Due 3/2/12

1. Consider the following LP problem (P):

$$
\begin{array}{lcl}
\min z=20 x_{1}+12 x_{2} & +4 x_{4}+19 x_{5}+8 x_{6}+13 x_{7} \\
\text { s.t. } & x_{1}+x_{2} & +x_{4}+3 x_{5}-3 x_{6}-4 x_{7}=7 \\
3 x_{1}+ & -x_{3} & -10 x_{4}-7 x_{5}+15 x_{6}+10 x_{7}=8 \\
& x_{1}+ & \\
& & 2 x_{4}-4 x_{5}+4 x_{6}+5 x_{7}=3 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \geq 0
\end{array}
$$

Let the current basis matrix be $\mathbf{B}=\left[a_{1}, a_{2}, a_{3}\right]$.
(a) Verify that \mathbf{B} defines an optimal solution $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{7}\right)$ to (P).

Answer parts (b)-(f) independently of one another.
(b) Determine the (largest) interval for c_{1} so that the original basis \mathbf{B} remains optimal.
(c) Determine the (largest) interval for c_{5} so that the original basis \mathbf{B} remains optimal.
(d) Determine the (largest) interval for b_{3} so that the original basis \mathbf{B} remains optimal.
(e) Suppose that c_{1} is changed to 15 . Determine the new optimal solution \mathbf{x}.
(f) Suppose that b_{3} is changed to 2 . Determine the new optimal solution \mathbf{x}.

In your calculations above, do not compute inverses; rather solve the necessary linear equations.

