
 dT a5  =    1/2  
 



 
Now B = [ a2, a1 ]. We can find the new xB by updating the previous 
xB = [x4, x1] = [–1,  2].  Since x2 enters, compute –B-1a2 = [5/2, 1/2]: 

 
 x4   =   –1 +   (5/2) x2  ≥  0 
 x1   =     2 +   (1/2) x2  ≥  0 
 

Since a4 is leaving the basis, x4 is forced to 0, giving x2 = 2/5 and  
x1 = 2  +  (1/2) x2  = 2  +  (1/2) (2/5)  =  11/5. 
 
Now xB = [x2,  x1] = [2/5, 11/5] ≥ 0, so we have primal feasibility and 
an optimal solution.  Throughout we have maintained dual feasibility 
and complementary slackness.  

 
 


