FINDING A FEASIBLE FLOW IN A NETWORK

Let \(G = (N, A) \) be a capacitated flow network, with \(b(i) \) the supply/demand at node \(i \); we assume \(\sum b(i) = 0 \).

Feasible Flow Problem:

Find flow \(\mathbf{x} : \sum_j x_{ij} - \sum_j x_{ji} = b(i) \) for each \(i \in N \)

\[0 \leq x_{ij} \leq u_{ij} \quad \text{for all } (i,j) \in A \]

1. Construct the *transformed network* \(G' \):

Introduce a source node \(s \), and a sink node \(t \).

 - if \(b(i) > 0 \), add the arc \((s, i)\) with capacity \(b(i) > 0 \);
 - if \(b(i) < 0 \), add the arc \((i, t)\) with capacity \(-b(i) > 0 \).

2. Then solve the maximum flow problem from \(s \) to \(t \) in the transformed network \(G' \).

RESULT. If the maximum flow in \(G' \) *saturates* all the source and sink arcs in \(G' \) then the original problem has a feasible solution; otherwise it is infeasible.
EXAMPLE 1

Find a maximum flow in G':

The original flow problem has a feasible solution.
EXAMPLE 2

Find a maximum flow in G':

The original flow problem has no feasible solution.