Dual Simplex Algorithm

Consider a primal LP in standard form and its dual:

\min	$\mathbf{c}^T \mathbf{x}$		max	$\mathbf{u}^T \mathbf{b}$		
s.t.	$A\mathbf{x}$	$= \mathbf{b}$	s.t.	$\mathbf{u}^T A$	\leq	\mathbf{c}^{T} .
	\mathbf{x}	≥ 0		\mathbf{u} free		

We know that a basis B of A is a primal feasible basis and \mathbf{x}_B is a basic feasible primal solution if $\mathbf{x}_B = B^{-1}\mathbf{b} \ge \mathbf{0}$.

We define a vector **u** to be a **basic feasible dual solution** if $\mathbf{u}^T = \mathbf{c}_B^T B^{-1}$ and $\mathbf{u}^T A \leq \mathbf{c}^T$. In this case we say that *B* is a **dual feasible basis**. Of course, if *B* is primal feasible and dual feasible, then it is an optimal basis.

The Dual Simplex algorithm starts with a dual feasible basis B that is not primal feasible and iterates to an optimal solution. The idea is to move in the dual space from **u** along some direction **d** to the new point $\mathbf{u}' = \mathbf{u} + \alpha \mathbf{d}$, with $\alpha > 0$. This is done in such a way to preserve dual feasibility, which currently holds for all nonbasic columns \mathbf{a}_j : $\mathbf{u}^T \mathbf{a}_j \leq c_j$.

Since $\mathbf{u}' = \mathbf{u} + \alpha \mathbf{d}$ we require $\mathbf{u}'^T \mathbf{a}_j = \mathbf{u}^T \mathbf{a}_j + \alpha \mathbf{d}^T \mathbf{a}_j \leq c_j$. If $\mathbf{d}^T \mathbf{a}_j \leq 0$, then this imposes no restriction since $\mathbf{u}^T \mathbf{a}_j \leq c_j$. However, if $\mathbf{d}^T \mathbf{a}_j > 0$ then α must satisfy the inequality

$$\alpha \leq \frac{c_j - \mathbf{u}^T \mathbf{a}_j}{\mathbf{d}^T \mathbf{a}_j}.$$

The smallest such ratio then dictates which column \mathbf{a}_i will enter the basis.

Dual Simplex Algorithm

- 0. Start with a dual feasible basis B. That is, $\mathbf{u}^T = \mathbf{c}_B^T B^{-1}$ and $\mathbf{u}^T A \leq \mathbf{c}^T$.
- 1. If $\mathbf{x}_B = B^{-1}\mathbf{b} \geq \mathbf{0}$, then *B* is optimal. Else, choose i^* such that $\mathbf{x}_{\beta_{i^*}} < 0$. Then column $\mathbf{a}_{\beta_{i^*}}$ leaves the basis.
- 2. Compute the direction $\mathbf{d}^T = -\boldsymbol{\varepsilon}_{i^*}B^{-1}$ which is the negative of row i^* of B^{-1} . Compute $\mathbf{d}^T \mathbf{a}_j$ for each nonbasic column \mathbf{a}_j . If all $\mathbf{d}^T \mathbf{a}_j \leq 0$ then the original problem is infeasible.
- 3. Compute the step size

$$\alpha = \min\left\{\frac{c_j - \mathbf{u}^T \mathbf{a}_j}{\mathbf{d}^T \mathbf{a}_j} : \mathbf{d}^T \mathbf{a}_j > 0\right\} = \frac{c_s - \mathbf{u}^T \mathbf{a}_s}{\mathbf{d}^T \mathbf{a}_s}$$

Then column \mathbf{a}_s enters the basis.

4. $\mathbf{u}' = \mathbf{u} + \alpha \mathbf{d}$, and the new basis B' is obtained by replacing column $\mathbf{a}_{\beta_{i^*}}$ with column \mathbf{a}_s .