MthSc 440/640 Problem Set \#5

Due 2/24/12

1. Consider the following primal LP problem (P):

$$
\begin{array}{lrl}
\max z= & 3 x_{1}+8 x_{2}+2 x_{3}+5 x_{4} \\
\text { s.t. } & 2 x_{1}+x_{2}+5 x_{3}+5 x_{4} \leq 11 \\
& x_{1}+3 x_{2}+2 x_{3}+x_{4} \leq 5 \\
& 2 x_{1}+4 x_{2}+x_{3}+3 x_{4} \leq 8 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

(a) Construct the dual problem (D).
(b) Verify that $\mathbf{x}=(2,1,0,0)$ defines a feasible solution to (P) and compute its objective function value.
(c) Compute the complementary dual vector $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and its objective function value. Is \mathbf{u} feasible? Is the \mathbf{x} in part (b) optimal? Explain.
(d) Verify that $\mathbf{x}=(0,7 / 5,0,4 / 5)$ defines a feasible solution to (P). Compute the associated complementary vector \mathbf{u} and use this to verify the optimality of \mathbf{x}.
(e) Rewrite the dual (D) in standard equality form. Use this representation to help you express the objective function vector $\mathbf{c}=(3,8,2,5)$ as a nonnegative combination of the (outward pointing) normal vectors to the primal constraints that hold at $\mathbf{x}=(0,7 / 5,0,4 / 5)$. Give specific numerical values for your nonnegative weights and explicitly verify that this nonnegative combination produces \mathbf{c}.

