1. Consider the three vectors $v_1 = (1, -2, 3)$, $v_2 = (2, 1, 2)$, and $v_3 = (1, 2, -1)$. We want to find a nonnegative combination of these vectors (if one exists) that produces the vector $(1, 2, 1)$. For example using the weights $1/3, 1/6, 1/3$ produces the vector $(1/3, 1/6, 1)$, which however is not the required vector $(1, 2, 1)$.

(a) Formulate this problem as a Phase I LP. Clearly define your variables and explicitly show the corresponding matrices/vectors A, b, c and x.

(b) Use the Phase I method to determine a solution, if one exists, or to demonstrate that there is no solution. At each iteration show the current x, the objective function value, as well as the entering and leaving variables. For all calculations, solve the appropriate linear systems rather than compute inverses.

2. Consider the following LP problem:

\[
\begin{align*}
\text{max } z &= 16x_1 + 6x_2 + 7x_3 + 4x_4 \\
\text{s.t. } & 4x_1 + 2x_2 + 3x_3 - x_4 \leq 8 \\
& x_1 + 2x_2 + 5x_3 + 5x_4 \leq 11 \\
& 3x_1 + x_2 + x_3 + 2x_4 \leq 5 \\
& x_1, x_2, x_3, x_4 \geq 0
\end{align*}
\]

(a) Convert this problem into standard equality form.

(b) Verify that the basic variables $\{x_1, x_3, x_6\}$ define an optimal basis. Determine the exact (fractional) coordinates for the corresponding solution x as well as the optimal objective function value z.

(c) Determine the set of all optimal solutions (x_1, \ldots, x_7) to this linear program. Express your answer in parametric form.