Dual Simplex Algorithm

Consider the LP:

min $2x_1 + 3x_2 + 4x_3$ s.t. $x_1 + 2x_2 + x_3 \ge 3$ $2x_1 - x_2 + 3x_3 \ge 4$ $x_1, x_2, x_3 \ge 0$

Place this in standard form:

min
$$2x_1 + 3x_2 + 4x_3 + 0x_4 + 0x_5$$

s.t. $x_1 + 2x_2 + x_3 - x_4 + 0x_5 = 3$
 $2x_1 - x_2 + 3x_3 + 0x_4 - x_5 = 4$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Unfortunately, there is no obvious initial feasible basis B. For example choosing B = $[a_4, a_5]$ gives $x_4 = -3$, $x_5 = -4$.

However, because all c_j are nonnegative, this defines a dual feasible basis.

Namely, B = -I, $c_B = [0, 0]^T$ so that $u = [0, 0]^T$. This gives reduced costs $\overline{c}_i = c_i$ for all nonbasic columns a_i .

 $\overline{c}_1 = 2 \ge 0$ $\overline{c}_2 = 3 \ge 0$ $\overline{c}_3 = 4 \ge 0$

Let a_5 leave the basis and determine which nonbasic column enters. Compute d = [0, 1] and then calculate d^T a_j for all nonbasic columns a_j .

$$d^{T} a_{1} = 2$$

 $d^{T} a_{2} = -1$ $\alpha = \min \{2/2, 4/4\} = 1, \text{ so } a_{1} \text{ enters.}$
 $d^{T} a_{3} = 3$

Now B = [a_4 , a_1]. We can find the new x_B by solving B x_B = b or simply by updating the previous $x_B = [x_4, x_5] = [-3, -4]$.

Namely find $-B^{-1}a_1 = [1 \ 2]$

Since a_5 is leaving the basis, x_5 is forced to 0, giving $x_1 = 2$, $x_4 = -1$.

Continue with $B = [a_4, a_1]$, which remains dual feasible:

 $\overline{c}_2 = 4 \ge 0$ $\overline{c}_3 = 1 \ge 0$ $\overline{c}_5 = 1 \ge 0$

Since $x_4 = -1$, column a_4 should next leave the basis.

Compute d = [1, -1/2] and then calculate d^T a_j for all nonbasic columns a_i.

$$d^{T} a_{2} = 5/2$$

 $d^{T} a_{3} = -1/2$ $\alpha = \min \{4/2.5, 1/.5\} = 8/5, \text{ so } a_{2} \text{ enters.}$
 $d^{T} a_{5} = 1/2$

Now B = [a_2 , a_1]. We can find the new x_B by updating the previous $x_B = [x_4, x_1] = [-1, 2]$. Since x_2 enters, compute $-B^{-1}a_2 = [5/2, 1/2]$:

Since a_4 is leaving the basis, x_4 is forced to 0, giving $x_2 = 2/5$ and $x_1 = 2 + (1/2)x_2 = 2 + (1/2)(2/5) = 11/5$.

Now $x_B = [x_2, x_1] = [2/5, 11/5] \ge 0$, so we have primal feasibility and an optimal solution. Throughout we have maintained dual feasibility and complementary slackness.